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Abstract

Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and

methane to the atmosphere, but little is known about the methane oxidation processes in

these waters. Here we investigated the distribution and potential activity of aerobic metha-

notrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic

Québec: peatlands and mineral soils. We hypothesized that methanotrophic community

composition and potential activity differ regionally as a function of the landscape type and

permafrost degradation stage, and locally as a function of depth-dependent oxygen condi-

tions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative

PCR showed that the communities were composed of diverse and potentially active line-

ages. Type I methanotrophs, particularly Methylobacter, dominated all communities, how-

ever there was a clear taxonomic separation between the two landscape types, consistent

with environmental control of community structure. In contrast, methanotrophic potential

activity, measured by pmoA transcript concentrations, did not vary with landscape type, but

correlated with conductivity, phosphorus and total suspended solids. Methanotrophic poten-

tial activity was also detected in low-oxygen bottom waters, where it was inversely corre-

lated with methane concentrations, suggesting methane depletion by methanotrophs.

Methanotrophs were present and potentially active throughout the water column regardless

of oxygen concentration, and may therefore be resilient to future mixing and oxygenation

regimes in the warming subarctic.
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Introduction

Methane emissions to the atmosphere are the net result of microbial methanogenesis and

methanotrophy, and in many environments, the activity of aerobic methanotrophic bacteria

(methanotrophs) may impose a strong control on methane emission flux rates [1]. Methano-

trophs have the distinctive ability to use methane as their sole source of carbon and energy [2]

and have the capacity to oxidize up to 60% of the yearly methane produced at a global scale

[3]. In rice fields, the proportion of methane oxidized by methanotrophs varies from 20% to

90% [4–6]. In wetlands and freshwater ecosystems, up to 95% of the methane produced is con-

sumed by oxidation [7–9], and in a boreal lake, up to 88% of the methane diffusing into the

water column was estimated to be consumed by methanotrophs [10,11]. Less is known about

the importance of methanotrophy in Arctic and subarctic ecosystems. In High Arctic soils,

methanotrophs in the upper profile appear to be sufficiently active to fully consume all the

methane produced, and the soils are net methane sinks [12], while northern lakes appear in

general to be net sources of methane [13,14].

Methanotrophs require the presence of oxygen as an electron acceptor for methane oxida-

tion [15], and in lakes, methanotrophs would be logically more abundant in the oxic/anoxic

interface where both methane and oxygen are available [2]. However, they can also be found

homogeneously distributed throughout the water column [16], and sometimes in unexpect-

edly higher concentrations in anoxic bottom waters [17]. Given these disparate observations, it

is still unclear to what extent methanotrophs are able to oxidize methane under different in

situ oxygen conditions.

The application of functional genomics to ecosystems provides a means to establish links

between microbial diversity and biogeochemical processes [18], including for microbes

involved in the methane cycle. The functional gene coding for the α-subunit of particulate

methane mono-oxygenase (pmoA), is a phylogenetically useful marker for enzymes involved

in bacterial methane oxidation, and can be used to assess methanotroph community composi-

tion and activity [19–21]. Methanotrophs are commonly separated into two types based on

phylogenetic and metabolic differences [22]. Type I methanotrophs (gamma-proteobacteria)

use the ribulose monophosphate (RuMP) pathway for carbon assimilation while Type II

methanotrophs (alpha-proteobacteria) use the serine pathway. Type I taxa are sometimes fur-

ther divided into Type Ia (Methylobacter-related) and Type Ib (Methylococcus-related) based

on their phylogenetic affiliation [23]. Recently, new groups of methanotrophs have been dis-

covered that are phylogenetically distant from Type I and II: the genus Crenothrix, which

belongs to the gamma-proteobacteria but has a phylogenetically divergent pmoA [24]; the ver-

rucomicrobial order Methylacidiphilales [25]; and the NC10 phylum that has the ability to

couple methane oxidation with denitrification [26].

Lakes and ponds, which are a characteristic feature across northern landscapes, are strong

emitters of methane to the atmosphere [14,27]. Emission rates are especially high from ther-

mokarst lakes and ponds (thaw ponds) in subarctic permafrost peatlands [28], but little atten-

tion has been given to their methane oxidation potential. Thaw ponds in general are especially

sensitive to climate warming. In some areas, they are draining and infilling, while in other

northern regions they are expanding (see [29] and references therein). Overall, thawing and

collapse of permafrost (thermokarst erosion), has an impact on the size and abundance of such

ponds, and large quantities of organic carbon that were previously stored in the frozen soils

are being mobilized across these landscapes [30].

In the Quebec subarctic region, permafrost thaw ponds have different geomorphological

origins that may influence methanotrophic community composition and activity. First, the

quality and the quantity of the carbon pool in the ponds change as a function of permafrost

Methanotrophic bacteria in subarctic permafrost thaw ponds

PLOS ONE | https://doi.org/10.1371/journal.pone.0188223 November 28, 2017 2 / 22

Nordiques (CEN). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0188223


degradation and the landscapes surrounding the ponds, with two distinct landscape types:

peatlands with raised mounds of organic material (palsas) and shrub-tundra landscapes with

raised mounds of inorganic soils (lithalsas). These different landscapes affect the community

composition of methanogenic Archaea [31] and also methane oxidation rates [32], but the

influence on methanotrophic communities has been little explored. These landscapes lie in the

transition zone at the southern limit of the current permafrost range, and the ice-rich mounds

are thawing and degrading rapidly. This thermokarst activity is resulting in the production

and expansion both of palsa and lithalsa thaw ponds, which differ in their limnological proper-

ties such as dissolved organic carbon concentration and pH [33–35]. An unusual feature of

both types of subarctic ponds is their tendency to be highly stratified during summer, with

marked gradients of temperature and oxygen down through the water column [36]. This strat-

ification is likely to have an impact on methane production (methanogenesis) and loss pro-

cesses (methanotrophy) that are both dependent on temperature and oxygen availability.

Furthermore, the high concentrations of suspended particulates in these water favours parti-

cle-attached bacterial populations over free-living cells [37], but the taxonomic composition of

the two communities has not been established.

Given the heterogeneity of conditions in subarctic thaw ponds at local and regional scales,

our goal in the present study was to identify the factors that influence the composition and

potential activity of their methanotrophic communities. We conducted this research by way

of phylogenetic and quantitative PCR (qPCR) analysis of pmoA transcripts in ponds across a

gradient of permafrost degradation gradient, and in the two ecosystem types: organic-rich

palsa ponds and mineral-rich lithalsa ponds. We hypothesized that the methanotrophic com-

munity and their potential activity differ as a function of landscape type, extent of permafrost

degradation and depth in the ponds. We surmised that methanotrophic activity down the

water column would be determined by oxygen availability, limiting pmoA transcription to the

oxygenated surface waters. We additionally tested the difference in pmoA phylogenies between

free-living and attached methanotrophic communities, given the importance of particles for

bacterial activity in these waters.

Materials and methods

Study site and sampling

Water samples were collected during two field expeditions, 1 to 13 August 2012 and 31 July to

19 August 2013, from four subarctic valleys in northern Québec (Fig 1). The Kwakwatanika-

pistikw River valley (hereafter KWK valley; lat. 55˚ 19.950 N, long. 77˚ 30.130 W) and Sasapi-

makwananisikw River valley (SAS valley; lat. 55˚ 130 N; long 77˚ 420 W) are located in the

sporadic permafrost region, where permafrost underlies less than 50% of the terrain, and the

nearest village is Whapmagoostui-Kuujjuarapik. The Sheldrake River valley (BGR; lat. 56˚ 370

N; long. 76˚ 130 W) and Nastapoka River valley (NAS; lat. 56˚ 550 N, long. 76˚ 220 W) are situ-

ated 100 km north of the two other valleys, in the discontinuous permafrost region, close to

the village of Umiujaq, Quebec (details in Crevecoeur et al. [34]). The SAS valley ponds are the

result of thawing of palsas, peat-rich permafrost mounds [38], while NAS, BGR and KWK

ponds originated from thawing of lithalsas, mineral permafrost mounds [39–41]. All required

permits and permission to work in the two regions were obtained from the local village and

regional Nunavik offices. Surface (0.2 m below surface) and bottom (0.2 m above sediments)

water samples were taken from 12 ponds across the four valleys, which resulted in a total of 24

samples (Table 1).

Profiles of temperature, dissolved oxygen (DO), and pH were taken with a YSI 600R multi-

parameter probe (Yellow Springs Instruments); the detection limit for dissolved oxygen with
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this probe is 0.2 mg L-1. Bottom water samples were collected using a horizontally mounted

Van Dorn bottle (Wilco) and immediately transferred to acid washed 4-L Cubitainers™ that

were rinsed with sample water prior to filling. The Cubitainers™ were overfilled to avoid oxy-

genation, capped, placed in coolers and brought back to the laboratory. Sub-samples for meth-

ane concentrations were measured with the headspace technique as described in Matveev et al.

[28], while samples for physico-chemical analysis (DOC, TSS and TP) were processed as in

Crevecoeur et al. [34].

RNA sample preparation and sequencing

The water for RNA analysis was prefiltered through a 20 μm mesh (Nitex) and then sequen-

tially filtered through a 3 μm Nuclepore™ polycarbonate (PC) filter and a 0.2 μm Sterivex™ unit

(Millipore) to separate large (particle-attached; >3 μm) and small (free-living; 0.2–3 μm) frac-

tions of planktonic micro-organisms. After one hour of filtration, the filtration was stopped

and filters were conserved in RNAlater (Life Technologies) and subsequently stored at -80˚C

until extraction. RNA was extracted with the AllPrep DNA/RNAMini Kit (Qiagen) modified

to include an additional step using polyvinylpyrrolidone (PVP, Alfa Aesar) to minimize poten-

tial PCR inhibition [42]. RNA was converted to cDNA using the High Capacity cDNA Reverse

Fig 1. The eastern Hudson Bay region around the villages of Kuujjuarapik and Umiujaq in subarctic

Quebec, Canada. The locations of the four sampled valleys are shown with red (palsa) and blue (lithalsa)

dots across the permafrost degradation gradient. Map created in R with the open-access databases

"worldHires" https://www.evl.uic.edu/pape/data/WDB/ and data from the Digital Chart of the World

downloaded from DIVA-GIS (http://www.diva-gis.org).

https://doi.org/10.1371/journal.pone.0188223.g001
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Transcription Kit (Applied Biosystems-Ambion). The quantity and quality of cDNA was

checked on a 1% agarose gel; samples with sufficient cDNA for further processing (Table A in

S1 File) were stored at -80˚C.

Amplification of pmoA was performed with a two-step dual-indexed PCR approach modi-

fied for Illumina1 sequencing, with two consecutive sets of primers (Table B in S1 File). In the

first step, the gene specific portion was fused to the Illumina1 TrueSeq sequencing primers

and PCR was carried out in a total volume of 25 μL that contained HF buffer 1X (NEB),

0.25 μM of each primer, 200 μM of each dNTPs (Life Technology), dimethylsulfoxide (DMSO,

NEB) at a final concentration of 3%, 1 U of Phusion1 High-Fidelity DNA polymerase (NEB)

and 1 μL of template cDNA. To minimise primer bias, two more reactions with 5 and 10 fold

diluted template were also carried out for each sample. Temperature and duration of thermal

cycling were started with an initial denaturation at 98˚C for 30 s followed by 35 cycles of dena-

turation at 98˚C for 10 s, annealing at 56˚C for 30 s, extension at 72˚C for 30 s and a final

extension at 72˚C for 300 s. The three dilution reactions were pooled together and purified

using the Axygen PCR cleanup kit. The quality and quantity of the purified PCR product were

checked on a 1% agarose gel. Then 50 to 100-fold dilutions of this purified product was used as

a template for a second PCR step to add barcodes (dual-indexed). The pmoA marker was not

successfully amplified from some cDNA samples and these were excluded from further pro-

cessing and sequence analysis (Table 1). This second PCR was done in triplicate under the

Table 1. Details of the ponds sampled during the 2012 and 2013 field campaigns and the samples used for physico-chemical (P-C) and molecular

(Illumina and qPCR) analyses.

Nomenclature Valley Pond Depth Year Datasets

NASH-S NAS H Surface 2012 P-C, qPCR*

NASH-B NAS H Bottom 2012 P-C, Illumina, qPCR

BGR1-S BGR 1 Surface 2013 P-C, Illumina, qPCR

BGR1-B BGR 1 Bottom 2013 P-C, Illumina, qPCR

BGR2-S BGR 2 Surface 2012 P-C, Illumina, qPCR

BGR2-B BGR 2 Bottom 2012 P-C, Illumina, qPCR

KWK1-S KWK 1 Surface 2012 P-C

KWK1-B KWK 1 Bottom 2012 P-C, Illumina, qPCR

KWK6-S KWK 6 Surface 2012 P-C

KWK6-B KWK 6 Bottom 2012 P-C, Illumina, qPCR

KWK12-S KWK 12 Surface 2013 P-C, qPCR*

KWK12-B KWK 12 Bottom 2013 P-C, qPCR*

KWK23-S KWK 23 Surface 2012 P-C

KWK23-B KWK 23 Bottom 2012 P-C, Illumina, qPCR

SAS1A-S SAS 1A Surface 2013 P-C, Illumina*,qPCR

SAS1A-B SAS 1A Bottom 2013 P-C, Illumina*, qPCR

SAS1B-S SAS 1B Surface 2013 P-C

SAS1B-B SAS 1B Bottom 2012 P-C, Illumina, qPCR

SAS2A-S SAS 2A Surface 2012 P-C, Illumina, qPCR

SAS2A-B SAS 2A Bottom 2012 P-C, Illumina, qPCR

SAS2A-Sb SAS 2A Surface 2013 P-C, qPCR

SAS2A-Bb SAS 2A Bottom 2013 P-C, qPCR

SAS2B-S SAS 2B Surface 2013 P-C, Illumina, qPCR

SAS2B-B SAS 2B Bottom 2013 P-C, Illumina, qPCR

*Only for the small fraction

https://doi.org/10.1371/journal.pone.0188223.t001
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same conditions as the first PCR but with 15 cycles. Triplicates were pooled and purified as

above, and then quantified spectrophotometrically with a NanoDrop™ 1000 (Thermo Fisher

Scientific). Barcoded amplicons were pooled in equimolar concentrations for pair-end

sequencing on the Ilumina MiSeq at the Plateforme d’Analyses Génomiques (IBIS, Université

Laval, Québec, Canada). The raw Illumina reads have been deposited in the NCBI sequence

read archive (SRA) under accession number SRP091008.

Sample processing for qPCR

Standards were prepared from PCR product produced under the same conditions as the first

reaction PCR of the dual-indexed PCR for Illumina sequencing. Triplicate samples of PCR

product were purified with a Feldan (Bio-Basics) PCR purification kit. Amplicons were cloned

using a Stratagene cloning kit following the manufacturer’s instructions, with the following

modifications: a polyA tail was added to the amplicons using Feldan polymerase and buffer

and dATPs (final concentration 0.175 nM) and 26 to 30 ng were used for the ligation reaction.

Transformed cells were incubated 1 h in SOC medium at 37˚C for recovery before plating on

agar plates. Positive clones were incubated again in LB media containing 7% glycerol for 16h

at 37˚C. To verify that the target gene was amplified, the T3/T7 PCR reaction was performed

on the clones and 11 of them were sent for Sanger sequencing at the Sequencing Center of

Laval University Hospital Center (CHUL; Quebec City, QC, Canada). Standards were then

prepared by amplifying a positive clone with T3 and T7 primers. Amplicons were checked

on a 1% agarose gel and the band corresponding to the size of the target amplicon (around

700bp) was cut and purified with a gel purification kit (Qiagen). Another T3/T7 PCR was per-

formed on the purified amplicon and was purified with a PCR purification kit (Feldan). Con-

centrations were measured with the NanoDrop™ spectrometer. Each reaction (standard and

samples) was run in triplicate. Standards for calibration were diluted 10 times to ensure mea-

surements from 107 to 101 copies μL-1. Potential inhibition was checked by running 10 and

100 fold dilutions of the sample, which covered the expected copy number range. qPCR reac-

tions for standards and samples were performed in 20 μL reactions containing 5 μL of tem-

plate, 500 μM of each primer (PmoA169F and PmoA661r), 1X Ssofast EvaGreen™ Supermix

and nuclease free water on a Chromo4 thermal cycler (Bio-Rad) with the following steps: ini-

tial denaturation (30 s at 95˚C) and then 40 cycles of denaturation (5 s at 95˚C), annealing (30

s at 55˚C) and elongation (20 s at 72˚C). At this step no transcripts were detected in some sam-

ples (Table 1).

Sequence processing and analysis

PmoA reads from the Illumina amplicon sequencing were first assembled using the usearch

command “fastq_mergepairs” from UPARSE [43] and then further analyzed using the Fun-

Gene pipeline [44]. Reads shorter than 400 bp were discarded and chimeras were checked and

removed with UCHIME [43]. Sequences were translated to amino acids and compared to the

pmoA reference sequence with FrameBot for detecting frameshift errors and sequences with

inframe STOP codons, which were removed. Remaining high quality sequences were aligned

with HMMER3 and then clustered at 93% similarity, which has been identified as the thresh-

old that corresponds to 97% sequence similarity for 16S rRNA [20,45]. A custom pmoA data-

base was constructed by downloading pmoA sequences from the Functional Gene Repository

v.8.0. Reference sequences were checked against the NCBI nr database and the reference data-

base was manually inspected to ensure all types of known methanotrophs were represented.

Taxonomic affiliation of the representative sequences of pmoA operational taxonomic units

(OTUs) was determined in QIIME using the assign_taxonomy.py command [46]. For
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unassigned sequences, a Neighbour Joining 1000 bootstraps tree following the Poisson model

was constructed to allow assignation of sequences to Type Ia, Type Ib or Type II methano-

trophs by phylogenetic affiliation. Rarefaction curves of OTUs were based on 93% similarity

using the command alpha_rarefaction.py available in QIIME. The dataset was re-sampled 100

times to standardize to 37,000 reads per sample, which corresponded to the minimum number

of reads in a sample minus 10%, using the command multiple_rarefaction_even_depth.py in

QIIME. The community data matrix was square root transformed before running the Bray-

Curtis dissimilarity measure. The Ward method was used for clustering and Bray-Curtis dis-

tances were squared as recommended in Murtagh and Legendre [47]. A principal component

analysis (PCA) was carried out on the environmental variables with the function rda in the

Vegan package [48] and missing values were imputed using the function impute PCA in the

missMDA package [49]. Variables that were not normally distributed were log transformed to

meet the test assumptions. Statistical differences between valleys and depth in terms of the

physico-chemical properties of the ponds were tested with a multivariate analysis of variance

(MANOVA).

Testing for differences in the qPCR data required a non-parametric test since the values did

not meet normality assumptions even after log transformation. The Kruskal-Wallis test was

then used to assess differences in methanotrophic potential activity between valleys, depth and

size fraction. To compare with the β-diversity pattern, 15 samples (of the 24 total) that had cor-

responding Illumina reads were used in this analysis (Table 1). Surface samples that fell below

the limit of detection for the qPCR measurements were considered as missing data.

To evaluate which environmental variables and groups of methanotrophs (X-variables)

contributed to the potential activity of methanotrophs (Y-variable), we used partial least

squares regression (PLS) in the R package mixOmics [50], which transforms X into latent

variables to explain the maximum variance in Y. For this analysis, OTUs were binned into

phylogenetic groups (genera), and the unclassified Methylococcaceae were phylogenetically

assigned to Type Ia and Type Ib following their placement in the phylogenetic tree. The PLS

analysis has the advantage of being robust despite collinearity and missing data [51]. The miss-

ing values in X were replaced by values from model prediction using the NIPALS algorithm.

Prior to analysis, the Y-variable data and the environmental data that were not normally dis-

tributed were log transformed. Methanotroph data that were zero-inflated were fourth-root

transformed, as recommended in Wold et al. [51]. The results of the PLS were then examined

via correlation plots to identify variables correlated with the expression of the pmoA gene. The

relationship between the small fraction of the qPCR data and CH4 concentration was assessed

for the bottom samples. The qPCR data were log transformed to meet normality assumptions.

Pearson correlation values were then calculated using the Vegan package in R [48].

Results

Physico-chemical properties

The surface waters of the ponds were warmer, with higher oxygen concentrations and pH val-

ues compared to their bottom waters (Fig 2). Ponds BGR-1 and BGR-2 were oxygenated

throughout the water column, while the other ponds were hypoxic (DO < 3 mg L-1) to anoxic

at the bottom. Ponds from the northern BGR and NAS valleys had higher pH values (from 7 to

8), while pH was more acidic in the southern valleys (from 5 to 6). Bottom waters of the ponds

in the KWK and SAS valleys had higher CO2, CH4 and nutrient concentrations, with highest

concentrations of total nitrogen and phosphorus in the bottom of KWK23: 2.7 mg N L-1 and

170.5 μg P L-1. The TSS values followed the same trend, with the highest value at the bottom of

the KWK1 pond of 140.8 mg L-1. The difference between lithalsa and palsa ponds was most
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pronounced in terms of DOC concentration: ponds from the SAS peatland valley contained

higher DOC concentrations, which ranged from 9.6 mg L-1 at the bottom of SAS1A to 18.9 mg

L-1 for the bottom of SAS2A (Fig 2, Table C in S1 File). In terms of limnological properties, the

ponds differed significantly among valleys and depths (MANOVA, respectively p = 0.03 and

p = 0.008).

Methanotroph community composition

A total of 1,850,808 pmoA reads were retained after quality control and cleaning, and corre-

sponded to a total of 985 OTUs at 93% similarity. The semi-parabolic profile of the rarefaction

curve suggested a good representation of the diversity of methanotrophs within each valley

(Fig A in S1 File). The SAS valley ponds reached plateaus at a higher level than for those in

the other valleys. On average, SAS valley samples plateaued above 300 OTUs, KWK and BGR

valleys around 200 OTUs, and the NAS valley around 150 OTUs. However, there were no

Fig 2. Principal component analysis of the environmental variables. Temperature (T), dissolved oxygen (O2), pH, total

phosphorus (TP), total suspended solid (TSS), conductivity (Cond), Chlorophyll a (Chla), total nitrogen (TN), methane (CH4),

carbon dioxide (CO2) and dissolved organic carbon (DOC) are represented for the 9 sampled ponds. Colors distinguish the

different valleys and the shapes distinguish surface (triangles) and bottom samples (circles).

https://doi.org/10.1371/journal.pone.0188223.g002
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significant differences (p> 0.05) in the Shannon and Chao1 indices of alpha-diversity between

the valleys.

The taxonomy of potentially active methanotrophs also differed markedly between the

palsa and lithalsa valleys (Fig 3): the permutation test (9999 permutations) showed that the

community structure differed significantly among the different valleys (p = 0.001). There was

no significant difference between the two depths of sampling or the two filter size fractions

(p> 0.05) for all the valleys considered together. However, within the palsa ponds, there was a

significant difference between the small and the large fractions (p = 0.015).

All of the pond communities were dominated by Type I methanotrophs (Fig 3). The most

abundant transcripts in the potentially active community belonged to the genus Methylobacter,

which accounted for up to 92% of the 37,000 subsampled reads in the small fraction from the

bottom of SAS2B. The group ‘unclassified’ and other Methyloccocaceae contained sequences

that were phylogenetically assigned to Type Ia (> 1% of the reads at all sites) and Type Ib

(< 1% of the reads for most sites), and to other genera such as Methylovulum, Methylosoma
and Methylococcus, which represented less than 1% of reads in each sample and were then

grouped with unclassified and other Methylococcaceae. The genus Methylomonas had a low

relative abundance in the lithalsa ponds. It was better represented in the palsa ponds, and

abundant in the surface of both the small and large fractions in SAS2B (87% and 41% of the

reads, respectively). The genus Methylomicrobium was present in each sample, ranging from

less than 1% in the large fraction of BGR2 bottom to 11% of the reads in the large fraction of

Fig 3. Bray-Curtis dissimilarity cluster analysis of the methanotroph communities. Surface samples are represented by triangles and bottom samples

by circles, either filled (small fraction) or open (large fraction). The heatmap shows the methanotroph community composition.

https://doi.org/10.1371/journal.pone.0188223.g003
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SAS1B bottom. Unlike Methylomonas, the genus Methylosarcina was better represented in the

lithalsa sites and reached its highest abundance in the small and large fractions from the bot-

tom of NASH ponds (5% and 4% of the reads, respectively).

Type II methanotroph transcripts were poorly represented in the potentially active commu-

nity and showed less diversity relative to Type I taxa. Only three Type II genera were identified.

Methylocystis had highest transcript contribution to the potentially active community (5% of

the reads) in the large fraction from the SAS1B bottom, but was absent from several samples in

the palsa and lithalsa valleys. Methylosinus was present in lower abundance, with a maximum

of 2% of the reads in the small fraction from the SAS2B surface waters. Finally, Methylocapsa
was found in SAS1B, SAS2A and SAS2B, always at less than 1% of the reads.

Methanotroph potential activity

The potential activity of the methanotroph community was inferred by the concentration of

pmoA transcripts per mL of sample water (Table 2). Regression coefficients of the calibration

curves were between 0.991 and 0.999, qPCR efficiency was between 82% and 115% and the

limit of detection was 10 pmoA transcript copies. The number of pmoA transcripts per mL var-

ied from 2.2 × 102 for the surface small fraction from BGR1 to 7.6 × 106 for the bottom large

fraction from SAS1B. There were no significant differences in the number of pmoA transcripts

among valleys or fractions (Kruskal-Wallis test, p>0.05), but measurements were higher in

2012 compared to 2013. The results showed potential methanotrophic activity not only in the

oxygenated surface waters but also in the hypoxic to anoxic bottom waters of the ponds. This

Table 2. Concentrations of pmoA transcripts, methane and oxygen and methane in the sampled thaw ponds.

Pond pmoA transcripts mL-1 CH4 (μM) O2 (mg L-1)

Small fraction (<3μm) Large fraction (>3μm)

BGR1-S 2.2 × 102 4.3 × 103 1.1 9.9

BGR1-B 5.2 × 103 3.4 × 103 - 3

BGR2-S 4.4 × 106 3.8 × 105 0.4 9.4

BGR2-B 1.6 × 106 9.4 × 104 2.6 3.5

NASH-S* 1.9 × 105 - 0.1 9.7

NASH-B 1.6 × 103 1.6 × 104 - 1.7

KWK1-B 1.0 × 106 2.1 × 105 - 0.5

KWK6-B 6.4 × 105 3.6 × 105 - 1.8

KWK12-S* 1.7 × 102 - 0.2 8.5

KWK12-B* 6.2 × 102 - 351.3 0.3

KWK23-B 1.3 × 106 4.3 × 105 - 0.4

SAS1A-S 1.6 × 103 3.9 × 102 - -

SAS1A-B 4.1 × 102 4.9 × 102 - -

SAS1B-B 2.6 × 105 7.6 × 106 - 1.7

SAS2A-S 2.8 × 104 2.2 × 106 3.4 5.8

SAS2A-B 1.3 × 106 5.9 × 106 101.7 0.3

SAS2A-Sb* 6.6 × 103 5.0 × 103 1.9 2.2

SAS2A-Bb* 1.5 × 103 2.5 × 104 322.9 0.2

SAS2B-S 3.1 × 103 1.4 × 104 3 5.2

SAS2B-B 2.8 × 104 2.6 × 105 292 0.2

-: no data.

*no Illumina sequences available for these samples

https://doi.org/10.1371/journal.pone.0188223.t002
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included the bottom waters SAS2B and SAS2Ab, where oxygen concentrations were below our

limit of detection (< 0.2 mg L-1; Table 2, Table C in S1 File).

The factors that influence methanotroph potential activity were evaluated with a PLS analy-

sis. The first two latent variables of the PLS cumulatively explained 61% of the variation (Fig

4). The concentration of pmoA was mostly related to conductivity, total phosphorus, total sus-

pended solids and the abundance (number of reads) of Methylocystis. The relationship between

CH4 concentration and potential methanotroph activity varied with cell fraction and depth.

The large fraction at both depths and the surface samples for the small fraction showed no

clear trend. However the small fraction in the bottom samples showed a strong, negative,

Fig 4. Correlation plot of the PLS analysis to evaluate the potential influence of environmental variables and

methanotrophic genera on the potential activity of methanotrophs. The environmental variables were: conductivity

(Cond), total phosphorus (TP), total suspended solid (TSS), Chlorophyll a (Chla), soluble reactive phosphorus (SRP), total

nitrogen (TN), carbon dioxide concentration (CO2), methane concentration (CH4), dissolved organic carbon (DOC), oxygen

concentration (O2), temperature (T˚C) and pH.

https://doi.org/10.1371/journal.pone.0188223.g004
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nonlinear relationship between pmoA transcripts (log transformed) and CH4 concentrations

(R2 = 0.986, p = 0.002; Fig 5).

Discussion

Physico-chemical properties

The subarctic permafrost thaw ponds sampled here varied greatly in their limnological proper-

ties, with large differences even among ponds located in the same valley. All of the ponds dis-

played strong physico-chemical gradients down their shallow water columns during this

period of summer stratification. These waterbodies annually go through two mixing periods,

first in early spring (May) and again during the fall (September). However, such mixing does

not always extend to the bottom [52,53]. KWK valley bottom water was reported to be hypoxic

to anoxic since 2006 [52,54]. The strong summer stratification and physico-chemical gradients

in the water column with hypoxic to anoxic bottom waters imply that the ponds in the KWK

and SAS valleys would be favourable environments for both methane synthesis and oxidation,

with methanogenesis occurring in the bottom of the pond, and methane consumption higher

in the water column where more oxygen is available. These northern ponds also experience

large interannual variations; the bottom waters of BGR1 were anoxic in 2005 [36] and 2011,

Fig 5. Concentration of pmoA transcripts in the small fraction as a function of methane concentration. The inserted

graph shows the correlation between methane (μM) and pmoA transcript concentrations (copies mL-1) in the small fraction of

the bottom samples; the shading represents ± 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0188223.g005
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but not in 2012 and 2013. The limnological properties of the ponds were consistent with their

origins as either palsa or lithalsa systems, with higher DOC concentrations in the highly

organic SAS valley ponds, which also had lower pH values due to their elevated humic acid

content (Fig 2).

Methanotroph community composition

Here we used pmoA transcripts to determine the composition of the potentially active metha-

notroph community. This method enabled us to identify the methanotrophs that were most

actively participating in methane oxidation in thaw ponds and that were unlikely to be dor-

mant, inactive or dead cells [55]. This community may differ in composition and abundance

from the overall methanotrophic community given that there may be a decoupling between

DNA and RNA relative representation for some bacterioplankton [56], and in the relative

abundance of total versus active taxa in the community.

Our results strongly indicate that the main driver of community composition of potentially

active methanotrophs in permafrost thaw waters was landscape type, with marked differences

between palsa and lithalsa ponds. This effect was greater than either depth or the extent of per-

mafrost thawing. The overriding influence of landscape is consistent with previous work

highlighting its importance for overall bacterial community structure [33,34], and this study

shows that there were functional implications for the community differences. The communi-

ties of potentially active methanotrophs identified in lithalsa thaw ponds in the KWK valley,

which lies in the sporadic permafrost zone, were more similar to the lithalsa ponds found hun-

dreds of km away in the BGR and NAS valleys that lie in colder, less degraded landscapes

(discontinuous permafrost) than to the communities in SAS ponds, also in the sporadic per-

mafrost zone, but in an organic-rich peatland palsa landscape. These two classes of thaw pond

differ in DOC concentrations, and probably also in DOC composition, and the specific effects

of differences in organic carbon substrates on community assembly and functioning will

require attention in future studies.

The pmoA community profiles in the surface and bottom waters suggest similar potentially

active methanotrophs, despite large differences in physico-chemical conditions, including oxy-

gen. This was unexpected relative to results from experimental studies. Microcosm experi-

ments on sediments from Lake Washington showed that different species of methanotrophs

predominated under different oxygen tensions [57], with a concommitent shift in the assem-

blage of microbes linked to the methanotrophs [58]. This might suggest a greater resilience of

planktonic communities to variable oxygen regimes in the water column, versus the selection

of more specialized genotypes in the sediment environment, where physico-chemical condi-

tions are likely to be more stable.

Much of the total bacterial production in thermokarst lakes and ponds is associated with

suspended particles [37], and the interior of such particles could provide anaerobic micro-

niches that would allow methanogens to thrive and supply methane to aerobes located closer

to the particle surface. We found a significant difference in methanotroph composition

between filter size fractions in the SAS palsa valley ponds, but not at the other sites. Particle

sizes in the SAS ponds are larger than in other thaw ponds, caused in part by flocculation at

the higher DOC concentrations [37], and the size and composition of these particles may

influence community assembly processes. Distinct particle-associated microbial communities

in coastal marine environments have been found using the same size fractionation protocol as

our study [59,60]. In contrast, we found no significant differences between large and small

fractions in the lithalsa ponds, which may be due to the same taxa able to move between

attached and pelagic lifestyles in lithalsa ponds. However, it cannot be ruled out that
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clogging of the 3 μm filters would have resulted in retention of some free-living cells in the

large fraction.

Type I methanotrophs were the dominant contributors to the community of potentially

active methane consuming bacteria in all thaw ponds. This contrasts with reports that boreal

and subarctic peatland soils are more typically dominated by Type II taxa [61–64] and yield

Type II pmoA sequences from DNA and cDNA [62], although other studies have shown a pre-

dominance of Type I taxa in some boreal peatlands and fens [65,66]. Type I methanotrophs

appear to be more adapted to colder environments, for example in high latitude tundra soils

[67,68], and some species such as Methylobacter tundripalidum are psychrotolerant [69,70]

while other taxa, such as Methylobacter psychrophilus, are truly psychrophilic [71]. Studies in

soils and sediments have shown that Type II methanotrophs tend to be more abundant and

active when temperatures rise to around 20˚C [72,73], while Type I methanotrophs are active

in colder environments [68,74]. He et al. [75] recorded a shift from Type I to Type II methano-

trophs in Arctic lake sediments with increasing temperature, and also a shift in community

composition within each type. In temperate lakes, Type I methanotrophs appear to be the

dominant contributors to community biomass and activity [76]. They are also more active and

in higher abundance in suboxic metalimnetic and hypolimnetic waters [17,76,77], suggesting a

preference for low oxygen conditions. Type I dominance in the Quebec subarctic thaw ponds

may reflect the prevalence of cold conditions throughout the annual cycle. Even in the SAS

ponds, at the warmer southern end of the sampling region, water temperatures remain below

10˚C in most of the water column for most of the year, and below 5˚C for 7 months each year

[53]. Type I methanotrophs might similarly be favored by the low oxygen regime in subarctic

thaw ponds, where surface concentrations may be as low as 2.2 mg oxygen L-1 (Table 2). The

ongoing warming of the subarctic landscape [41] may eventually disrupt these oxygen condi-

tions, leading to changes in the relative abundance of active methanotrophs.

The pmoA gene targeted here is the most commonly used functional gene to study aerobic

methanotrophs because the enzyme (particulate methane mono-oxygenase) is present in almost

all methanotroph genera [21] and its phylogeny is congruent with that based on the 16S rRNA

gene [76,77]. Soluble methane mono-oxygenase (sMMO) on the other hand, is restricted to cer-

tain species [78] and is reportedly only expressed under copper limitation [79], making it a

much less reliable marker to study methanotroph diversity. The primers used here to amplify

the pmoA transcripts are verified for known alpha- and gamma-proteobacteria methanotrophs

but would not have detected pmoA related genes from the NC10 phylum [26,80], the genus

Crenothrix [24], nor for taxa in the Verrucomicrobia [25,81]. We note that previous studies on

the bacterial communities in these permafrost thaw ponds based on 16S rRNA genes and 16S

rRNA failed to detect members of the NC10 phylum and only one OTU of Crenothrix, in low

abundance, has been recorded. For the Verrucomicrobia that account for 1 to 6% of the reads

of the total bacterial community in the KWK and SAS valleys [34,82], the presence of any

methanotrophic taxa in this group would need to be verified with alternative primers.

Methanotrophic potential activity

Few previous studies have estimated the concentration of pmoA transcripts in natural environ-

ments, but those published to date imply that the values here could be considered a reasonable

proxy of methanotrophic activity. In a boreal wetland, the number of pmoA transcripts was

positively correlated with CH4 oxidation rates [83], and in rice paddy soils, most of the respira-

tion (likely dominated by methane oxidation) occurred in a submillimetre zone that contained

a highly active population of methanotrophs, with up to 18 pmoA transcripts per cell [84].

Studies based on pmoA copy numbers from DNA analysis have also found a positive
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correlation with methane oxidation rates [66,85], and Tuomivirta et al. [85] note that closer

relationships would be predicted with pmoA transcripts, as measured here.

Potential methanotrophic activity in the thaw ponds did not follow the pronounced

landscape pattern that we observed in community structure. Only ‘year of sampling’ had a sig-

nificant effect on methanotrophic potential activity, consistent with the large interannual vari-

ability in certain limnological properties of these aquatic ecosystems. This means that the

functional trait of methanotrophy was expressed independently of species composition, sug-

gesting a certain functional redundancy amongst the different phylotypes of methanotrophs.

This is in accord with studies indicating that there can be a high level of functional redundancy

in bacterial communities and that gene expression strongly depends on the environment

[86,87]. It contrasts, however with a phospholipid fatty acid-stable isotope probe (PLFA-SIP)

study, which reported a link between methanotrophic activity and community composition in

a forest soil [88].

The PLS analysis indicated that three environmental factors primarily influenced methano-

trophic potential activity: total phosphorus concentration, conductivity and total suspended

solids. Phosphorus has been shown to enhance microbial CH4 oxidation in soil [89], and could

increase methanotrophic potential by enabling an overall increase in microbial biomass [90].

The link with TSS suggests that methanotrophic potential activity is related to the presence of

particles, which in general are microbial activity hot-spots [91] with oxic/anoxic interfaces [92]

that would favour methanotrophs.

The PLS analysis also identified the relative abundance of Methylocystis as a factor associ-

ated with pmoA expression, yet this genus represented only a small fraction of the reads (from

non-detectable to a maximum of 5% in the SAS valley). Conversely, the most abundant genus,

Methylobacter, showed no statistical relationship with putative methanotrophic potential activ-

ity. This might reflect how taxa with low proportional abundance in the “rare biosphere” may

have a disproportionate effect on key the ecosystem functions [93–95]. Modelling studies sug-

gest that rare species impart ecosystem resilience [96], and that their disappearance could

result in decreased ecosystem stability. Methylocystis is also known to be acid-tolerant

[55,97,98] with a capacity for parallel fermentative metabolism under low oxygen conditions

[99]. These features may allow this genus to grow in the more acidic, oxygen-poor conditions

of the SAS ponds. The large contribution by Methylocystis to potential activity might also be

due to an over-representation of pmoA transcripts, since some strains have two isozymes of

the pmo enzyme [100].

Contrary to our original hypothesis, methanotrophic potential activity as estimated by tran-

script concentrations was not closely linked to oxygen concentration. High concentrations of

pmoA transcripts were recorded in the hypoxic to anoxic bottom waters in addition to the sur-

face of the ponds, suggesting an unexpected degree of metabolic flexibility. This is consistent

with increasing evidence that methanotrophs are micro-aerobic and occur even in anoxic

waters. For example, Blees et al. [17] found methanotrophs well below the oxycline of an alpine

lake where conditions were supposedly anoxic. They measured methane consumption at this

depth, implying that methanotrophs can survive and even grow during periods of prolonged

anoxia. Aerobic methanotrophs might be able to sustain methane oxidation in such conditions

by coupling activity with phototrophs [101,102] or denitrifiers [103,104]. Physical factors in

subarctic thaw ponds could also favor persistence of methanotrophs since methane increases

by orders of magnitude down the water column [28], and methanotrophs would therefore be

closer to their carbon and energy source towards the bottom of the pond. Additionally, small

amounts of oxygen may be intermittently transported to deeper waters when mixing of the

epilimnion creates a supply of oxygen close to the thermocline, and internal waves propagate

across the oxycline [105] creating intermittent oxygen pulses for the microbes.
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The relationship between methanotrophic potential activity and methane concentration

depended on depth of sampling: while no trend was observed at the surface, a negative rela-

tionship was found between methane concentration and methanotrophic activity in the small

fraction for the bottom samples, suggesting depletion of methane by free-living methano-

trophs. A negative relationship between CH4 fluxes and number of pmoA transcripts was

observed at a peatland site [106], but in contrast, Kankaala et al. [10] showed a positive linear

relationship between methanotrophic activity and CH4 in a boreal lake, suggesting that the

methanotrophs were limited by CH4 concentrations at that site. These contrasting results indi-

cate that the relationship between methanotrophic activity and methane concentration is still

poorly understood and may vary among environments.

Conclusions

The permafrost landscape has a major influence on the type of thaw ponds that develop, and

this in turn has a selective effect on the relative contribution of potentially active methano-

trophs in the communities, with a marked difference between organic palsa and mineral

lithalsa ponds. In both landscape types, the community was dominated by Type I methano-

trophs that are characteristic of low-temperature environments. However, methanotrophic

potential activity as measured by pmoA transcripts did not follow the landscape pattern, and

was mainly influenced by total phosphorus, conductivity and total suspended solids, which

varied greatly within each pond type. High methanotroph potential activity from pmoA tran-

scripts was attributed to the Type II genus Methylocystis, which was rare, implying a dispropor-

tionate, functional importance of certain taxa. Contrary to expectation, pmoA transcripts

occurred in hypoxic and anoxic bottom waters as well as in surface oxygenated waters. This

implies that methanotrophs are active under a wide range of oxygen conditions and may be

resilient to future changes in stratification, mixing and oxygenation.
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