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Abstract

It has been shown that fluid intelligence (gf) is fundamental to overcome interference due to information of a previously
encoded item along a task-relevant domain. However, the biasing effect of task-irrelevant dimensions is still unclear as well
as its relation with gf. The present study aimed at clarifying these issues. Gf was assessed in 60 healthy subjects. In a
different session, the same subjects performed two versions (letter-detection and spatial) of a three-back working memory
task with a set of physically identical stimuli (letters) presented at different locations on the screen. In the letter-detection
task, volunteers were asked to match stimuli on the basis of their identity whereas, in the spatial task, they were required to
match items on their locations. Cross-domain bias was manipulated by pseudorandomly inserting a match between the
current and the three back items on the irrelevant domain. Our findings showed that a task-irrelevant feature of a salient
stimulus can actually bias the ongoing performance. We revealed that, at trials in which the current and the three-back
items matched on the irrelevant domain, group accuracy was lower (interference). On the other hand, at trials in which the
two items matched on both the relevant and irrelevant domains, the group showed an enhancement of the performance
(facilitation). Furthermore, we demonstrated that individual differences in fluid intelligence covaries with the ability to
override cross-domain interference in that higher gf subjects showed better performance at interference trials than low gf
subjects. Altogether, our findings suggest that stimulus features irrelevant to the task can affect cognitive performance
along the relevant domain and that gf plays an important role in protecting relevant memory contents from the hampering
effect of such a bias.
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Introduction

In its psychometric definition Fluid intelligence, or gf, is

considered a higher factor belonging to the second broad stratum

of human cognitive abilities [1]. In the last decades a growing

number of studies characterized the cognitive and neurobiological

components of gf, leading to the idea that fluid intelligence is

fundamental for the implementation of goal-directed behavior and

for the optimization of individual performance [2–5]. The

mechanisms through which this is achieved likely involve the

construction of internal models in which representations of goals

and information relevant to the task are actively maintained [6]

and manipulated [7] in accordance to test instructions [2,8,9].

In light of the hypothesized function of gf, the ability to override

interference due to irrelevant information acquires a particular

importance. Indeed, susceptibility to interference has been

investigated with several tasks in the context of Working Memory

(WM). The main finding is that higher gf levels are associated with

higher resistance to interference, suggesting that fluid intelligence

is crucial for the shielding of task-relevant contents against the

hampering effects of irrelevant information.

Despite the number of studies performed on this topic, only a

specific form of interference has been investigated so far – i.e. the

one exerted by task-relevant features of a previously encoded item

– within the context of n-back tasks. On the other hand, the effects

of task-irrelevant features of a stimulus on the ongoing process are

poorly understood. The n-back is a recognition task in which

subjects are asked to decide whether the item currently presented

matches the stimulus seen n positions before [10,11]. This is

achieved by holding in memory a set of n serially ordered items

that has to be updated every time a new stimulus is presented.

Items must be matched on the basis of a specific characteristic,

such as identity, screen location or color. In turn, each of these

characteristics will constitute the relevant feature for the current

task. When the presented stimulus does not match the n-back item,

but matches a previously encoded stimulus presented n – 1 or n + 1

position before, the trial is called ‘‘lure’’. In a three-back letter-

identity task, an example of such trials is given by the following: N

– H – J – H. When exposed to lure trials, subjects are usually less

accurate and respond slower as a consequence of interference

resolution [12–15]. In fact, the effect of familiarity might override

the actual recollection of the stimulus leading to an incorrect
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response [13,14,16]. The example described above is a typical

paradigm used to investigate interference control in WM.

However, this kind of paradigm has an important limitation in

that interference effects are manipulated and measured along a

task relevant domain.

In the experiment at hand we intended to extend the previous

work by examining whether task-irrelevant features of a previously

processed item might bias the ongoing processing. Indeed, we

ascertained whether the variation of the stimuli along an irrelevant

dimension could influence the processing along the relevant

domain. For instance, one can ask subjects to match items on their

identity (relevant domain or feature) while having some stimuli

presented n position before appearing at the same screen location

(irrelevant domain or feature) of the current item. The question is: can

the former bias the processing of the latter item? In other words,

can an irrelevant characteristic of a salient item interfere with task

execution? It is worth noting that, in this example, the location of

the letter has little or no impact on task accomplishment in that,

for efficiency in performance, subjects need to hold, maintain and

process only the representations of stimuli identity. In addition to

that, in cognitive psychology, spatial and verbal working memories

are considered to be as two partially independent systems [17] (but

[18]) and neuroimaging and lesions data have revealed that they

share little neural resources ([19–21]; for a review of lesion studies:

[22]). However, recent investigations have challenged this

hypothesis showing that specific areas of the brain make

domain-independent contribution to WM functioning [23,24].

The investigation of cross-domain interference can provide

important insights on the often neglect, reciprocal bias between

domain specific WM components [25]. Furthermore, studying its

relation with fluid intelligence will help the characterization of the

cognitive mechanisms involved with the protection of task-relevant

memory representations and the implementation of goal directed

behavior.

The current study was designed to study this type of interference

and to address the above-mentioned questions by ascertaining

whether an irrelevant feature of a salient stimulus can disrupt or

facilitate the processing of the current item. Furthermore, based

upon the idea that gf promotes efficiency by biasing memory

representations of task-relevant information [9] we expect that, if

present, interference effects might be modulated by individual

levels in fluid intelligence. To this end, we used two different

versions (spatial and letter detection) of a three-back WM task with

letters presented at different locations of the screen.

Materials and Methods

Participants
Sixty healthy normal subjects were recruited from the University

of Chieti-Pescara. They ranged in age from 20 to 36 (mean 6 SD,

23.7, 6 3) and their mean educational level was 13.6 (6 1.2). The

sample consisted of 31 males and 29 females. All subjects gave

written informed consent to participate in the study according to

procedures approved by the local ethics committee of the University

of Chieti-Pescara ‘‘G. d’Annunzio’’. All participants were right

handed, had normal or corrected to normal vision and none of them

reported any history of psychiatric or neurological disorders.

Working Memory Task
In the current study we administered the three-back working

memory task [10], in which subjects viewed a continuous sequence

of stimuli and have to decide whether each presented stimulus

matches the item shown three stimuli earlier in the sequence.

Subjects were instructed to respond with their right dominant

hand by pressing one button for the ‘‘target’’ (‘‘Yes’’ response), and

another button for the ‘‘non-target’’ (‘‘No’’ response) trials.

Subjects performed a letter-detection and a spatial version of the

task. In order to avoid any possible confounds, in both conditions

we adopted physically identical items (letters) shown at different

locations of the screen. The task domain (letter-detection or

spatial) was simply manipulated through the initial task instruc-

tions. In the letter-detection condition, we asked the subjects to

retain and match the stimuli based upon the identity (letter)

criteria while, in the spatial task, they were instructed to encode

and match the stimuli by their positions. Notably, participants

were explicitly told to ignore the task-irrelevant feature of the

stimuli. This was done in order to suggest a strategy during task

execution that might favor the active focusing on the task-relevant

domain and enhancement of its representation in memory.

In order to measure cross-domain biasing effects, we manipulated

some of the non-target trials (‘‘No’’ responses). Specifically, on some

non-target trials, the item presented on the screen matched the item

seen three trials before on the irrelevant domain. For instance, in the

letter-detection condition, some of the displayed letters matched the

three-back item by its spatial location (irrelevant domain) but not by

its identity. Similarly, in the spatial condition, stimuli on some trials

did match the three-back stimulus by its identity (irrelevant domain)

but not by its location. We labeled these kinds of non-target trials as

‘‘non-target lures’’. All the others non-target trials were identified as

‘‘non-target control’’.

The same kind of manipulation was employed on some target trials

(‘‘Yes’’ responses). In both the letter-detection and spatial conditions,

on some trials, the stimulus matched the three-back item on both

identity and location features. We hypothesized that this could boost

item familiarity and recollection, thus, resulting in a facilitation effect.

We labeled these kinds of target trials as ‘‘target-lures’’. All the other

target trials, in which stimuli were matched only on the relevant

domain, were identified as ‘‘target control’’ (Figure 1A).

Besides the WM task, participants were also assessed with the

Raven’s Advanced Progressive Matrices (RAPM; [26]). RAPM is a

test of visuo-spatial abstract reasoning and it has been proven to

load highly on the g factor. It is commonly considered a reliable

measure of fluid reasoning (gf) – i.e. a factor belonging to the

second broad stratum together with the crystallized intelligence as

depicted in the hierarchic model of cognitive abilities [1].

Experimental procedures
A PC-compatible computer running Cogent 2000 (developed by

the Cogent 2000 team at the FIL and the ICN, University College

London, UK) under Matlab (The Mathworks Company, Natick,

MA, USA) controlled stimuli presentation and data acquisition.

Items were chosen from a pool of 10 different uppercase letters.

Notably, in order to minimize the number of stimuli features, we

decided to use only uppercase letters instead of randomly changing

between upper and lowercase. However, to ensure the use of

verbal codifications of the stimuli, we explicitly asked participants

to adopt such an encoding process. The location of the presented

letter was selected among 10 different positions on the screen,

which were spaced around the circumferences of two imaginary

circles centered on the cross (see Figure 1B: ITEM, the dots

represent the different locations). Each letter and stimulus position

had the same probability of occurrence within each block (10%)

and was pseudorandomly selected in order to accomplish

experimental manipulations.

Participants were seated in a comfortable chair in front of a 15-

inch computer screen at a distance of 50 cm. A computer mouse

was used to acquire subjects’ responses. Volunteers were instructed

to respond with their right dominant hand by pressing the left
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button underneath their index finger, for a ‘‘target’’ trial (‘‘Yes’’

response), and by pressing the right button under the middle

finger, for a ‘‘no-target’’ (‘‘No’’ response) stimulus. Before data

acquisition, subjects underwent a training session that consisted of

two 18 trials blocks, one for the spatial and one for the letter-

detection condition. Training blocks were repeated if participants

expressed or displayed difficulty in understanding or executing the

instructions. After the training, all participants completed two

experimental blocks for each of the WM domains. The order of

the blocks was counterbalanced across WM domains and sex.

Each of the experimental block consisted of 103 trials (3 starting

stimuli followed by 100 test items) that were preceded by

instructions relevant to the task domain (letter-detection or

spatial). A single trial lasted for a total of 3.5 s and started with

a warning stimulus (a yellow dot located at the center of the screen;

‘‘cue’’). The cue was displayed for 200 ms and was followed by a

white fixation cross positioned at the center of the screen. After 1 s

the offset of the cue, an item (a letter in any of the ten position)

appeared for 300 ms and was immediately followed by a white

fixation cross lasting for 2 s (Figure 1B). Matches occurred in 36%

of the trials, half of which were lures and the other half were

controls. Non-match stimuli had a probability of occurrence of

64%. Among the non-matches trials, 20% were lures and the

remaining 80% were controls (Figure 1A).

RAPM was administered individually, in a separate session.

Specifically, subjects had to solve a total of 48 problems (12 for set

I, 36 for set II) and didn’t have any limit in time. Individual total

raw scores (number of total correct responses, set I plus set II) were

used for the analyses.

Statistical analysis
In the first step of the analysis we tested whether information

irrelevant to the goal of the task could bias the ongoing

performance. We hypothesized: 1- the occurrence of two main

effects: interference and facilitation; 2- that these phenomena

should be reflected by variation of the individual performance

between lures and controls at non-target and target trials,

respectively. Specifically, on non-target trials in which the

stimulus matched the three-back item on the irrelevant domain,

we expected subjects to be slower in reaction time and less

accurate as a consequence of high attentional control. On

target-trials, in which stimuli were matched on both the relevant

and irrelevant domains, we expected an enhancement in

accuracy together with a decrease in mean reaction time. To

test our hypotheses, we performed an analysis of variance

(ANOVA) for repeated measures with a 2X2X2 factorial design

where task (letter-detection and spatial), stimulus (target and

non-target) and type (lures and controls) were the within subjects

factors. Correct Responses (CR) and Reaction Time (RT) were

entered as dependent variables in two separate ANOVA

procedures. T-test was used for post-hoc comparison when

needed.

Figure 1. Experimental procedures. Panel A: Subjects were administered two versions (verbal and spatial) of a three-back memory task with
identical stimuli (letters) presented at different locations of the screen. Four examples of the different kinds of trials used in the study are presented.
Panel B: The time line of a single trial.
doi:10.1371/journal.pone.0026249.g001
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In order to study differences in sensitivity among types of trial,

we computed d9 indexes using the following formula [27]:

d0~z FAð Þ{z Hð Þ

where z(FA) and z(H) are the z scores that correspond to the right-

tail p-values represented by false alarm rate (FA) and hit rate (H).

D9 indexes were computed for lure and control trials and for both

the letter-detection and spatial tasks. D9 indexes were entered as

dependent variables in 2X2 ANOVA for repeated measure where

task (letter-detection and spatial) and type (lures and controls) were

the within subjects factors.

A second step of the analysis sought to test the effects of task-set

inertia on subjects’ performance. All the subjects were exposed to

both tasks in one single session. Thus, it might happen that the

biasing effect due to the irrelevant information might be a reflection

of previous exposure to a task in which that dimension was relevant.

For instance, the effects coming from information about stimulus

locations during the execution of the letter-detection task might be a

consequence of a previous execution of spatial task and might reflect

a failure in shifting completely attention to the new relevant

dimension. Even if we controlled task-set inertia effects by

counterbalancing task administration across domains and gender,

we ran additional analyses on accuracy and reaction times after

splitting the entire group (N = 60). We sorted subjects into two sub-

samples (letter detection, N = 30; spatial, N = 30) on the basis of the

type of task each participant first performed. We then computed

percentage of accuracy and RTs only for the first block (either letter

detection or spatial) and entered these variable into two separate

2X2X2 ANOVA where stimulus (non-target and target) and type

(lure and control) were the within subjects factor, and group (letter

detection and spatial) was the between subjects factor. Fisher’s least

significant difference (LSD) tests were used for post-hoc comparison

when needed.

Similarly to the analysis performed on the entire group, we

computed d9 indexes also for the two separate sub-samples and

then tested the differences with a 2X2 ANOVA where type (lure

and control) was the within subject factor and group (letter

detection and spatial) was the between subjects factor.

A third step of the analysis sought to verify whether individuals’

intelligence could predict the biasing effects. Independently for the

spatial and letter-detection tasks, we first calculated correlations

(Pearson index) among correct responses at the different types of

trial (target controls, target lures, non-target controls, non-target

lures) and RAPM. Then, to account for the common variance

between interference control and general cognitive effort we

computed partial correlation between non-target lure and RAMP

by controlling for the effect of ‘‘non-target control’’. Finally, those

indices showing significant correlations with gf measure were

entered into a stepwise regression procedure with the RAPM score

as the dependent variables.

The relation (Pearson index) between individual differences in gf

and sensitivity to the signal was also computed for lure and control

trials and for the letter-detection and spatial tasks after eliminating

those subjects having negative d9 values of d9 value near zero (,0.01).

Results

Information along the irrelevant domain can bias the
ongoing performance

Behavioral performance varied significantly between lure and

controls trials in both the spatial and letter-detection WM tasks. The

analysis conducted on the correct responses revealed a signifi-

cant interaction among the three factors (taskXstimulusXtype,

F(1,59) = 5.48, p = 0.023). The results are summarized in Figure 2A.

Figure 2. Interference and Facilitation effects. Results of the ANOVAs computed on accuracy (CR %: percentage of correct responses;
d9: sensitivity index) at non-target and target trials for both the letter-detection and spatial three-back tasks. Panel A: Results of the analyses
conducted on the entire group (within-subjects; N = 60); Bars represent the group-means for the lure and control trials; * Accuracy: p,.005; t-test.
Panel B: Results of the analyses conducted on the two groups (between-subjects; each group N = 30); Bars represent the group-means for the lure
and control trials.
doi:10.1371/journal.pone.0026249.g002
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First, we demonstrated the occurrence of interference due to

irrelevant information. Among the non-target trials, we found that

lure trials were significantly more difficult than control trials.

This was evident in both the letter-detection (t-test; t(59) = 2.92,

p = 0.005) and the spatial (t-test; t(59) = 5.54, p,0.001) tasks, even

if this latter was more challenging then the former, as revealed by

the main effect we obtained for the factor task (F(1,59) = 18.8,

p,0.001). In other words, subjects showed more difficulties when

the non-target stimulus (‘‘No’’ responses) matched the three-back

item on the irrelevant domain. Second, we found that irrelevant

information had a facilitation effect on target trials. Participants

showed an enhancement of accuracy at lures as compared to the

control trials. This facilitation effect was evident in both letter-

detection (t-test; t(59) = 23.27, p = 0.003) and spatial (t-test;

t(59) = 23.99, p = 0.002) tasks. Subjects’ accuracy was higher when

the target stimulus (‘‘Yes: response) matched the item seen three

trials previously on both the relevant and irrelevant dimensions.

The results from the RT analysis were consistent with the

findings reported so far. We revealed a significant interaction of

stimulus and type factors (F(1,59) = 9.20, p = 0.004). On non-target

trials, the time to respond to lure stimuli was significantly higher

than the RTs in the controls (univariate statistic for planned

comparison, F(1,59) = 4.2, p = 0.05). On the opposite, on target

trials, subjects were faster when responding to a lure items as

compared to control stimuli (univariate statistic for planned

comparison, F(1,59) = 5.29, p = 0.02). This last finding can be a

reflection of redundancy target effect that is a decrease of reaction

time when target detection is driven by simultaneous presentation

of a stimulus. Indeed, the match between the current item and the

three-back stimulus in terms of both their location and identity can

be seen as a simultaneous presentation of a target along two

separate dimensions [28,29]. No main effect of the task factor

(F(1,59) = 1.09, p = 0.3) was found. Descriptive statistics (means and

standard errors) for RTs are reported in Table 1.

The analysis conducted on d9 indexes revealed that sensitivity

was higher in the letter-detection task as compared to the spatial

one (main effect of task factor; F(1,59) = 17.74; p,0.001). No

significant differences were found between lure and control trials

(main effect of type factor; F(1,59) = 3.58; p = 0.063) even if a trend

was evident, with sensitivity being higher at lure trials in the letter

detection task (Figure 2A). No significant interaction between task

and type factors (F(1,59) = 2.36, p = 0.12) was found. Table 2 (upper

part) reports the descriptive statistics for the variables used in the

analyses described above.

Cross-domain interference and task-set inertia
The between-group analyses conducted on correct responses

and RTs are in line with the findings reported so far. The analysis

on accuracy did not shown any significant differences between the

two groups (main effect of group factor; F(1,58) = 1.53; p = 0.22),

We found a main effect of the factor stimulus (F(1,58) = 16.94;

p,0.001) and a significant interaction between the factors stimulus

and type (F(1,58) = 7.14; p = 0.009). Similar to the results obtained

for the entire group, we revealed that subjects were less accurate at

non-target trials when the three-back item matched the current

stimulus on the irrelevant domain (p = 0.06). On the other, hand

hit rate was significantly higher for the target lures as compared to

target controls (p = 0.05). The obtained findings are displayed in

Figure 2B and the descriptive statistics are reported in Table 2

(upper part). Even if the difference between non-target lure and

non-target control trials did not reach significant p value, the trend

is clear and is in line with the original findings. In addition we have

to take into account the small sample size (30 instead of 60) and

the decreased number of trials (100 instead of 200) used to estimate

subjects’ means.

In regards to the RTs, we observed an interaction between the

factors group and type (F(1,58) = 4.62, p = 0.03). Indeed, we found

that subjects were faster when the current stimulus matched the

three-back item along the irrelevant dimension only when

performing the spatial task (p = 0.009; see Table 1 for descriptive

statistics).

The between-group analysis conducted on the d9 indexes did

not show any significant differences (Figure 2B).

Fluid reasoning predicts the ability to override
interference coming from the irrelevant domain

The second aim of the current investigation was to verify

whether individual differences in gf played a role in the

modulation of these cross-domain biasing effects.

As shown in Table 3, accuracy at non-target trials (lure and

control) for both the letter-detection and spatial tasks significantly

correlated with gf. On the contrary, no significant correlations

were found between RAPM scores and accuracy in target trials for

the two WM tasks. In addition, no correlations were found

between RAPM and reaction time (Verbal: ‘‘non-target control’’,

2 0.08; non-target lure, 2 0.05; ‘‘target control’’, 2 0.04; target

lure, 2 0.04; Spatial: ‘‘non-target control’’, 2 0.14; non-target

lure, 2 0.18; ‘‘target control’’, 2 0.09; target lure, 2 0.06;).

Besides tapping interference, our paradigm also engages other

executive processes that might account for the observed correla-

tions, at least to a partial extent. The encoding and maintenance of

new information, along with the updating of the items held in

memory and their active manipulation, are some of these processes

that might depend on gf level. In order to account for the effect of

general cognitive effort, we computed correlation between RAPM

and the accuracy at non-target lures by statistically controlling for

correct response in ‘‘non-target control’’ trials. As reported in

Table 3 we found significant correlation indices for both the letter-

detection and spatial tasks suggesting an important role of

individual level of gf in overriding interference after controlling

for general cognitive effort.

To confirm these findings, we ascertained which was the best

predictor of RAPM among accuracy at lure and control trials.

In order to avoid collinearity issues, we employed a stepwise

regression model. For both the letter-detection and spatial tasks,

the ability of overcoming interference (accuracy in non-target lure

trials) was the best predictor of individual fluid intelligence level

(Figure 3; p,.001).

Gf showed significant correlation with sensitivity at lure and

control trials for both the letter-detection and spatial tasks (letter-

detection lure r = 0.353, p = 0.006, N = 59; letter-detection control

r = 0.414, p = 0.001, N = 59; spatial lure r = 0.399, p = 0.002,

N = 59; spatial control r = 0.416, p = 0.002, N = 53).

Discussion

In this study we investigated the relationship between fluid

intelligence (gf) and a specific form of cognitive bias, i.e. the bias

exerted by task-irrelevant feature of a salient stimulus. We revealed

that information along a dimension that is irrelevant for task goals,

and could therefore be ignored as per task instructions, can either

enhance (facilitation) or disrupt (interference) subjects’ perfor-

mance. Furthermore, we showed that the ability to override

interference effect across distinct domains depends on gf, thus

suggesting a pivotal role of fluid intelligence in the active and

efficient maintenance of stimuli representations along the task-

relevant domain.

Cross-Domain Biasing and Fluid Intelligence
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As recently pointed out [25] an implicit assumption underlying

many previsions studies (see [25] for a review) was that irrelevant

characteristics of a stimulus would be easily excluded from the

ongoing processing. For instance, in WM paradigms like ours

[11,21,30–33], one could reasonably assume that item locations

would not be processed in the identity task, and that letter identity

would not influence execution during the spatial task. This idea

stems from the well-established cognitive theories that consider

WM as partitioned into several domain-specific resources [17], as

well as from studies showing a functional dissociation across brain

regions of verbal and spatial WM components ([19–21] for a

review of lesion studies: [22]). However, this view has been

recently challenged by a number of investigations [15,18,23–25,

31] that provided evidence for domain-general mechanisms in

WM functioning. In accordance with, and expanding these novel

findings, we found that information coming from the irrelevant

domain indeed significantly affects group performance, even when

subjects are explicitly asked to focus on the relevant stimuli feature.

More specifically, we observed two different and opposite effects,

namely interference and facilitation, which are likely consequences

of the trade off between assessment of familiarity and explicit

recollection processes [13,14]: on one hand, interference might be

a reflection of the conflict between familiarity and recollection and

the prioritizing of the former over the latter in case of incorrect

responses; on the other hand, facilitation would reflect the synergic

action between the two memory retrieval processes.

To our knowledge, this is the first work showing direct evidence

of cross-domain biasing effects in a single-task paradigm. Cross-

domain interference has been previously reported in the context of

dual-task experiments in which subjects were asked to execute two

distinct tests (for instance a verbal and a spatial task) in parallel.

Interference was measured as a change in performance in the

primary task as a function of the secondary one. It has been shown

that a set of auditory-verbal items [34,35] as well as a set of non-

verbal acoustic stimuli [36] could actually disrupt the performance

during a visuo-spatial task. Moreover, some authors have recently

Table 1. Descriptive statistics for the variables entered in the ANOVAs.

Mean S.D. Skewness S.E. Skew Kurtosis S.E. Kurt

Within-
subjects

RAPM 36.27 6.48 -.61 .31 .86 .61

L-D non-target control 83.03 12.13 -.65 .31 -.10 .61

L-D non-target lure 80.54 15.45 -.73 .31 -.11 .61

L-D target control 74.91 14.97 -.42 .31 -.80 .61

L-D target lure 78.84 14.57 -.42 .31 -.99 .61

S non-target control 80.91 14.00 -.80 .31 .29 .61

S non-target lure 74.83 16.38 -.35 .31 -.79 .61

S target control 66.30 18.86 -.89 .31 .59 .61

S target lure 73.47 12.74 -.61 .31 -.06 .61

L-D d9 lure 2.17 1.57 1.51 .31 2.86 .61

L-D d9 control 1.94 1.20 1.34 .31 2.16 .61

S d9 lure 1.52 .99 1.33 .31 2.76 .61

S d9 control 1.52 1.09 .66 .31 1.51 .61

Mean S.D. Skewness S.E. Skew Kurtosis S.E. Kurt

Between-
subjects

L-D RAPM 35.73 5.78 -.40 .43 .33 .83

L-D non-target control 75.34 12.87 -.44 .43 -1.01 .83

L-D non-target lure 72.08 19.28 -.74 .43 -.06 .83

L-D target control 64.63 16.60 -.52 .43 -.09 .83

L-D target lure 67.22 15.87 -.22 .43 -1.10 .83

L-D d9 lure 1.25 1.10 1.08 .43 2.98 .83

L-D d9 control 1.16 .71 -.29 .43 .41 .83

S RAPM 36.80 7.17 -.82 .43 1.31 .83

S non-target control 81.29 14.30 -.69 .43 -.21 .83

S non-target lure 76.67 19.00 -.87 .43 .12 .83

S target control 66.11 24.12 -1.07 .43 .39 .83

S target lure 72.04 14.26 -.29 .43 -.39 .83

S d9 lure 1.70 1.34 .99 .43 .56 .83

S d9 control 1.62 1.35 .56 .43 .20 .83

L-D: Letter detection; S: Spatial.
doi:10.1371/journal.pone.0026249.t001
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demonstrated that visual WM can be hampered by verbal stimuli

even when the interfering task did not require covert responses

[37]. Besides the dual-task paradigms, a previous investigation has

reported cross-domain interference in two-back WM task similar

to ours [38]. However, the conclusions were based upon indirect

evidence of such an effect. This TMS study showed that, on

average, group performance during sham stimulation was worst in

terms of accuracy and reaction time when the presented stimuli

varied along verbal and spatial domains as compared to the task in

which the same stimuli varied only along one single dimension at

the time (verbal or spatial). The analyses conducted on sensitivity

indexes did not show any significant differences between control

and lure trials. This finding is in line with the results obtained from

the analyses on correct responses and might be a reflection of the

opposite effects (facilitation and interference) that the irrelevant

feature exerted on target and non-target trials. Sensitivity indexes

reflect the difference between the hit and false alarm rates: in the

current study whereas the irrelevant information increased the

false alarm rate during the lure trials it also increased the hit rate at

target lures thus making the difference between the false alarm and

hit distributions similar to the difference between the two at

control trials.

With regard to the trade off between familiarity assessment and

explicit recollection, attentional control plays a fundamental role.

Executive control is especially needed when subjects have to solve

the mismatch between the two processes, in order to protect

relevant memory contents and, eventually, to attain task-goals.

Interestingly, our results showed that this ability is not similarly

distributed across subjects but varies as a function of individual

differences in fluid intelligence. We found that accuracy at non-

target lure trials significantly correlated with gf, even after

controlling for general cognitive effort that is: high gF individuals

will show a reduced drop in performance on lure trials relative to

controls, compared to lower gF individuals. In addition, no

differences across subjects were found at target lure trials – that is

facilitation trials- thus suggesting that gf has a limited role when

familiarity and recollection coincided. Another possible explana-

tion of the biasing effects observed here and of the relations among

interference, facilitation and gf level is that irrelevant features of

the three-back stimulus can provide useful information for a

Table 2. Descriptive statistics for the Reaction Times of the entire group (N = 60) and of the two separate groups (N = 30).

WITHIN-SUBJECTS

Letter Detection task Spatial task

non-target target non-target target

lure control lure control lure control lure control

Mean 967.384 964.374 929.490 964.633 974.196 950.933 910.762 918.270

S.D. 259.749 254.316 265.893 273.872 259.224 241.570 235.907 250.811

BETWEEN-SUBJECTS

Letter Detection group Spatial group

non-target target non-target target

lure control lure control lure control lure control

Mean 1082.333 1070.759 1067.100 1092.918 1003.397 955.150 899.015 954.985

S.D. 289.625 274.801 304.781 285.264 292.523 247.655 222.553 259.883

doi:10.1371/journal.pone.0026249.t002

Table 3. Correlation analyses between Fluid intelligence and performance at the WM task.

LETTER-DETECTION TASK

non-target target

lure control lure control

RAPM (zero-order) 0.571* 0.490* 0.162 0.222

RAPM (partial) 0.348ˆ — — —

SPATIAL TASK

non-target target

lure control lure control

RAPM (zero-order) 0.534* 0.449* 0.032 -0.177

RAPM (partial) 0.324ˆ — — —

*p = .0001;

ˆp = .01.
doi:10.1371/journal.pone.0026249.t003
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correct identification of the current item. Knowing whether the

current item is a lure or a control can actually increases the chance

of guessing the status along the relevant dimension (target or non-

target). In fact, the chance that a lure stimulus is a target on the

relevant dimension (18%) is higher then the chance of being a non-

target (12.8%). Similarly, the probability that a control stimulus is

a non-target along the relevant domain (51.2%) is higher then the

chance of being a target (18%). In case the active retrieval of an

item along the relevant domain might failure, knowing the status

along the irrelevant dimension (lure vs. control) might increase the

chance of guessing. Moreover, the positive correlations between gf

and sensitivity indexes suggest that low gf individuals provide more

false alarms and that they are more susceptible to this conditional

probability [39].

However, besides the theoretical framework used for data

interpretation (familiarity/recollection vs. conditional probability),

what is clear is that the irrelevant features of the stimulus are

actively processed, most likely because they provide useful

information for the correct execution of the task.

The positive correlation between gf and interference control has

been reported in previous studies using single-domain n-back WM

task [9,12,15]. Furthermore, it has been shown that interference

control positively correlated with WM capacity [40,41], which

is thought to capture similar skills as fluid intelligence [42].

Nonetheless, the current investigation is the first to point out the

pivotal role of fluid intelligence in overcoming the deleterious

effects interference across distinct domains. However, future

studies are needed to investigate whether the gf variance explained

by cross-domain bias overlap with the one accounted by

interference within the same domain. A possible interpretation

of our findings is that higher gf participants took advantage from

the use of a strategy of interference anticipation and prevention

that might be implemented through the enhancement of goal-

related and task-relevant feature representation in WM. In fact,

our task and the explicit instruction to focus on the relevant

domain, might have favored the use of such a strategy. Although

this conclusion in not based on direct evidence of such cognitive

mechanisms, previous results support our hypothesis. It has been

recently demonstrated that, when expected, interference in WM

could be proactively controlled through the enhancement of memory

representations of relevant information during the retention

interval [9]. Moreover, the study above mentioned clearly showed

that such ability was associated with higher gf level. Still, a

different cognitive mechanism can account for our findings. Other

authors revealed that proactive interference control could be

achieved via active inhibition of task-irrelevant stimulus features

[38]. However, if that were the case, along with the positive

correlation between gf and interference, we would also expect, a

negative correlation between fluid intelligence and facilitation, as

consequence of the suppression caused by the inhibition processes

of the synergy between familiarity and recollection. Our data did

not show the presence of such a correlation. Nonetheless, further

studies are needed to verify our hypotheses.
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