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A B S T R A C T   

The coronavirus disease (COVID-19) brought the world to a halt in March 2020. Various prediction and risk 
management approaches are being explored worldwide for decision making. This work adopts an advanced 
mechanistic model and utilizes tools for process safety to propose a framework for risk management for the 
current pandemic. A parameter tweaking and an artificial neural network-based parameter learning model have 
been developed for effective forecasting of the dynamic risk. Monte Carlo simulation was used to capture the 
randomness of the model parameters. A comparative analysis of the proposed methodologies has been carried 
out by using the susceptible, exposed, infected, quarantined, recovered, deceased (SEIQRD) model. A SEIQRD 
model was developed for four distinct locations: Italy, Germany, Ontario, and British Columbia. The learning- 
based approach resulted in better outcomes among the models tested in the present study. The layer of pro-
tection analysis is a useful framework to analyze the effect of different safety measures. This framework is used in 
this work to study the effect of non-pharmaceutical interventions on pandemic risk. The risk profiles suggest that 
a stage-wise releasing scenario is the most suitable approach with negligible resurgence. The case study provides 
valuable insights to practitioners in both the health sector and the process industries to implement advanced 
strategies for risk assessment and management. Both sectors can benefit from each other by using the mathe-
matical models and the management tools used in each, and, more importantly, the lessons learned from crises.   

1. Introduction 

The coronavirus disease (COVID-19) has been declared a global 
pandemic by the World Health Organization (WHO). The high infection 
rate of the coronavirus and the unavailability of a vaccine have led to an 
unprecedented scenario. Countless numbers of people are deprived of 
proper medical care due to the saturation of health care facilities in 
many places. More than 28 million infected cases and over nine hundred 
thousand mortalities due to the outbreak have been reported to date 
(Worldometer, 2020, Sep 09). 

In epidemiologic studies, mechanistic models have been widely used 
to forecast pandemics and their control. Kermack and McKendrick 
(1927) developed the SIR (susceptible, infected, recovered) model 
which was subsequently revised by (Anderson & May 1979; Hethcote, 
1976; Hiorns and MacDonald, 1982). The SIR model assumes that the 
infected hosts instantaneously become infectious after being exposed to 
an infected carrier. However, infectious diseases typically have latency 

periods; incubation of the virus requires time before an infected agent 
truly becomes infectious. An additional exposed (E) stage was included 
to expand the SIR model to an improved SEIR (susceptible, exposed, 
infected, recovered) model. Many models with varying population size 
and distinct vaccination strategies towards susceptible individuals have 
been developed in the past (Busenberg and Driessche, 1990; Li et al., 
1999; Martcheva and Castillo-Chavez, 2003; Sun and Hsieh, 2010). The 
basic SIR and SEIR models do not consider hospitalization and quaran-
tine effects, which could reduce the overall number of infected people 
significantly. The impacts of quarantine, isolation, and other non-
pharmaceutical interventions (NPIs) on the spread as well as control of 
infectious diseases have been studied by many authors such as Hethcote 
et al. (2002), Hollingsworth (2009) Lipsitch et al. (2003), and Safi and 
Gumel (2010). The basic and the modified SEIR models have been used 
to study the spread of many diseases: e.g., SARS , Influenza , Ebola , 
MERS , and Zika (Zhang et al., 2017). 

Although process systems and epidemiology are very different fields, 
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there are many similarities between the models used in each. 
Compartmental models have been in use in chemical processes for many 
systems; e.g., continuous stirred tank reactor, fluidized bed reactor, and 
bubble column for studying kinetics, velocity distribution, energy 
dissipation rate, crystal size distribution, and turbulence (Alvarado 
et al., 2012; Bermingham et al., 1998; Cui et al., 1996; Iliuta et al., 2007; 
Jourdan et al., 2019; Vrábel et al., 1999; Zhao et al., 2017; Word Health 
Organization, 2020). There is an especially strong resemblance between 
the epidemiological model(s) and the continuous stirred tank reactor 
(CSTR) kinetic model(s) used to predict the progress of the chemical 
reaction and product concentration. Table 1 presents similarities 

between the SIR epidemiological model and the reaction kinetics model 
in a CSTR. Nonetheless, social structure complexity, distinct individual 
practices, and economic disparity complicate epidemic modelling. 
Randomness in the parameters (e.g., incubation, infection and recovery 
periods) also makes epidemic modelling difficult compared to the 
reactor models. Demographics and chronic health conditions signifi-
cantly affect the susceptibility in epidemic modelling. 

Different NPIs are adopted by healthcare authorities to control the 
spread of a pandemic. The most notable NPIs include social distancing, 
frequent hand washing, use of masks, and practice of good hygiene. 
Numerous reports (Ferguson et al., 2020; Davies et al., 2020) show that 

Table 1 
Similarities between the epidemiological and reactor kinetics model.   

SIR epidemiological model Reactor kinetic model 

System 

Geographical Location Chemical Reactor 
Propagation/ 

Reaction model 
S→ I→ R  Series Reaction: A→ B→ C 

Auto Catalytic Reaction: A+ B
k1
→

2B  
Model equations dS

dt
= −

aS(t)I(t)
N 

dI
dt

=
aS(t)I(t)

N
− bI(t)

dR
dt

= bI (t)

Series Reaction 
dCA

dt
= − k1CA(t)

dCB

dt
= k1CA(t) − k2CB(t)

dCC

dt
= k2CB(t)

Autocatalytic Reaction (in its simplest form) 
dCB

dt
= k1CA(t)CB(t)

Responses 

Principles of 
conservation 

Follows conservation principles; i.e., within a geographical area, the total 
number of people in all of the compartments remains constant. 
N = S+ I+ R  

Follows the conservation of mass principles; i.e., the total mass of all of the 
species remains constant. 
M = MA + MB + MC  

Rate of spread/ 
transformations 

The contagion rate is the determining factor for the states of the epidemic. 
It depends on the basic reproduction numbers of the epidemic, government 
regulations (e.g., limiting gathering size, closure of nonessential business and 
schools, emergency lockdown), and personal hygiene measures such as 
wearing masks in public places, frequent washing of hands, and social 
distancing. 

The reaction rate governs transformations in chemical reactions. 
Rates of chemical transformation are often affected by the rates of other 
processes such as heat or mass transfer, presence of a catalyst, and species 
concentration, dispersion, segregation, and mixing.  
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implementation of these prevention factors significantly slows down the 
spread of a pandemic. 

Similar to epidemiology, risk minimization is a primary goal in 
process industries (Khan and Abbasi, 1998). The methodology to pre-
vent, control, and mitigate infection is analogous to the hazard control 
and safety frameworks used in the process industries. Over the years, 
different qualitative and quantitative safety management methods for 
the process industries have been proposed in the literature. The layer of 
protection analysis (LOPA) and inherently safer design (ISD) are two of 
the most promising risk assessment and management tools (Khan et al., 
2015; Tugnoli et al., 2012). LOPA with inherent safety considerations 
provides better insights for decision making. Some earlier approaches to 
the use of LOPA for improving safety management are discussed in 
Dowell (1998). Gowland (2006) explained the principle of LOPA and its 
applicability for accidental risk assessment. An application of LOPA to 
estimate the risk due to reactive chemicals is presented in (Wei et al., 
2008). An improved version of LOPA called ExSys-LOPA is proposed in 
(Markowski and Mannan, 2010). A review of inherent safety including 
the future scope for development is presented in (Khan and Amyotte, 
2005; Marhavilas et al., 2011Srinivasan & Natarajan, 2012). In the core 
of the LOPA framework, preventive measures are used to avoid a 
probable abnormal event. In the next layer, the control system is in place 
to counteract the event and slow down the escalation of the abnormal-
ities. Following that is the emergency safety layer to restrain the impact 
when the control system fails to nullify the hazard. A comprehensive 
review of the existing literature on safety and risk is reported in (Khan 
et al., 2015). 

One of the motivating factors for the current work is to link epidemic 
spread models with an engineering risk minimization framework. The 
other objective is to implement process safety principles in guiding 
pandemic risk management. We have proposed a layer of protection 
analysis (LOPA) for epidemic management. The performance of the 
safety management framework has been quantified in terms of the 
reduction of pandemic risk when safety layers are in effect. 

We have proposed a parameter tweaking and an artificial neural 
network-based parameter learning method for computing the adaptive 
parameter of the susceptible, exposed, infected, quarantined, recovered, 
deceased (SEIQRD) model. The proposed hybrid SEIQRD model was 
employed for predicting the probability of fatalities and severity of 
consequences, thus enabling risk evaluation. It has also been used for 
calculating the risk in relaxing distinct intervention strategies. On the 
other hand, LOPA and inherent safety methods were used for risk 
management. By integrating the two approaches, a framework was 
developed for risk assessment and management of a pandemic, 
including mitigating, suppressing, and releasing factors. 

The paper is organized as follows: Section 2 describes the mathe-
matical models used to assess risk. Section 3 discusses the outcome of the 
risk calculations from the proposed models for different geographical 
locations. Section 3 also discusses the impact of the LOPA mitigation 
factors on risk. Finally, risk profiles for the releasing scenarios are pre-
sented. Section 4 gives the conclusion and future research directions. 

2. The mathematical model 

This section describes the different mathematical models to predict 
the spread of the epidemic risk. It begins by introducing the mechanistic 
model of the epidemic spread followed by the approaches of solving the 
model using the parameter tweaking and the ANN-based parameter 
learning models. 

2.1. The SEIQRD epidemic model 

Many studies reveal that people may be more contagious around the 
time of symptom onset than the diseased one (World Health Organiza-
tion, 2020). Numerous reports highlighted that the pre-symptomatic 
(infectious before the symptom onset) and asymptomatic (does not 

develop symptom) are the major sources of the infections spread (Koo 
et al., 2020). According to an editorial published in the New England 
Journal of Medicine (NEJM), the asymptomatic spread of the virus is the 
"Achilles’ heel of current strategies to control COVID-19" (Gandhi et al., 
2020). The basic SIR and SIER models overpredict because they do not 
take into account the hospitalization and quarantine condition which 
severely reduces the overall spread of the infection. Thus, we have used 
the SEIQRD model in our simulation for capturing the transmission by 
the asymptomatic and pre-symptomatic cases. 

Fig. 1 presents an SEIQRD epidemic model where S, E, I, Q, R, and D 
represent the susceptible (S), exposed (E: infected but not yet infec-
tious), infectious (I), quarantined or hospitalized (Q), recovered (R), and 
deceased (D). An additional compartment I2 (with retention period, T2 
= 1 day) has been added to represent the new cases on a particular day. 
The host total population is N(t) = S(t)+E(t)+I1(t)+ I2(t)+Q(t)+R(t)+D 
(t) at time t. T0 represents the incubation period, the duration between 
the viral exposures, and becoming infectious. The average incubation 
period reported from distinct sources is 5–6 days; however, it may vary 
from 2 to 14 days (Aylward and Liang, 2020). In this period the virus 
does not have the potential to infect others. T1 denotes the infection 
period where a person is infectious but not symptomatic, whereas, T3 
indicates the recovery period. 

The model is based on two assumptions: (i) Natural births as well as 
deaths due to other reasons during the study period are not considered in 
counting the total population, (ii) the recovered people are immune to 
further viral attack during the short span of analysis. The second 
assumption is clinically proven by many studies for various contagious 
viral attacks e.g., (Zhou et al., 2013); Short et al. (2018). 

Eqs. (1)–(7) present the mathematical formulations of the SEIQRD 
epidemic risk. 

dS
dt

= −
aS(t)I(t)

N
(1)  

dE
dt

=
aS(t)I(t)

N
− bE(t) (2)  

dI1

dt
= bE(t) − cI1(t) (3)  

dI2

dt
=ϕ1cI1(t) − dI2 (t) (4)  

dQ
dt

= dI2(t) − eQ (t) (5)  

dR
dt

=(1 − ϕ1)cI1(t) + (1 − ϕ2)eQ (t) (6)  

dD
dt

=ϕ2eQ(t) (7)  

ϕ2is the fraction of the quarantined/hospitalized population resulting in 
mortality whereas, ϕ1 represents the fraction of the symptomatic in-
fections. The contagion rate (a), infection rate (c), and the recovery rate 
(e) have been presented in Eqs. (8)–(10).   

Fig. 1. Schematic representation of the SEIQRD model.  
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infection rate, c=
1

Infection period
=

1
T1

(9)  

recovery rate, e=
1

Recovery period
=

1
T3

(10) 

In terms of the basic reproduction number, the rate of contagion a 
could be presented by Eq. (11). The effective rate of contagion (βeff ) with 
the non-pharmaceutical interventions (NPI) could be given as Eq. (12), 

a=
R0

T1
(11)  

aeff = ρ R0

T1
(12)  

where ′ρ′ is the exposure factor. Its value changes with government 
regulations and individual practices. 

The present model does not explicitly consider self-isolation of 
asymptomatic cases, contact tracing, and super-spreading events. These 
factors have been included implicitly using a lumped parameter 
approach. Also, the present work does not consider the distinct recovery 
time for mild cases and critical cases requiring ventilators and intensive 
care. 

2.2. The approach to solving the model 

Fig. 2 presents the approaches for solving the SEIQRD epidemic 
model by parameter tweaking and parameter learning using the artifi-
cial neural network (ANN). TT0 is the time of the first death reported due 
to SARS-CoV-2. The data from TT0 to TT1 is used to determine the in-
termediate parameters by tweaking. We have taken 15 days between 
TT0 to TT1 assuming that the dynamics would be established in those 15 
days. We are assuming that the incubation (b), the infection(c), and the 
recovery (e) parameters would almost settle during this period. The 
alterations in the contagion rate (a) due to the miscellaneous public 
safety regulations and the individual practices would be supervised 

between TT1 to TT2. The minor changes in other parameters would also 
be recorded. The manual parameter tweaking provides a better fit when 
done for one set of data applying a trial and error approach. This is time 
consuming and is not feasible for regular model updating as new data 
becomes available. The ANN does the calibration in a recursive manner, 
thus keeping the past parameter information. The ANN-based model 
calibration is a faster way of updating the model and can be used to 
calibrate the model on demand as new data becomes available. 

The schematic diagram of the parameter fitting has been illustrated 
in Fig. 3. The parameters were initialized by the generic values given by 
the WHO-China joint mission report on COVID-19 (Aylward and Liang, 
2020). The cost function of the minimization for determining the model 
parameters have been presented in Eq. (13). The mortality data is a more 
reliable measure for predicting the severity of an epidemic. However, 
the models based on the initial mortality data would not capture the 
surplus death caused due to the unavailability of the sophisticated 
treatment if the infection peak exceeds the availability of the appro-
priate healthcare system. The infection cases are subjected to 
under-reporting due to numerous reasons e.g., inferior surveillance and 
tracking system, poor testing policy, asymptomatic cases, and distinct 
immune systems. We have used both the mortality data and the new 
infection cases in the cost function for obtaining more robust parame-
ters. A higher weight (w2 = 0.6–0.8) was assigned to the death data than 
the infection data (w1 = 0.2–0.4) assuming that the mortality data is 
more accurate. 

f =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

w1*
(
Ireported − IModel

)2
+ w2*

(
Dreported − DModel

)2
√

(13)  

3. Results and discussion 

3.1. The case study 

The models have been used to study the outbreak of the present 
pandemic caused by severe acute respiratory syndrome coronavirus 
(SARS-CoV-2). The virus was first identified in Wuhan, Hubei province 

Fig. 2. Parameter learning of the SEIQRD model using parameter tweaking and ANN-based calibration.  

Rate ​ of ​ contagion, a
(
infection

day

)

= Number of contacts by infected person per day*

each contact turning into infection
(8)   
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of China in December 2019 (World Health Organization, 2020); the 
outbreak spread across the globe and WHO declared a global pandemic 
on March 11, 2020 (Kopecki et al., 2020). 

The models were evaluated for forecasting the epidemic spread in 
four distinct places; Ontario, British Columbia, Italy, and Germany. 
British Columbia was one of the early affected provinces in Canada by 
COVID-19. Moreover, the province showed good governance in public 
health management which was reflected in the low number of per capita 
death in the province. Ontario is the most populous province in Canada 
with 14.66 million people representing 38.8% of the country’s popula-
tion (Ministry of Finance, Government of Ontario (2019)). Moreover, it 
is home to the country’s most populous city, Toronto, and the capital 
city, Ottawa. Italy was the first western country to be affected by the 
virus and had to go through Europe’s longest coronavirus lockdown. It 
has started returning to normal slowly by unwinding a few restrictions. 
Germany, one of the leading countries known for crisis management, 
was well prepared to restrain the risk of the coronavirus disease. Its 
robust response resulted in a much lower death rate compared to other 
western countries despite the higher number of infections. 

The model has been calibrated using the pandemic data reported by 
John Hopkins University (Johns Hopkins University Center for Systems 
Science and Engineering, 2020). The distinct generic parameters used 
are listed in Table 2. The average incubation period, infection period, 
and recovery period were 5.5, 5.1, and 11.5 days, respectively. The basic 
reproduction number for the COVID-19 by distinct sources has been 
presented in Table A1 (in the appendix). The basic reproduction number 
of 2.9, the median values of all the sources, has been used as the initial 
guess for the tweaking model. 

3.2. 2: model application in the forecasting of infections 

Fig. 4 presents the cumulative infections of selected regions. The 
models were trained up to T = 40 days and used for forecasting for the 
extended periods. The accuracy of distinct models is measured in terms 
of the root mean squared error (RMSE). The RMSE is a measure of the 

difference between the calculated and the observed values and is 

computed as MSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Ireported, i − IModel, i)

2

√

. Fig. 4a depicts the 

forecast for Ontario by the generic model, the parameter tweak model, 
and the learning-based model. The RMSE values for the generic model, 
parameter tweek model and the continuously learning ANN- based 
model were found to 9.18 × 103, 8.87 × 103, and 3.15 × 103 respec-
tively. It is observed that the generic model overpredicts the infections. 
A plausible reason for lower real infections could be due to social 
distancing and other intervention strategies already in effect during the 
period of study. The government enforced preventive measures such as 
limiting the number of people in a gathering, closure of non-essential 
businesses and schools, and emergency lockdown. The population is 
following the public advisory by maintaining social distancing, frequent 
hand washing, and practicing hygiene. As a result of all these, the true 
cases went down. This is captured by the tweaking and learning-based 
models. Other factors could be a lack of adequate testing, and asymp-
tomatic infection which resulted in under-reporting of infected cases. 
The parameter tweaked model registers better performance compared to 
the generic model. However, the continuously learning ANN-based 
model yields the lowest RMSE among the test methods. This is due to 
the dynamic learning of the parameters in varying conditions. 

Fig. 4b and c present the comparative performance of the tweaking 
and the learning-based models. The tweaking model functions well in 
the training range, however, it shows poor performance in forecasting 
for an extended period. It may also be noticed that the learning-based 
methods more closely capture the dynamic variations in the parame-
ters. Its outcomes are representing the reported data well. Similarly, the 
ANN based-learning model is effectively forecasting the cumulative in-
fections of British Columbia (Fig. 4d), Italy (Fig. 4e), and Germany 
(Fig. 4f). It is plausible to realize a deviation of the model outcomes from 
the observed data if some other regulations that were not there during 
the training period. The performance will also be affected by the vari-
ation of individual or societal practices that were not well established 
during the training phase. It may be noticed that the model is slightly 
overpredicting for the cases of Germany. This might be due to the effect 
of their projects Pan-European Privacy-Preserving Proximity Tracing 
(PEPP-PT) and the Corona-Datenspende (Corona Data Donation) app for 
effective monitoring of COVID-19. 

The models were also used for forecasting the infections considering 
random nature in the model parameters. We used the Monte Carlo 

Fig. 3. Schematic Representation of the parameter fitting model.  

Table 2 
Generic values of the model parameters.  

Parameter Value Parameter Value 

Incubation period (in days) 5.1 Recovery Period (in days) 11.5 
Infection period (in days) 5.5 Basic reproduction number 2.9  

M. Alauddin et al.                                                                                                                                                                                                                              
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Fig. 4. Forecast of the infected population of COVID-19 at selected regions using the SEIQRD model (The dash line at T = 40 represent the training period of the 
models for the forecast of the extended period). 

Fig. 5. Predicting the infection risk considering randomness in the incubation, infection, and recovery periods (a) Incubation period, (b) infection period, (c) re-
covery period, (d) peak infection per day, (e) cumulative infection. 
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simulations using the lognormal distributions of the incubation period, 
the infection period, and the recovery period to capture the long tail of 
the infection risk. Fig. 5 presents the infection forecasting considering 
the randomness of the model parameters. The distributions of the in-
cubation period, the infection period, and the recovery period are pre-
sented in Fig. 5a, b, and Fig. 5c, respectively. 

The infection per day (the new infections) grows moderately at the 
beginning, attain maximum, and then start descending. The peak of the 
infections per day is an important factor in developing treatment stra-
tegies for infected populations. It should not surpass the existing health 
care facility of the corresponding territory; otherwise, the fatality risk 
will be excessive. Prediction of the peak in advance is conducive to 
better preparation and effective mitigations. Distinct measures should 
be adopted to lower the peak, also known as flattening the epidemic 
curve, for restraining the pandemic. Fig. 5d presents the forecast for the 
peak of infection for Ontario. It can be inferred that the average value of 
the peak infection is around 1000 cases per day. The peaks of the in-
fections were varying between 225 and 2500 within 25% and 75% 
quantiles. Similarly, the most probable value of the cumulative infection 
is 4.0 × 104. The maximum cumulative infection could go up to 8.0E+04 
considering uncertainty in the parameters. 

3.3. Model application in the management of the epidemic risk 

The transmissibility of the epidemic is quantified by basic reproduc-
tion number (R0) which is defined as “the average number of secondary 
cases generated by a primary case in an entirely susceptible population” 
(Ferguson et al., 2005). The epidemic spreads for R0 > 1, and dies out if 
R0 < 1. The effective reproduction number can be reduced by three 
ways: i) reducing contact rates, ii) diminishing the infectiousness 
through isolation and treatment, and iii) reducing the susceptible pop-
ulation by vaccination (Ferguson et al., 2005). 

Personal hygiene such as wearing a mask at public places, frequently 
washing hands and social distancing are crucial in restraining the spread 
of the infection risk. Government regulations and public practices play a 
crucial role in mitigating epidemic spread. Limiting gathering sizes, 
closure of nonessential business and schools, and emergency lockdown 
have a decisive role in controlling the epidemic spread (Davies et al., 

2020; Ferguson et al., 2006). These regulations reduce the effective 
reproduction number by reducing the number of people exposed to an 
infected person. Restricting limits on gathering sizes reduces the possi-
bility of super-spreading events (Anderson et al., 2020). The social 
distancing measure prevents the transmission from pre-symptomatic 
and asymptomatic cases. The vaccination is very effective in protect-
ing from infectious diseases. However, several months are required to 
develop, produce, and distribute an effective vaccine following the 
outbreak of a novel pandemic strain (Germann et al., 2019). Thus, NPIs 
are essential for decreasing the peak demand for healthcare and 
reducing the overall mortality from the epidemic. 

The predicted effects of interventions on the spread of the epidemic 
have been presented in Fig. 6. Fig. 6a shows the impact of the pandemic 
if no measure is taken to restrict the outbreak. Fig. 6b and c respectively 
demonstrate the effect of the school and non-essential business closure 
and emergency lockdown after one week of the first mortality reported. 
Similarly, the effects of these interventions if implemented after one 
month of the first mortality, have been presented in Fig. 6d and e. The 
Monte Carlo simulation has been used for considering the uncertainties 
of the model parameters. We can observe that the median value of the 
peak infection could reach up to 3000 cases per day in case of no 
intervention. It could go up to 10,000 cases per day in worst-case sce-
nario. The closure of schools and businesses and observing public 
emergency reduces the new cases to 6 per day as the most probable 
value. The lockdown results in rapid shrinkage of the epidemic 
compared to simply school and nonessential business closure. We can 
also deduce that delaying the interventions by a month leads to a 
several-fold increase in the peak of the infection. 

The effect of the pandemic in terms of peak risk has been shown in 
Table 3. It presents the risk estimated for different locations in terms of 
risk peak and the cumulative risk of infections. The risk can be defined as 
the product of the impact of the pandemic and the probability of the 
occurrence of the impact. In this SARS-CoV-2 pandemic, the impact is 
infections which could lead to mortality. We are studying the most 
probable value of infections as the potential impact of the COVID-19. 

Monte Carlo simulation has been used for handling uncertainties in 
the number of infection cases due to the pandemic. The probability of 
occurrence of infection has been computed from the distribution of 

Fig. 6. Effect of interventions on controlling the epidemic risk; a: Without any intervention, b: School and non-essential business closure after one week of the first 
mortality), c: Enforcing public emergency/lockdown after one week of the first mortality d: School and non-essential business closure after one month of the first 
mortality), e: Enforcing public emergency/lockdown after one month of the first mortality. 
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infections considering the randomness of the model parameters (i.e., the 
incubation period, infection period, and recovery period). The proba-
bility of the most probable value denotes the possibility of realization of 
the most probable number of infections for a given time. It has been 
calculated based on the distribution of impacts. For instance, the value 
of the most probable impact at T = 50 was found to be 2867 cases per 
day. The frequency of the most probable impact for T = 50 is 433 out of 
1000 possible values resulting in the occurrence probability of the most 

probable impact of 0.433 ( 433
1000 = .433

)

Thus the risk of infection at T =

50 will be 2867*0.433 = 1241 cases per day. The values of parameters 
of Fig. 7a and b at other time steps have been computed in a similar way. 

The peak risk (infections per day) and the cumulative risk (total 
infections) for Ontario when no measure is taken are 1.39 × 103 and 
4.26 × 104, respectively. The risk will be reduced remarkably under 
non-pharmaceutical interventions. Lockdown is effective in quickly 
diminishing the risk of the pandemic. We can also notice that a delay in 
implementing intervention strategies significantly increases the risk. 
Table 3 shows the comparative outcomes of intervention strategies 
implemented after a week and a month from the first death reported. 
The peak risk increases from 3 to 43 (infections per day) while the cu-
mulative risk escalates from 122 to 2.07 × 103 (total infections) in the 
case of a delay by a month in administering school/university and non- 
essential business closures. Similarly, an increase from 3 to 39 (in-
fections per day) in peak risk and 22 to 5.64 × 102 (total infections) in 
cumulative risk is observed by a month-long delay in enforcing the 
lockdown. The marked escalation in the peak and the cumulative risk of 
the other locations could also be seen due to the delay in implementing 
the intervention strategies. 

3.4. Model application in evaluating the risk in releasing scenarios 

The lockdown and other government regulations have a severe 
economic impact. It is not viable to continue with these regulations for a 
prolonged duration. Thus, the enforcement and release of such regula-
tions must be exercised judiciously to prevent the pandemic risk. The 
effect of relaxing the implemented interventions has been presented in Ta
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Fig. 7. a: Variation of peak values of the number of infections in terms of the 
most probable impact and the calculated risk b: Variation of cumulative values 
of the number of infections in terms of the most probable impact and the 
calculated risk. 
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Fig. 8. The relaxing scenarios of opening school/university/non- 
essential business, and relaxing on social gatherings for returning to 
the normal state have been modeled for forecasting its impact on the 
overall system. The relaxing regulations on social gatherings comprise 
the opening of the parks, malls, bars, religious gatherings, recreation 
facilities, and all the sites of the interactions other than working sites. 
Fig. 8 depicts the comparative escalation in terms of the median values 
of the peak infections. It also presents the 25 and 75 quantile of the peak 
infections to capture the alteration due to the randomness in the model 
parameters. It is inferred that the release of the enforced regulations has 
the potential for a resurgence. The phase-wise relaxation of these 

regulations is most appropriate for preventing the resurgence of the 
pandemic risk. Relaxing regulations on social gathering at T = 70 could 
lead to a resurgence with the peak infection capacity of twice of that in 
the regulated scenario. However, the opening of schools/nonessential 
business and relaxing in social gatherings at T = 70 and T = 100, 
respectively, do not exhibit significant resurgence. 

3.5. Extending the concept to process safety management 

The current pandemic situation and its prevention strategy can be 
interchangeably used for hazard identification and safety management 

Fig. 8. Effect of relaxing regulations on the impact of the pandemic, a: Existing scenario, b: Relaxing regulations on opening of school/university/non-essential 
business at T = 70, c: Relaxing regulations on social gatherings at T = 70, d: Phasewise relaxing regulations: school openings at T = 70 and social gatherings at 
T = 100. 

Fig. 9. Layer of protection analysis (LOPA) for epidemic and abnormal situation management in process systems; a. for epidemic management; b. for safety of a 
process system. 
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of process facilities. Forecasting of the infection strategy stated above is 
applicable to identify a possible abnormal scenario. The risk-based 
safety management framework shown above illustrates the importance 
of safety management layers when an abnormal situation is triggered. 
The distinct strategies for handling the pandemic could be represented 
as the layer of protection analysis of a process system (Fig. 9). The 
processes are designed safer as a preventive strategy for reducing the 
risk. Different safety barriers such as basic process control, alarms, and 
operator interventions, safety instrumented system, relief devices, and 
physical containments are used as a control layer for abnormal situation 
management (Dowell, 1999; Willey, 2014). Finally, the plant and 
emergency response services are brought in operation to diminish the 
risk by deescalating the situation. These are analogous to the preventive, 
controlling, and mitigative strategies used for handling a pandemic. The 
hygienic practices (e.g. frequent hand washing, use of mask) and gov-
ernment regulations such as the closure of schools and non-essential 
business, limiting gathering sizes, enforcing lockdown, and vaccina-
tion are extremely effective as control and preventive strategies for 
limiting risk in the pandemic model. Plant and the community emer-
gency responses are mitigative layers for industrial systems. These 
control measures are analogous to the treatment and medical care pro-
vided for reducing the impact of the pandemic. 

Results in Fig. 6b–e shows that effective control measures can reduce 
the risk of the spread of the pandemic. The results also demonstrate that 
early intervention of the preventive measures reduces the risk of 
pandemic significantly. Thus, protection layers should be put into place 
as soon as a hazard is identified. 

We have also illustrated the impact of relaxing scenarios in Fig. 8 b-d. 
Releasing the different barriers causes the risk to rise. The time of the 
release of the barrier plays a crucial role. The risk reduces significantly 
when a barrier is released after the peak of the occurrence. Similarly, 
risk-based analysis of safety barriers could be feasible in process systems 
to determine how long a critical control layer should be enforced, and 
when it needs to be released. 

The COVID-19 pandemic is a disastrous event that is affecting bil-
lions of lives and causing adverse economic impact. World Bank eco-
nomic reports indicate that a severe pandemic could reduce world gross 
domestic product (GDP) drastically (World Bank, 2020). Nonetheless, it 
provided many learning opportunities to policymakers and process 
safety practitioners. Some of those lessons are as follows: 

Early fault detection vs early case detection: 
The early warning system for hazard identification is central to the 

abnormal situation management. A delay in detection would lead to 
delay in control actions which will escalate the risk resulting from 
abnormal situations. For instance, a delay of just a few days in releasing 
genetic sequences can be critical in an outbreak. Experts believe that the 
risk would have been reduced dramatically if the outbreak was detected 
earlier. This is equally applicable to a process system where early 
detection of a fault reduces the risk of the potential loss. 

3.6. Identification of effective control mechanism 

The identification of distinct control strategies is conducive to 
restrain abnormal situations. The restrictive measures e.g., social 
distancing, case detection, isolation, contact tracing, quarantine of 
exposed cases, and lockdown turns out to be effective strategies for 
restricting the spread of the COVID-19. Good hygiene practices such as 
frequent hand washing, wearing a mask at public places, and physical 
distancing are also very effective in flattening the curve and reducing the 
economic burden. Thus identification of an effective control mechanism 
plays a pivotal role in minimizing the effect of an abnormal situation. 

3.7. The fast response of public health vs operator response 

We can also deduce that the delay in the intervention strategies 
significantly increases the risk. We have analyzed the catastrophic effect 

of the delay in the implementation of selected intervention strategies in 
our model. We found a manifold increase in the peak and the cumulative 
risk of infection due to the delay of a month in implementing the 
intervention strategies. The real-world data from the COVID-19 also 
substantiate our findings. For instance, the immediate response by the 
government of Taiwan, for handling people arriving from Wuhan was 
instrumental to reduced risk in Taiwan. The findings uphold the 
importance of the operator’s response to an abnormal situation. As a 
delay to respond to a fault can cause a detrimental consequence, prompt 
action from the operator is vital to ensure the safety of processing 
facilities. 

3.8. Effective resource allocation and mobilization 

Resource allocation decisions were critical segments of handling the 
COVID-19. The mobilization of resources in administering social 
distancing by school closures, limiting gathering sizes, providing effi-
cient quarantine centers was of utmost importance in fighting the pre-
sent pandemic. We had to properly allocate ventilators or intensive care 
beds in case of limited availability. We also experienced that many 
doctors, nurses, and health-workers fell victim to the pandemic. Thus, 
we can pledge for the exclusive treatment for healthcare workers, 
technicians, and security personnel who risk their lives as front liners 
(Khoo and Lantos, 2020). Equivalently, we can identify and provide 
maintenance to the pivotal elements of the process safety systems. 

3.9. Use of advanced technologies 

The use of advanced technology was helpful at all levels of 
containment. South Korea credited its use of advanced technology to 
uncover clusters of cases that would otherwise have gone undetected. 
Drones equipped with cameras hovering over parts of the Indian 
neighborhoods warning residents they are under surveillance turned out 
to be advantageous in enforcing effective lockdown. Artificial intelli-
gence is being tested for identifying the disease by recognizing patterns 
in the ultrasonic images. The AI could also be useful in understanding 
the virus and accelerating medical research on vaccine-development and 
treatments. The advanced data mining tools can uncover the virus’s 
history, transmission, diagnostics, management measures, and extract-
ing features for combating future epidemics. Virtual assistants and 
chatbots have been deployed to support healthcare systems in many 
countries such as Canada, France, Finland, Italy, Germany, and the 
United States. Thus, advanced technologies can be harnessed for 
reducing risk and abnormal situation management in process systems. 

3.10. Identification of the most vulnerable element 

The COVID-19 also revealed that some people are most likely to be 
the hardest hit by the current pandemic. The most vulnerable and high- 
risk group include: an older adult, suffering from the underlying medical 
conditions (e.g. heart disease, hypertension, diabetes, chronic respira-
tory diseases, cancer), and having compromised immune system from a 
medical condition or treatment (e.g. chemotherapy). We provided extra 
care for the vulnerable population for reducing the risk. We can identify 
and develop effective strategies and action plans for vulnerable elements 
for reducing risk in process systems. 

3.11. New opportunities, scale-up, and resiliency of the existing systems 

The COVID-19 highlighted scaling-up requirements of health sys-
tems to expand services to accommodate rapid increases in demand. We 
also experienced numerous innovative initiatives during the COVID-19 
pandemic. Many companies that don’t regularly do the business of 
medical products, started producing hand sanitizer, ventilators, or 
personnel protection equipment (PPEs). Many businesses, schools, uni-
versities, and other organizations demonstrated resiliency by continuing 
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their operations by quickly adopting the new normal. They widen the 
virtual private network (VPN) to allow all employees to work remotely; 
brought changes in the existing system by the necessary modification 
such as adding physical barriers at the help desk and cash counters; 
moving to online portals for meeting and instructions. 

3.12. Good governance and trust building 

The COVID-19 made us realize the importance of trust-building and 
effective governance in fighting with a catastrophe. The distinct gov-
ernment regulations are prone to create clashes between states and 
citizens, eroding state capacity, driving population displacement, and 
heightening social tension and discrimination. The clashes have the 
potential to escalate the abnormal situation to a catastrophe. The safe 
operation of process systems depends on the smooth functioning of 
equipment, operators, and managerial systems. An effective manage-
ment system improves health and safety at work by optimizing the 
interaction of humans with their technical and social environment 
through proper policies, procedures, training, and supervision. 

3.13. Application of expertise from similar outbreaks in past vs use of 
historical process data 

Operators use their experience to detect, diagnose, and take miti-
gating action for controlling abnormal situations in process systems. In 
addition to this, the data based fault detection and diagnosis methods 
are trained based on historical fault data and expert opinion. Despite the 
different outcomes of epidemic disease, the expertise from past out-
breaks could be conducive in credible estimation of the trajectory and 
slowing down the spread by implementing effective measures (Gou-
darzi, 2020, March 23). The social distancing measures, communication, 
and international cooperation, the most effective methods to slow 
COVID-19, were adopted by experience from the 1918 influenza 
pandemic and 2002–2003 SARS outbreak. The expertise from the past 
outbreaks e.g., the 2003 severe acute respiratory syndrome (SARS) 
outbreak in Singapore, and experience with 2015 Middle East respira-
tory syndrome (MERS) outbreak of South Korea led to an immediate 
fruitful response to the COVID-19. Their approach in combating 
COVID-19 was praised as a “the gold standard” response (Firth, 2020, 
March 05). 

Pandemics do not remain geographically confined in contrast to 
other natural disasters (Jamison et al., 2017). A holistic approach with 
strong ethical and sensible measures is required for combating the 
epidemic spread (Institute of Medicine, 2007). We have to be prompt in 
all facets of the transmission; adequate testing facilities, active surveil-
lance, enforcing intervention strategies, and community screening 
around the cluster areas. The extensive support and public endorsement 
can be asserted by effectively communicating the preparedness and 
response strategies. Research findings should be disseminated in the 
form of actionable points such as checklists (Khalid, 2020, March 03). 
The migration and other cross-border entries pose the risk of further 
spreading an outbreak; it must be handled effectively. All the afore-
mentioned ideas could potentially be employed for upgrading the safety 
of process systems. 

4. Conclusions 

In the current work, a data-driven semi-mechanistic SEIQRD model 
was used to develop a risk management framework to forecast the 
spread of COVID-19 pandemic. ANN-based learning was used to eval-
uate the adaptive parameters of the model. The model was used to 
predict the number of infected and deaths for different safety barrier 
implementation and releasing scenario. Pandemic data from four 

different geographical locations were used to demonstrate the efficacy of 
the presented framework. The proposed models were able to forecast the 
propagation of the pandemic at an early stage. The risk was evaluated 
after implementing and relaxing different safety barriers. The results 
show that the implementation of nonpharmaceutical interventions has a 
profound impact on reducing the risk. The time of the enforcement and 
relaxing of NPIs also play a crucial role in restraining the epidemic risk. 
The NPIs will not be fruitful if the implementation delayed. It also will 
not be effective if relaxing it too early. The risk of pandemic increases 
significantly if the protection layer is released before or at the peak of 
spreading. 

The proposed risk-based method has many similarities with process 
facilities for hazard identification and safety management. Hazard is 
analogous to the spread of a pandemic. In the current work, the imple-
mentation of the LOPA framework for managing public health safety and 
risk was also studied. A risk-based analysis was performed for three 
different scenarios: (i) no protection layer added (ii) early enforcement 
of protection layer (iii) delayed enforcement of protection layer. Early 
enforcement of a protection layer is crucial to keep the risk significantly 
lower. The proposed study suggests that the enforcement and relaxing of 
the protection layer should precisely be executed based on reliable 
forecasting of the model. 

The model performs well when calibrated for specific regions using 
local data and information such as population, demographics, interac-
tion patterns, enforced regulations, and other dynamics. The proposed 
SEIQRD model can be further improved. The present model does not 
explicitly consider contact tracing and super-spreading events. These 
factors have been included implicitly using a lumped parameter 
approach. Also, the present work does not consider the distinct recovery 
time for mild cases and critical cases requiring ventilators and intensive 
care. The model could also be improved by dividing populations based 
on demographics, special dispersion, and interaction patterns. The ef-
fects of a distinct degree of social distancing and the use of masks could 
be analyzed. Finally, the model could be used in trade-off studies for 
balancing economic aspects and acceptable risk when enforcing and 
relaxing regulations. 
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Appendix 

Table A1 
Basic reproduction numbers from distinct studies (adapted from (Liu et al., 2020))  

Study Location 
Study 

Study date 
Methods 

Methods Approaches Approaches R0 
estimates 
(average) 

95% CI 

Joseph 
et al.1 

Wuhan 31 December 
2019–28 
January 2020 

Stochastic Markov Chain Monte Carlo methods 
(MCMC) 

MCMC methods with Gibbs sampling and non- 
informative flat prior, using posterior 
distribution 

2.68 2.47–2.86 

Shen et al.2 Hubei 
province 

12–22 January 
2020 

Mathematical model, dynamic compartmental 
model with population divided into five 
compartments: susceptible individuals, 
asymptomatic individuals during the 
incubation period, infectious individuals with 
symptoms, isolated individuals with treatment 
and recovered individuals 

R0 = β/α β = mean person-to-person 
transmission rate/day in the absence of control 
interventions, using nonlinear least squares 
method to get its point estimate α = isolation 
rate = 6 

6.49 6.31–6.66 

Liu et al. China and 
overseas 

January 23, 
2020 Statistical 

Statistical exponential Growth, using SARS 
generation time = 8.4 days, SD = 3.8 days 

Applies Poisson regression to fit the exponential 
growth rate R0 = 1/M(− r) M = moment 
generating function of the generation time 
distribution r = fitted exponential growth rate 

2.90 2.32–3.63 

Liu et al. China and 
overseas 

January 23, 
2020 Statistical 

Statistical maximum likelihood estimation, 
using SARS generation time = 8.4 days, SD =
3.8 days 

Maximize log-likelihood to estimate R0 by 
using surveillance data during a disease 
epidemic, and assuming the secondary case is 
Poisson distribution with expected value R0 

2.92 2.28–3.67 

Read et al. China 1–22 January 
2020 

Mathematical transmission model assuming 
latent period = 4 days and near to the 
incubation period 

Assumes daily time increments with Poisson- 
distribution and apply a deterministic SEIR 
metapopulation transmission model, 
transmission rate = 1.94, infectious period =
1.61 days 

3.11 2.39–4.13 

Majumder 
et al. 

Wuhan December 8, 
2019 and 
January 26, 
2020 

Mathematical Incidence Decay and Exponential 
Adjustment (IDEA) model 

Adopted mean serial interval lengths from 
SARS and MERS ranging from 6 to 10 days to fit 
the IDEA model, 

2.55 2.0–3.1 

WHO China January 18, 
2020   

1.95 1.4–2.5 

Cao et al. China January 23, 
2020 

Mathematical model including compartments 
Susceptible-Exposed-Infectious- Recovered- 
Death-Cumulative (SEIRDC) 

R = K 2 (L × D) + K (L + D)+1 L = average 
latent period = 7, D = average latent infectious 
period = 9, K = logarithmic growth rate of the 
case count 

4.08  

Zao et al. China 10–24 January 
2020 

Statistical exponential growth model method 
adopting serial interval from SARS (mean = 8.4 
days, SD = 3.8 days) and MERS (mean = 7.6 
days, SD = 3.4 days) 

Corresponding to 8-fold increase in the 
reporting rate R0 = 1/M(− r) r = intrinsic 
growth rate M = moment generating function 

2.24 1.96–2.55 

Zhao et al. China 10–24 January 
2020 

Statistical exponential growth model method 
adopting serial interval from SARS (mean = 8.4 
days, SD = 3.8 days) and MERS (mean = 7.6 
days, SD = 3.4 days) 

Corresponding to 2-fold increase in the 
reporting rate R0 = 1/M(− r) r = intrinsic 
growth rate M = moment generating function 

3.58 2.89–4.39 

Imai (2020) Wuhan January 18, 
2020 

Mathematical model, computational modelling 
of potential epidemic trajectories 

Assume SARS-like levels of case-to-case 
variability in the numbers of secondary cases 
and a SARS-like generation time with 8.4 days, 
and set number of cases caused by zoonotic 
exposure and assumed total number of cases to 
estimate R0 values for best-case, median and 
worst-case 

2.5 1.5–3.5 

Julien and 
Althaus 

China and 
overseas 

January 18, 
2020 

Stochastic simulations of early outbreak 
trajectories 
Tang 

Stochastic simulations of early outbreak 
trajectories were performed that are consistent 
with the epidemiological findings to date 

2.2  

Tang et al. China January 22, 
2020 

Mathematical SEIR-type epidemiological 
model incorporates appropriate compartments 
corresponding to interventions 

Method-based method and Likelihood-based 
method 

6.47 5.71–7.23 

Qun Li 
et al.11 

China January 22, 
2020 

Statistical exponential growth model Mean incubation period = 5.2 days, mean serial 
interval = 7.5 days 

2.2 1.4–3.9 

Steven et al. China 
(CDC)   

Realistic distributions for the latent and 
infectious period to calculate R0 

5.7 3.8–8.9 

Average R0 = 3.4 Median R0 = 2.9. 
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