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Abstract

Selection on complex traits can rapidly drive evolution, especially in stressful environments.

This polygenic selection does not leave intense sweep signatures on the genome, rather

many loci experience small allele frequency shifts, resulting in large cumulative phenotypic

changes. Directional selection and local adaptation are changing populations; but, identify-

ing loci underlying polygenic or environmental selection has been difficult. We use genomic

data on tens of thousands of cattle from three populations, distributed over time and land-

scapes, in linear mixed models with novel dependent variables to map signatures of selec-

tion on complex traits and local adaptation. We identify 207 genomic loci associated with an

animal’s birth date, representing ongoing selection for monogenic and polygenic traits. Addi-

tionally, hundreds of additional loci are associated with continuous and discrete environ-

ments, providing evidence for historical local adaptation. These candidate loci highlight the

nervous system’s possible role in local adaptation. While advanced technologies have

increased the rate of directional selection in cattle, it has likely been at the expense of histori-

cally generated local adaptation, which is especially problematic in changing climates.

When applied to large, diverse cattle datasets, these selection mapping methods provide an

insight into how selection on complex traits continually shapes the genome. Further, under-

standing the genomic loci implicated in adaptation may help us breed more adapted and effi-

cient cattle, and begin to understand the basis for mammalian adaptation, especially in

changing climates. These selection mapping approaches help clarify selective forces and

loci in evolutionary, model, and agricultural contexts.
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Author summary

Interest in mapping the impacts of selection and local adaptation on the genome is

increasing due to the novel stressors presented by climate change. Until now, approaches

have largely focused on mapping “sweeps” on large-effect loci. Highly powered datasets

that are both temporally and geographically distributed have not existed. Recently, large

numbers of beef cattle have been genotyped across the United States, including influential

individuals with cryopreserved semen. This has created multiple powerful datasets distrib-

uted over time and landscapes. Here, we map the recent effects of selection and local adap-

tation in three cattle populations. The results provide insight into the biology of

mammalian adaptation and generate useful tools for selecting and breeding better-

adapted cattle for a changing environment.

Introduction

As climate changes, organisms either migrate, rapidly adapt, or perish. The genes and alleles

that underlie adaptation have been difficult to identify, except for a handful of large-effect vari-

ants that underwent selective sweeps [1]. It is becoming increasingly apparent that for adapta-

tion, hard sweeps are likely to be the exception, rather than the rule [2]. Polygenic selection on

complex traits can cause a significant change in the mean phenotype while producing only

subtle changes in allele frequencies throughout the genome [3]. Additionally, we expect that

polygenic selection is the major selective force both during and after domestication in agricul-

tural species. Many selection mapping methods rely on allele frequency differences between

diverged or artificially defined populations (e.g. FST, FLK, XP-CLR) [4–6], making the detec-

tion of selection within a largely panmictic population difficult. Others rely on detecting the

disruption of normal LD patterns (iHS, EHH, ROH, etc.) [7–9]. In cattle, these methods have

successfully identified genomic regions under selection that control Mendelian and simple

traits like coat color, the absence of horns, or large-effect genes involved in domestication [10–

15]. Further, in many cases these models are unable to derive additional power from massive

increases in sample size [16]. Millions of North American Bos taurus beef cattle have been

exposed to strong artificial and environmental selection for more than 50 years (~10 genera-

tions) [17], making them a powerful model for studying the impacts selection has on genomes

over short time periods and across diverse environments.

Though the first cattle single nucleotide polymorphism (SNP) genotyping assay was devel-

oped just over a decade ago [18], numerous influential males who have been deceased for 30 to

40 years have been genotyped from cryopreserved semen (S1 Fig, Table A in S1 Text). These

bulls add a temporally-stratified, multi-generational component to the datasets of thousands

of contemporary animals genotyped from the numerically largest US beef breeds. Further-

more, the large number of animals genotyped from the most recent generations provide

remarkable power for detecting small allele frequency changes due to ongoing selection.

Under directional selection, alleles will be at significantly different frequencies in more recent

generations compared with distant ones (Fig 1C). This creates a statistical association between

allele frequencies at a selected locus and an individual’s generation number. With multiple

generations sampled and genotyped, we can disentangle small shifts in allele frequency due to

directional selection from the stochastic small changes caused by drift (Fig 1A) using Genera-

tion Proxy Selection Mapping (GPSM) [17,19]. The GPSM method searches for allele fre-

quency changes by identifying allelic associations with an individual’s generation (or some

proxy), while accounting for confounding population and family structure with a genomic
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Fig 1. Simulated allele frequency trajectories and model overview. (a-c) Allele frequency trajectories for 20 SNPs

colored by relative effect sizes from stochastic selection simulations. (a) Effect size = 0, representing stochastic changes

in allele frequency due to genetic drift. (b) Large-effect alleles rapidly becoming fixed in the population representing

selective sweeps. (c) Moderate-to-small effect size SNPs changing in frequency slowly over time, representing

polygenic selection. (d) An overview of the linear mixed model approach used for Generation Proxy Selection

Mapping and environmental GWAS. (e-f) A single SNP under ecoregion-specific selection. Different colors represent

the trajectory of a given SNP in one of five different ecoregions. Ecoregion-specific selection can lead to allele

frequencies that (e) diverge from or (f) converge to the population mean. Maps were plotted using public domain data

from the US Department of Commerce, Census Bureau via the R package maps (version 3.1, https://cran.r-project.org/

web/packages/maps/).

https://doi.org/10.1371/journal.pgen.1009652.g001
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relationship matrix (GRM) (Fig 1D) [20]. When pedigrees are missing, are missing large

amounts of data, or have complex, overlapping generations, a proxy for generation can be

used such as variety release date or birth date. Cattle producers are selecting on various combi-

nations of growth, maternal, and carcass traits, but the genomic changes that result from this

selection are not well-understood. Numerous genome-wide association studies have been

undertaken on individual traits, but these say nothing about the underlying genomic changes

that populations are experiencing due to selection. The GPSM method identifies the allele fre-

quency changes underlying selection in a trait-agnostic manner, allowing us to observe the

impacts of selection decisions in real time and understand how strong selection alters the

genome over very short timescales.

From domestication to the present, humans have used phenotypic selection to change cat-

tle. Since the 1980s and since the 2010s, genetic and genomic predictions, respectively, have

been available to U.S. beef producers. However, even with these advanced tools, most beef pro-

ducers still rely, at least partially, on phenotypic selection [21]. Prior to the 1980s, cattle were

selected via phenotypic selection and there was very little movement of animals (i.e. gene flow)

between regions. This strong, artificial phenotypic selection allows unintended selection on

naturally-occurring abiotic and biotic stressor traits, akin to natural selection. Further, pheno-

typic selection could act on loci with genotype-by-environment effects (which BLUP breeding

value-based selection would not), thus creating local adaptation. As an example, phenotypic

selection could select for animals with better innate immune systems as they will grow faster

and look more vigorous.

Though domesticated, beef cattle are exposed to a broad spectrum of unique environments

and local selection pressures, as compared to other more intensely managed livestock popula-

tions. This suggests that local adaptation and genotype-by-environment interactions play

important roles in the expression of complex traits. Local adaptation and genotype-by-environ-

ment (GxE) interactions are known to exist in closely related cattle populations [22,23]. Previ-

ous work has identified the presence of extensive GxE in beef cattle populations [24–28], but

limited work exploring the genomic basis of local adaptation has occurred [29]. Further, we

anticipate that the increased use of artificial insemination, responsible for dramatic increases in

production efficiency, may be eroding environmentally adaptive allele frequency differences in

populations. Understanding genetic interactions with the environment, and their presence in

cattle populations will become increasingly important in the face of changing climates.

To identify genomic regions potentially contributing to local adaptation, we used continu-

ous environmental variables as quantitative phenotypes or discrete ecoregions as case-control

phenotypes in a linear mixed model framework. We refer to these approaches as “environmen-

tal genome-wide association studies”, or envGWAS. Using a genomic relationship matrix in a

LMM allows us to control the high levels of relatedness between spatially close individuals, and

more confidently identify real environmentally-associated alleles. This method builds on the

theory of the Bayenv approach from Coop et al. (2010) [30,31] that uses allele frequency corre-

lations along environmental gradients to identify potential local adaptation.

Herein, we use two methods (Fig 1), the first for detecting complex polygenic selection

(Generation Proxy Selection Mapping, GPSM), and the second for identifying local adaptation

(environmental Genome-Wide Association Studies, envGWAS). When applied to three US

beef cattle populations, each with ~15,000 genotyped individuals, we identified numerous

genomic regions harboring directional or environmentally associated mutations. Further,

using a meta-analysis approach, we identified loci with ecoregion-specific allele frequency

changes (Fig 1E and 1F), largely due to the erosion of local adaptation caused by gene flow

among ecoregions from the use of artificial insemination sires. This study is the first step in

assisting beef cattle producers to identify locally adapted individuals, which will reduce the
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industry’s environmental footprint by increasing efficiency and resilience to stressors. Further,

this repurposing of commercially-generated genomic data provides us unprecedented power

to gain insight into the biology of polygenic selection and adaptation in mammalian species.

Results

Simulations

To identify the robustness of GPSM to distinguish selection from drift, we performed two

major sets of simulations, stochastic and gene drop. First, we performed a set of stochastic sim-

ulations to demonstrate how selection in the context of different effective population sizes,

selection intensities, generational sampling, and genomic architectures produce GPSM signal.

Stochastic simulations under multiple selection intensities, time periods, and trait architec-

tures showed consistently that GPSM is able to map polygenic selection (S1 Table). Across all

simulated scenarios and architectures, we identified an average of 38.5 selected loci (min 5.2,

max 64.1) that reached genome-wide significance (q< 0.1) in GPSM. Depending on the geno-

mic architecture of the simulated trait under selection, this represented between 0.57% and

32.54% of possible true positives (median = 9.94%). In most cases, we observed that significant

hits were not the largest effect simulated QTL, but the loci that underwent the greatest allele

frequency shifts over the course of genotype sampling. Usually, the largest effect QTL were

fixed in the population during burn-in simulations, making their detection by GPSM impossi-

ble. Simulations suggested that GPSM effectively distinguished allele frequency changes due to

selection from those associated with drift. Across all 36 scenarios of random selection, with

drift acting as the only force by which alleles could change in frequency, we detected an aver-

age of 0.15 GPSM false positive SNPs (q-value < 0.1) per replicate. These rare false positives

were not driven by changes in any single component of the simulations. The average number

of false positive SNPs detected per replicate ranged from 0.0 to 0.45 across all scenarios,

accounting for, at most, 1 false positive GPSM SNP per 100,000 tests.

Genotype sampling also significantly impacted the number of true and false positives detected

by GPSM across scenarios. When genotypes were evenly sampled across generations, GPSM

detected, on average, 18.05 more true positives (paired t-test p< 2 x 10−16) and 0.90 less false posi-

tives (paired t-test p< 2 x 10−16) compared with heavier sampling of recently born individuals.

That said, across all scenarios, the uneven sampling scheme that more closely resembled our real

datasets still detected over 20 selected loci on average across all simulations (min 1.9, max 36.4)

The proportion variation explained (PVE, S1 Table) of birth date across simulation scenar-

ios reflects the number of generations and the number of crosses in the simulations across

both selection and random scenarios (p< 2e-16). For random scenarios, the number of segre-

gating QTL (p = 9.94e-06) was also associated with PVE. Importantly, for selection scenarios,

the proportion of true positives (p = 2.87e-07) and QTL distribution (p = 2.91e-13) were also

significantly associated with the PVE.

Gene dropping simulations using the Red Angus pedigree generated an average of 0.4

(sd = 0.52) significant GPSM loci (q< 0.1) per 200K markers tested, equating to 1–2 in our

real genotype data (Table A in S1 Text). Thus, pedigree structure is not responsible for the sig-

nificant SNPs that we detected in real datasets.

Detecting ongoing polygenic selection with Generation Proxy Selection

Mapping (GPSM)

We used continuous birth date and high-density SNP genotypes for large samples of animals

from three large US beef cattle populations; Red Angus (RAN; n = 15,295), Simmental (SIM;
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n = 15,350), and Gelbvieh (GEL; n = 12,031) to map loci responding to selection (Table B in

S1 Text, S1 Fig). The LMM estimated that the proportion of variance in individuals’ birth

dates explained by the additive genetic effects of SNPs was large [Proportion of Variance

Explained (PVE) = 0.520, 0.588, and 0.459 in RAN, SIM, and GEL, respectively], indicating

that the demographic histories of the populations and sampling strategy across the breeds

were similar. We removed the link between generation proxy and genotype by randomly per-

muting the animals’ birth date and on reanalysis of the permuted data we observed PVE to

decrease to zero (Table C in S1 Text).

The GPSM analyses for these three populations identified 268, 548, and 763 statistically sig-

nificant SNPs (q-value < 0.1), representing at least 52, 85, and 92 genomic loci associated with

birth date in RAN, SIM, and GEL, respectively (Fig 2A–2F, Tables 1 and S2). Additionally, we

found that despite birth date being a significantly skewed dependent variable (RAN skew-

ness = 4.48, SIM skewness = 2.66, GEL skewness = 3.64), the GPSM p-values were well cali-

brated (Fig 2G–2I). Despite the tendency for genome-wide association studies (GWAS) to be

biased in its detection of moderate frequency variants [32], we identify significant associations

across the minor allele frequency range in our GPSM simulations and analyses (Fig 2J–2L).

This suggests GPSM can differentiate drift from selection across the allele frequency spectrum.

Rapid shifts in allele frequency create highly significant GPSM signals. For example, rs1762920
on chromosome 28 has undergone large, recent changes in allele frequency in all three popula-

tions (Fig 2G), which in turn creates highly significant q-values (2.810⨯10−27, 2.323⨯10−150,

2.787⨯10−265 in RAN, SIM, and GEL, respectively). The allele frequency changes observed for

this locus are extremely large compared to other significant regions, most of which have only

small to moderate changes in allele frequency over the last ~10 generations. When we

regressed allele frequency (0, 0.5, or 1.0 representing AA, AB, and BB genotypes per individual)

on birth date, the average allele frequency changes per generation (ΔAF) for significant GPSM

associations were 0.017, 0.024, and 0.022 for RAN, SIM, and GEL, respectively (Table D in S1

Text). In the analyses of each dataset, GPSM identified significant SNPs with ΔAF < 1.1⨯10−4.

The generally small allele frequency changes detected by GPSM are consistent with the magni-

tude of allele frequency changes expected for selection on traits with polygenic architectures

[3].

We found that significant GPSM loci go largely undetected when using other selection

mapping methods. In these datasets, the genomic regions identified by both TreeSelect and

allele frequency trajectory (wfABC) methods for detecting selection were almost entirely dif-

ferent from those identified by GPSM. Further, the estimated selection coefficients (s) from

wfABC [33] were lowly correlated with GPSM effect size estimates using both the full

(r = 0.002) and relationship-pruned (r = 0.003) datasets. The slight increase in correlation is

likely due to a violation of wfABC’s assumption of random mating, because the correlation

between estimated s between the full and relationship-pruned datasets was only 0.432. When

we restricted our comparison to significant GPSM SNPs, the correlation between wfABC-esti-

mated s and GPSM betas was higher (r = 0.0675), but still quite low. Interestingly the correla-

tion between estimated selection coefficients and significant GPSM p-values was higher than

with the GPSM effect size estimate (r = 0.126).

TreeSelect and GPSM test statistics were also lowly correlated. A three population TreeSe-

lect analysis that treated each breed as a distinct population to detect between-breed selection

showed low correlations between test statistics (r = 0.009, 0.002, 0.002 in Red Angus, Simmen-

tal, and Gelbvieh, respectively). The between-breed allele frequency differences detected by

TreeSelect did not overlap at all with GPSM signatures. When used to detect selection within a

breed using discrete groupings based on animal birth date, test statistic correlations were also

low (r = 0.007, 0.018, and 0.005 for youngest, middle, and oldest groups of animals in Red
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Angus). Despite generally low correlations between test statistics, TreeSelect with arbitrary

population groupings detected some of the same loci that were identified by GPSM. In Red

Angus, the within-breed TreeSelect analysis identified selection at six loci that were also

Fig 2. Generation Proxy Selection Mapping identifies signals of polygenic selection in three major U.S. cattle

populations. Full and truncated (-log10(q)< 15) Manhattan plots for GPSM analysis of Red Angus (a & b), Simmental

(c & d), and Gelbvieh (e & f). Purple points indicate SNPs significant in all three population-specific GPSM analyses

and orange points indicate SNPs significant in two. Red lines in a-f indicate a significance cutoff of q< 0.1. Quantile-

quantile plots of -log10(p) values in GPSM analysis of (g) Red Angus, (h) Simmental, and (i) Gelbvieh populations.

Minor allele frequency plotted versus -log10(p) values for significant SNPs in (j) Red Angus, (k) Simmental, and (l)

Gelbvieh populations. (m) Smoothed allele frequency histories for the six most significant loci identified as being

under selection in all three datasets. (n) Allele frequency histories for three known Mendelian loci that control

differences in visual appearance between introduced European and modern US Simmental cattle. Arrows of the same

color are used to distinguish the genomic locations of these loci in (c).

https://doi.org/10.1371/journal.pgen.1009652.g002
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significant in GPSM, including the two most significant loci on chromosome 23 near

KHDRBS2 and on chromosome 28 near RHOU (S2 Fig).

We performed a genomic restricted maximum likelihood (REML) analysis to identify how

much of the variation in birth date was explained by various classes of GPSM SNPs. We built

three GRMs using different SNP sets: One set with GPSM genome-wide significant SNPs

(q< 0.1), the second with an equivalent number of the next most suggestive GPSM SNPs out-

side of significant loci (> 1 Mb from a q < 0.1 significant SNP), and the third with an equiva-

lent number of random, moderate minor allele frequency (MAF > 0.15) SNPs not in the first

two variant classes, intended to represent loci randomly drifting in the population. For each

population, we observed that nearly all of the variation in birth date was explained by the sig-

nificant and suggestive GRMs. While genome-wide significant loci explain the majority of

genetic variance associated with birth date, an equivalent number of suggestive, but not signifi-

cant SNPs resulted in only slightly smaller PVEs (Table 2). We suspect that these SNPs are

undergoing directional allele frequency changes too small to detect at genome-wide signifi-

cance, even in this highly-powered dataset. Since GPSM continues to gain power with addi-

tional samples, we suspect that future sample size increases will detect more of these signatures

of polygenic selection at a genome-wide significance level. Regardless of the number of SNPs

used in the drift GRM, the variance associated with drift was consistently minimal (Table 2).

As proof-of-concept, GPSM identified known targets of selection. In Simmental, we identi-

fied significant associations at three known Mendelian loci that explain the major differences

in appearance between early imported European Simmental and modern US Simmental (Fig

2H). These loci: POLLED (absence of horns [34]), ERBB3/PMEL (European Simmental cream

color [35]), and KIT (piebald coat coloration [36]) have not appreciably changed in allele fre-

quency since 1995, making their GPSM signature significant, but less so than other loci

actively changing in frequency.

In addition to these three known Mendelian loci, we detected numerous novel targets of

selection within and across populations. While the majority of the genomic regions detected as

being under selection were population-specific (79.8%, 79.8%, and 77.2% of the significant

regions in RAN, SIM, and GEL, respectively), we identified seven loci that are under selection

in all three populations, and fifteen more under selection in two (Table E in S1 Text). While

GPSM is able to detect Mendelian selection, the overwhelming majority of signatures

Table 1. Number of significant birth date-associated SNPs in each population at various significance thresholds.

Population n individuals q-value < 0.1 q-value < 0.05 Bonferroni (0.05/nSNPs) Suggestive (p < 10−5)

Red Angus 15,295 268 219 93 212

Simmental 15,350 548 466 201 397

Gelbvieh 12,031 763 634 267 517

https://doi.org/10.1371/journal.pgen.1009652.t001

Table 2. Variation in birth date explained by three classes of SNPs. The PVE estimates (standard error in parentheses) from a genomic restricted maximum likelihood

(GREML) variance component analysis of birth date using three GRMs created from: 1) genome-wide significant SNPs (q< 0.1), 2) an equivalent number of the next

most significant SNPs outside of genome-wide significant associated regions, and 3) an equivalent number of randomly sampled SNPs from genomic regions that did not

harbor genome-wide significant associations.

Population Genome-wide significant SNPs� Suggestive significant SNPs� Other SNPs� Total

Red Angus 0.170 (0.021) 0.160 (0.016) 0.030 (0.004) 0.360 (0.020)

Simmental 0.223 (0.017) 0.199 (0.014) 0.046 (0.004) 0.468 (0.015)

Gelbvieh 0.232 (0.018) 0.175 (0.012) 0.021 (0.003) 0.428 (0.016)

�Contained 268, 548, and 763 SNPs for Red Angus, Simmental, and Gelbvieh, respectively

https://doi.org/10.1371/journal.pgen.1009652.t002
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identified represent selection on complex, quantitative traits. Of the regions identified in mul-

tiple populations, many possessed positional candidate genes with production-related func-

tions in cattle (DACH1-Growth [37,38], LRP12-Growth [39], MYBPH-Muscle Growth [40],

RHOU-Carcass Weight [41], BIRC5-Feed Intake [42]). However, GPSM did not identify any

of the well-established large-effect growth loci (e.g., chromosome 14 locus containing PLAG1,

chromosome 6 locus containing LCORL). Growth phenotypes (e.g., birth, weaning, and year-

ling weights) are known to be under strong selection in all three populations [43], but antago-

nistic pleiotropic effects such as increased calving difficulty prevent directional selection from

changing frequencies at these large-effect loci. Many of the selection signatures identified in at

least two of the populations have no known functions or phenotype associations in cattle,

highlighting the ability of GPSM to identify novel, important loci under polygenic selection,

agnostic of phenotype.

Biological processes and pathways enriched in genes located proximal to GPSM SNP associ-

ations point to selection on drivers of production efficiency and on population-specific charac-

teristics (S3 Table). In each population, we identified numerous biological processes involved

in cell cycle control, which are directly involved in determining muscle growth rate [44], as

being under selection. In Red Angus and Gelbvieh we identified multiple cancer pathways as

being under selection. This likely represents further evidence of selection on cell cycle regula-

tion and growth rather than on any cancer related phenotypes [45]. Red Angus cattle are

known to be highly fertile with exceptional maternal characteristics [46]. We identified the

“ovarian steroidogenesis” pathway as being under selection, a known contributor to cow fertil-

ity [47]. We also identify numerous other processes involved in the production and metabo-

lism of hormones. Hormone metabolism is a central regulator of growth in cattle [48], but

could also represent selection for increased female fertility in Red Angus. Further, Tissue Set

Enrichment Analyses (TSEA) of Red Angus GPSM candidate genes showed suggestive expres-

sion differences (p< 0.1) in multiple human reproductive tissues (S4 and S5 Tables). Enrich-

ments in these tissues did not exist in TSEA of Simmental or Gelbvieh GPSM gene sets,

suggesting explicit within-population selection on fertility. Gelbvieh cattle are known for their

rapid growth rate and carcass yield. Selection on these phenotypes likely drives the identifica-

tion of the six biological processes identified which relate to muscle development and function

in the Gelbvieh GPSM gene set. Consequently, this gene set is significantly enriched for

expression in human skeletal muscle (S4 and S5 Tables), an enrichment unique to Gelbvieh.

A complete list of genomic regions under population-specific selection and their associated

candidate genes is in S2 Table.

Detecting environmental associations using envGWAS

Using an equivalent form of model to GPSM, but with continuous environmental variables

(30 year normals for temperature, precipitation, and elevation) or statistically-derived discrete

ecoregions as the dependent variable (rather than birth date in GPSM) allows us to identify

environmentally-associated loci that have been subjected to artificial and, perhaps in this con-

text more importantly, natural selection [49]. We refer to this method as environmental

GWAS (envGWAS). envGWAS extends the theory of the Bayenv approach of Coop et al.

(2010) which searches for allele frequency correlations along environmental gradients to iden-

tify potentially adaptive loci [30]. Similar approaches have been applied to plant datasets

[50,51], but we extend envGWAS to panmictic, biobank-sized mammalian populations.

Unlike many genome-environment association analyses which only used linear models

[51,52], our large dataset and the use of multivariate models provides power to identify associ-

ation while importantly controlling for geographic dependence between samples using a
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genomic relationship matrix (S3 and S7 Figs). We used K-means clustering with 30-year nor-

mal values for temperature, precipitation, and elevation to partition the United States into 9

discrete ecoregions (Fig 3A). These ecoregions are largely consistent with those represented in

previously-published maps from the environmetrics and atmospheric science literature [53],

and reflect well-known differences in cattle production environments. The resulting ecore-

gions capture not only combinations of climate and environmental variables, but associated

differences in forage type, local pathogens, and ecoregion-wide management differences to

which animals are exposed. Thus, using these ecoregions as case-control phenotypes in

envGWAS allowed us to detect more complex environmental associations. The three studied

Fig 3. Manhattan plots for discrete and continuous envGWAS in Red Angus cattle. (a) Nine continental US

ecoregions defined by K-means clustering of 30-year normal temperatures, precipitations, and elevations. (b)

Locations of sampled Red Angus animals colored by breeder’s ecoregion and sized by the number of animals at that

location. (c) Multivariate discrete envGWAS (case-control for six regions with> 600 animals). Locations of sampled

Red Angus animals colored by (d) 30-year normal temperature, (e) 30-year normal precipitation, and (f) elevation. (g)

Multivariate continuous envGWAS with temperature, precipitation, and elevation as dependent variables. For all

Manhattan plots the red line indicates the empirically-derived p-value significance threshold from permutation

analysis (p< 1⨯10−5). Maps were plotted using public domain data from the US Department of Commerce, Census

Bureau via the R package maps (version 3.1, https://cran.r-project.org/web/packages/maps/).

https://doi.org/10.1371/journal.pgen.1009652.g003
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populations are not universally present in all ecoregions (Figs 3B, S4B and S5B, Table F in S1

Text). Since the development of these US populations in the late 1960s and early 1970s, regis-

tered seedstock animals from these populations have a small footprint in desert regions with

extreme temperatures and low rainfall.

Although environmental variables and ecoregions are not inherited, the estimated PVE

measures the extent to which genome-wide genotypes change in frequency across the environ-

ments in which the animals were born and lived. The proportion of variance explained by

SNPs ranged from 0.586 to 0.691 for temperature, 0.526 to 0.677 for precipitation, and 0.585 to

0.644 for elevation (Table G in S1 Text). In Red Angus, PVE for ecoregion membership ran-

ged from 0.463 for the Arid Prairie to 0.673 for the Fescue Belt (Table H in S1 Text). We

observe similar environmental PVE in both Simmental and Gelbvieh datasets. These measures

suggest that genetic associations exist along both continuous environmental gradients and

within discrete ecoregions. Permutation tests that shuffled environmental dependent variables,

removing the relationship between the environment and the animal’s genotype, resulted in all

PVEs being reduced to ~ 0, strongly suggesting that the detected associations between geno-

type and environment were not spurious. An additional permutation test that permuted ani-

mals’ zip codes, such that all animals from a given zip code were assigned the same “new” zip

code from a potentially different ecoregion provided similar results, indicating that bias due to

sampling at certain zip codes was not producing envGWAS signals. From 10 rounds of permu-

tation, there were no SNP associations with p-values < 1⨯10−5. Consequently, we used this

empirically-derived p-value threshold to determine SNP significance in all of the envGWAS

analyses. Gene drop simulations suggested that a small portion of the identified associations

are likely due to pedigree structure or founder effects (average of 1.36 false positive envGWAS

loci per 200,000 tests). However, in this data, the pedigree structure reflects selection decisions

of farmers and ranchers that are not beyond the influence of performance differences relative

to environmental differences.

Discrete ecoregion envGWAS

In Red Angus, we identified 54 variants defining 18 genomic loci significantly associated with

membership of an ecoregion in the discrete multivariate envGWAS analysis (Fig 3C). Despite

locus-specific signal, principal component analysis (PCA) does not suggest that ecoregion-driven

population structure exists in any of the populations (S6 Fig). Of these loci, only two overlapped

with loci identified in the continuous envGWAS analyses, suggesting that using alternative defini-

tions of environment in envGWAS may detect different sources of adaptation. Of the 18 signifi-

cant loci, 17 were within or near (< 100 kb) positional candidate genes (Table I in S1 Text, S6

Table), many of which have potentially adaptive functions. For example, envGWAS identified

SNPs immediately (22.13 kb) upstream of CUX1 (Cut Like Homeobox 1) gene on chromosome

25. CUX1 controls hair coat phenotypes in mice [54], and alleles within CUX1 can be used to dif-

ferentiate between breeds of goats raised for meat versus those raised for fiber [55]. The role of

CUX1 in hair coat phenotypes makes it a strong adaptive candidate in environments where ani-

mals are exposed to heat, cold, or toxic ergot alkaloids from fescue stress [56].

In Simmental, we identified 11 loci tagged by 39 variants significantly associated with mem-

bership of an ecoregion in the multivariate envGWAS analysis (S4 Fig). In Gelbvieh, 66 vari-

ants identified 33 local adaptation loci (S5 Fig). In the analyses of all three datasets, we

identified a common local adaptation signature on chromosome 23 (peak SNP rs1023574).

Multivariate analyses in all three populations identified alleles at this SNP to be significantly

associated with one or more ecoregions (q = 1.24 x 10−13, 3.15 x 10−12, 4.82 x 10−5 in RAN,

SIM, and GEL, respectively). In all three datasets, we identified rs1023574 as a univariate
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envGWAS association with membership of the Forested Mountains ecoregion. However, the

most significant univariate association in Red Angus was with the Arid Prairie region which

was excluded from both the Simmental and Gelbvieh analyses due to low within-region sample

size. In the multivariate analysis for Red Angus, the associated locus spanned 18 SNPs from

(1,708,914 to 1,780,836 bp) and contained the pseudogene LOC782044. The nearest annotated

gene, KHDRBS2 (KH RNA Binding Domain Containing, Signal Transduction Associated 2)

has previously been identified by other adaptation studies in cattle, sheep, and pigs [57–59].

This variant was not significantly associated with any continuous environmental variable in

Red Angus. However, rs1023574 was significantly associated with temperature, elevation, and

humidity variables in Simmental. The KHDRBS2 locus was preferentially introgressed between

Bos taurus and domestic yak [60]. Further, this locus shows an abnormal allele frequency tra-

jectory (Fig 4C), indicating that it may be a target of balancing selection.

Fig 4. Meta-analysis of within-ecoregion GPSM for Red Angus cattle. (a) Manhattan plot of per-variant Cochran’s

Q p-values. Points colored green had significant Cochran’s Q (p< 1⨯10−5) and were significant in at least one within-

region GPSM analysis (p< 1⨯10−5). (b) Ecoregion effect plots for lead SNPs from six loci from (a). Points are colored

by ecoregion and are sized based on Cochran’s Q value. (c) Ecoregion-specific allele frequency histories for SNPs from

(b), colored by ecoregion.

https://doi.org/10.1371/journal.pgen.1009652.g004
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Continuous environmental variable envGWAS

Using continuous temperature, precipitation, and elevation data as quantitative dependent

variables in a multivariate envGWAS analysis of Red Angus animals, we identified 46 signifi-

cantly associated SNPs (Fig 3G). These SNPs tag 17 loci, many of which are within 100 kb of

positional candidate genes. Univariate envGWAS identified 23, 17, and 10 variants associated

with temperature, precipitation, and elevation, respectively (S7 Fig). The most significant mul-

tivariate association in Red Angus is located on chromosome 29 within BBS1 (Bardet-Biedl

syndrome 1), which is involved in energy homeostasis [61]. BBS1 mutant knock-in mice show

irregularities in photoreceptors and olfactory sensory cilia [62] functions that are likely impor-

tant to an individual’s ability to sense its local environment. This region was not significantly

associated in any of the univariate analyses of environmental variables, and was not identified

in any of the discrete ecoregion envGWAS. Of the other positional candidate genes identified

in this Red Angus analysis, 9 have previously been implicated in adaptive functions in humans

or cattle (Table J in S1 Text). For example, SNPs near GRIA4 were implicated in body temper-

ature maintenance in cold stressed Siberian cattle [63]. Significant SNPs and their correspond-

ing candidate genes for all three datasets are reported in S6 Table.

While we found minimal candidate gene overlap between populations, we identified multi-

ple shared biological pathways and processes (S7 Table) derived from lists of envGWAS posi-

tional candidate genes. Pathways in common between populations were driven by largely

different gene sets. Across all populations, we identified the “axon guidance” pathway, and

numerous other gene ontology (GO) terms related to axon development and guidance as

enriched with environmentally-associated loci. Ai et al. (2015) suggested that axon develop-

ment and migration in the central nervous system is essential for the maintenance of homeo-

static temperatures by modulating heat loss or production [64]. In addition to axonal

development, a host of other neural signaling pathways were identified in multiple popula-

tions. A genome-wide association study for gene-by-environment interactions with produc-

tion traits in Simmental cattle by Braz et al. (2020) identified a similar set of enriched pathways

[28]. These common neural signaling pathways identified by envGWAS are regulators of stress

response, temperature homeostasis, and vasoconstriction [65]. We identified other shared

pathways involved in the control of vasodilation and vasoconstriction (relaxin signaling, renin

secretion, and insulin secretion). Vasodilation and vasoconstriction are essential to physiologi-

cal temperature control in cattle and other species [66]. The ability to mount a physiological

response to temperature stress has a direct impact on cattle performance, making vasodilation

a prime candidate for environment-specific selection. Further, vasodilation and vasoconstric-

tion likely also represent adaptation to hypoxic, high elevation environments. Pathways and

processes identified by envGWAS signals are reported in S7 Table.

To further explore the biology underlying adaptive signatures, we performed Tissue Set

Enrichment Analysis of our envGWAS candidate gene lists. These analyses using expression

data from humans and distantly related worms (C. elegans) both identified brain and nerve tis-

sues as the lone tissues where envGWAS candidate genes show significantly enriched expres-

sion (S8–S11 Tables). Tissue-specific expression in the brain further supports our observed

enrichment of local adaptation pathways involved in neural signaling and development.

Identifying loci undergoing region-specific selection with GPSM ecoregion

meta-analysis

envGWAS detects allelic associations with continuous and discrete environmental variables,

but does not address whether selection is towards increased local adaptation, or whether local

adaptation is being eroded by the exchange of germplasm between ecoregions via artificial
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insemination. We used the spatiotemporal stratification of genotyped animals to identify loci

undergoing ecoregion-specific selection. We performed GPSM within each sufficiently geno-

typed ecoregion and identified variants with high effect size heterogeneity (Cochran’s Q statis-

tic) between ecoregions. Variants with significant heterogeneity across regions that were also

significant in at least one within-region GPSM analysis implied ecoregion-specific allele fre-

quency change. These changes could have been due either to selection for local adaptation (Fig

1E), or locally different allele frequencies moving towards the population mean (Fig 1F). We

identified 59, 38, and 46 significant SNPs in Red Angus, Simmental, and Gelbvieh, respectively

undergoing ecoregion-specific selection. These represent 15, 21, and 26 genomic loci (> 1 Mb

to nearest next significant SNP) (Fig 4A). In most cases, these variants have an effect (posterior

probability of an effect: m-value > 0.9) in only one or two ecoregions (Fig 4B). Further, nearly

all represent the decay of ecoregion-specific allele frequencies towards the population mean

(Fig 4C) as opposed to on-going directional selection for ecoregion specific beneficial adapta-

tions (S10–S12 Figs).

Adaptive alleles at these loci are being driven in frequency towards the population mean

allele frequency (Fig 4C), which is typically a low minor allele frequency.

Discussion

We leveraged large commercially-generated genomic datasets from three major US beef cattle

populations to map polygenic selection and environmental adaptation using GWAS applica-

tions [67]. Using temporally-stratified genotype data we detected very small selection-driven

changes in allele frequency throughout the genome. This is consistent with expectations of

polygenic selection acting on a large number of variants with individual small effects. Which

phenotypes are being selected and driving the allele frequency changes at particular loci is not

definitively known. GPSM is a heuristic model, and as a result the SNP effects are not immedi-

ately intuitive to interpret in a population genetic context. That said, it allows us to identify the

genomic loci responding to selection, and particularly subtle changes due to polygenic selec-

tion. GPSM is agnostic to the selected phenotypes, and identifies important loci changing in

frequency due to selection without the need to measure potentially difficult or expensive phe-

notypes. Our GPSM model is of course subject to false-positives and other short comings of

genome-wide association models. However, in simulations, GPSM effectively differentiates

between selection and drift while accounting for confounding effects such as uneven genera-

tion sampling, population structure, relatedness, and inbreeding. Population branch statistics

require arbitrary definitions of subpopulations in panmictic populations, and allele frequency

trajectories assume random mating, which is violated in our data. The ability of GPSM to

account for relatedness and inbreeding likely accounts for the disagreement between GPSM

and these other methods. Simulations suggest that GPSM has greater power to detect selection

when genotyped individuals are uniformly sampled over time. When genotypes originate

from individuals in only the most recent generations the power to detect “old” selection is less-

ened, and GPSM signatures are enriched for very recent, ongoing selection. As a result, we

expect that applying a GPSM-like approach to experimental evolution studies would generate

even clearer associations than observed in this study. With the availability of large samples our

analytical framework can help solve the long-standing population genetics problem of identi-

fying the loci subjected to polygenic selection.

Future studies exploring the effects of selection from the context of complex trait networks

could explain how hundreds or thousands of selected genes act together to shape genomic

diversity under directional selection. Candidate genes identified by GPSM suggest selection on

pathways and processes involved in production efficiency (growth, digestion, muscle
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development, and fertility). In addition to a small number of loci, for which function is

known, we identify hundreds of novel signatures of ongoing selection.

The envGWAS identified 174, 125, and 130 SNPs associated with both continuous or dis-

crete environmental factors in Red Angus, Simmental, and Gelbvieh, respectively. Using genes

found near these environmentally-associated SNPs, we identified a consistent enrichment of

pathways and tissues involved in neural development and signaling. These envGWAS associa-

tions emphasize the role that the nervous system likely plays in recognizing and responding to

environmental stress in mammals, which will be valuable as society and agriculture cope with

climate change. In addition to neural pathways, we observe significantly enriched expression

of envGWAS genes in the brain tissues of humans, mice, and worms. Other pathways associ-

ated with environmental adaptation reveal the importance of mechanisms involved in regulat-

ing vasoconstriction and vasodilation, both of which are essential for responses to heat, cold,

altitude, and toxic fescue stressors in cattle.

The statistical power and wide geographical distribution of the cattle comprising these data

highlights that the utilized approaches can be leveraged to understand the genomic basis of

adaptation in many other studies and species. While for GSPM there is a clear connection

between the model and directional selection, for envGWAS the model is only identifying asso-

ciations between the environment and SNP genotypes. These associations could be caused by

a multitude of factors, one of which is local adaptation. The small allele frequency differences

identified by envGWAS are consistent with a polygenic model of local adaptation, likely driven

by small changes in gene expression [68]. Further, envGWAS identifies candidate genes (e.g.

KHDRBS2) and pathways previously implicated as domestication-related [60]. This suggests

that these genes may be under natural or balancing selection to cope with environmental

stress, and not specifically part of the domestication process. Further, because different genes

in the same pathways were detected in the analyses of the different populations, we hypothesize

that these pathways influence local adaptation in many mammals and should be studied in

other ecological systems. This knowledge will become increasingly valuable as species attempt

to adjust to a changing climate.

The balance between artificial and natural selection in domesticated beef cattle is quite pre-

carious. If natural selection is for a stressor which occurs nation-wide and is positively corre-

lated with production traits, natural selection can effectively act in concert with artificial

selection. The identification of genes involved in the immune system by the GPSM analysis

reflects this interplay between artificial and natural selection; in other words, natural selection

could be acting in the background in populations under artificial selection. However, if natural

selection is acting at a local, ecoregion scale, then natural selection and artificial selection via

additive genetic breeding values are likely to be at odds. Artificial insemination in cattle has

allowed the ubiquitous use of males which have been found to be superior when progeny per-

formance has been averaged across US environments. Due to limited gene flow and pheno-

typic selection which would act on loci with genotype-by-environment effects, local

adaptation likely occurred prior to the 1980s. Our results suggest that environmental associa-

tions are present in cattle populations, but that the widespread use of artificial insemination

resulting in gene flow and selection on breeding values, has caused US cattle populations to

lose ecoregion-specific adaptive variants [69]. We identified 16, 21, and 30 loci undergoing

ecoregion-specific selection in Red Angus, Simmental, and Gelbvieh, respectively. In almost

every case, selection and use of artificial insemination has driven allele frequencies within an

ecoregion back towards the population mean allele frequency (Figs 1F and 4C). In three inde-

pendent datasets, we identified a single shared environmentally-associated locus near the gene

KHDRBS2. This locus has been identified as introgressed in yak, and exhibits an irregular allele

frequency trajectory which suggests that it may be subject to balancing selection [70]. Though
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we identified only a single common envGWAS locus, we observed significant overlap in the

pathways regulated by candidate genes within the associated loci. This reveals that adaptive

networks are complex and that adaptation can be influenced by selection on functional vari-

ants within combinations of genes from these networks. As we work to breed more environ-

mentally-adapted cattle, there will be a need for selection tools that incorporate genotype-by-

environment interactions to ensure that cattle become increasingly locally adapted.

We further demonstrate that large commercially-generated genomic datasets from domes-

ticated populations can be leveraged to detect polygenic selection [17] and local adaptation sig-

natures [50]. The identification of adaptive loci can assist in selecting and breeding better

adapted cattle for a changing climate. Further, both our statistical approaches and biological

findings can serve as a blueprint for studying complex selection and adaptation in other agri-

cultural or wild species. Our results suggest that neural signaling and development are essential

components of mammalian adaptation, meriting further functional genomic study. Finally, we

observe that local adaptation is declining in cattle populations, which will need to be preserved

to sustainably produce protein in changing climates.

Materials and methods

RMarkdown files, snakemake files, and R scripts used in the manuscript are available at

https://github.com/troyrowan/gpsm_envgwas.

Genotype data

SNP assays for three populations of genotyped Bos taurus beef cattle ranging in density from

~25K SNPs to ~770K SNPs were imputed to a common set of 830K SNPs using the large

multi-breed imputation reference panel described by Rowan et al. 2019 [71]. Genomic coordi-

nates for each SNP were from the ARS-UCD1.2 reference genome [72]. Genotype filtering for

quality control was performed in PLINK (v1.9) [73], reference-based phasing was performed

with Eagle (v2.4) [74], and imputation with Minimac3 (v2.0.1) [75]. Following imputation, all

three datasets contained 836,118 autosomal SNP variants. All downstream analyses used only

variants with minor allele frequencies > 0.01. Upon filtering, we performed a principal com-

ponent analysis for each population in PLINK. This was to assess if there were discrete subpop-

ulations within the populations and if there were patterns of structure related to ecoregions.

Generation Proxy Selection Mapping (GPSM)

To identify alleles that had changed in frequency over time, we fit a univariate genome-wide

linear mixed model (LMM) using GEMMA (Version 0.98.1) [76]. Here, we used the model:

y ¼ Xg þ Zuþ e

u � Nð0;Gsa2Þ

e � Nð0; Ise2Þ

Eq1

where y is an individual’s generation proxy, in our case birth date, and X was an incidence

matrix that related SNPs to birth dates within each individual and g was the estimated effect

size for each SNP. An animal’s age as of April 5, 2017 was used as the generation proxy in

GPSM. We control for confounding population structure, relatedness, and inbreeding with a

polygenic term u that uses a standardized genomic relationship matrix (GRM) G [20] and we

estimated σa2 and σe2 using restricted maximum likelihood estimation (REML). Here, continu-

ous age served as a proxy for generation number from the beginning of the pedigree. Other

than the tested SNP effects, no fixed effects other than the overall mean were included in the
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model. We tested each SNP for an association with continuous age. To control for multiple-

testing, we converted p-values to FDR corrected q-values [77] and used a significance thresh-

old of q< 0.1 to classify significant SNPs. We performed additional negative-control analyses

in each dataset by permuting the date of birth associated with each animal’s genotypes to

ensure that the detected GPSM signals were likely to be true positives. Permutation was per-

formed ten times for each population. To visualize the allele frequency history of loci undergo-

ing the strongest selection, we fit a loess and simple linear regressions for date of birth and

allele frequencies scored as 0, 0.5 or 1.0 within each individual using R [78]. Results were visu-

alized using ggplot2 [79].

Simulations and gene drops

All simulations were performed in AlphaSimR [80]. Stochastic simulations were performed in

10 replicate sets using 10 sets of founder haplotypes as starting points. We generated founder

haplotypes using the AlphaSimR wrapper around MaCS [81]. Using an approximation of the

demographic history of cattle, we simulated 10 chromosomes with 20,000 segregating sites

each for 2,000 founder individuals (1,000 males and 1,000 females). This resulted in a starting

effective population size (Ne) of approximately 100, similar to estimates of U.S. beef cattle pop-

ulations [17]. To test other Ne, we simulated populations with effective population sizes of 50

and 250. Based on the chosen genomic architecture, 1000, 500, or 200 purely additive QTL

were randomly assigned to segregating sites. Effect sizes for simulated QTL were drawn from

either a normal (mean = 0, variance = 1) or a gamma (shape = 0.42) distribution [82]. Prior to

the two divergent selection regimes, we performed five generations of burn-in selection to

establish LD in our populations.

After burn-in (generation 0), we performed selection of parents for the next generation in

two parallel manners: randomly or using truncation selection on true breeding value. In each

scenario, we held the effective population size by selecting appropriate numbers of males and

females to be parents each generation. Selection intensity was altered by increasing or decreas-

ing the number of crosses performed (1000, 2000, 4000, 8000). We also varied the number of

generations of selection post-burn-in (20, 10, and 5 generations). For each scenario, we

extracted 10,000 total simulated individuals for analysis in GPSM. To test the effects of uneven

generation sampling that we see in real data, we performed two different strategies for sam-

pling simulated genomes. In one case, we sample an equal number of individuals each genera-

tion. In the other, we sample more animals from the most recent generations. The number of

sampled individuals is based on a negative exponential distribution that approximates the of

ages observed in our real datasets (S1 Fig). Sampled individuals were chosen at random, and

were not more or less likely to become parents in the next generation. In addition to sampling

genotypes each generation, we calculated the allele frequency of simulated QTL each genera-

tion to track observed allele frequency changes over the course of selection. This process was

performed in replicates of 10 for each scenario, allowing us to calculate descriptive statistics

and compare GPSM’s performance across scenarios.

We simulated haplotypes in MaCS for our 5,223 founder individuals. Founder haplotypes

spanned 10 chromosomes, each with 20,000 segregating sites for a total of 200,000 SNPs.

These founder haplotypes were then randomly dropped through the Red Angus pedigree,

restricted to ancestors of genotyped individuals, in a Mendelian fashion, with recombinations

occurring at a rate of one crossover per Mb.

After sampling genotypes, we created a standardized genomic relationship matrix (GRM)

in GEMMA (v0.98.1) with all SNPs that had a MAF> 0.01. Using GEMMA, we fit the individ-

uals’ true generation number as the dependent variable in a genome-wide linear mixed model.
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Outputs from GPSM were read, manipulated, and plotted in R using multiple tidyverse pack-

ages [83].

Finally, we fit regression models to assess the impact of various parameters on the PVE. For

PVE, two regression models were analyzed. In the first, PVE from the random mating simula-

tions was used as the dependent variable with proportion false positives, number of genera-

tions, number of crosses, number of QTL, QTL distribution, and number of segregating sites

as explanatory variables. In the second, PVE from selection on true breeding value (TBV) was

the dependent variable with proportion true positives, number of generations, number of

crosses, number of QTL, QTL distribution, and number of segregating sites as dependent

variables.

Birth date variance component analysis

To estimate the amount of variation in birth date explained by GPSM significant SNPs, we per-

formed multi-GRM GREML analyses for birth date in GCTA (v1.92.4) [84]. We built separate

GRMs using genome-wide significant markers and all remaining makers outside of significant

GPSM loci (> 1 Mb from significant GPSM SNPs to control for markers physically linked to sig-

nificant GPSM SNPs). To further partition the variance in birth date explained by subsets of

SNPs, we performed a GREML analysis using three GRMs created with genome-wide significant

(q< 0.1) SNPs, an equal number of the next most significant SNPs, and an equal number of ran-

domly selected markers not present in the first two classes with minor allele frequencies> 0.15, to

match the allele frequencies of significant SNPs. These three GRM were each constructed using

268, 548, and 763 SNPs for Red Angus, Simmental, and Gelbvieh, respectively.

Allele frequency time series methods for detecting selection

We used the software wfABC (Wright-Fisher Approximate Bayesian Computation) [33] to

generate estimates of the selection coefficient at each locus. We partitioned individuals into

generations based on the maximum generation number estimated from the Red Angus pedi-

gree using the optiSel R package [85]. Since wfABC assumes random-mating populations of

unrelated individuals, we also performed relationship pruning in PLINK, removing individu-

als with estimated relationship coefficients > 0.0625. The wfABC software estimated selection

coefficients for each imputed SNP with MAF > 0.01, using an effective population size of 150

[17].

TreeSelect

Using TreeSelect [86], we artificially subdivided our genotyped populations to compare statis-

tics from a population branch statistic (PBS) method with GPSM effect sizes and p-values.

TreeSelect tests for allele frequency differences between discretely labeled, but closely related

populations. We ran TreeSelect two ways: First, where each genotyped population (Red

Angus, Simmental, and Gelbvieh) was its own branch, and then in three separate analyses

where we subdivided each population into three equally sized groups based on an individual’s

birth date. These three age classes consisted of the oldest ⅓ of individuals, the middle ⅓ of the

age distribution, and the youngest ⅓ of individuals. We compared TreeSelect chi-squared val-

ues with GPSM betas to quantify overall relationships between the statistics.

Environmental data

Thirty-year normals (1981–2010) for mean temperature ((average daily high (˚C) + average

daily low (˚C)/2), precipitation (mm/year), and elevation (m above sea level) for each 4 km2 of
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the continental US were extracted from the PRISM Climate Dataset [87], and used as continu-

ous dependent variables in envGWAS analysis. Optimal K-means clustering of these three var-

iables grouped each 4 km2 of the continental US into 9 distinct ecoregions. Using the reported

breeder zip code for each individual, we linked continuous environmental variables to animals

and partitioned them into discrete environmental cohorts for downstream analysis. For ecore-

gion assignments, latitude and longitude were rounded to the nearest 0.1 degrees. As a result,

some zip codes were assigned to multiple ecoregions. Animals from these zip codes were

excluded from the discrete region envGWAS but remained in analyses that used continuous

measures as dependent variables.

Environmental Genome-wide Association Studies (envGWAS)

To identify loci segregating at different frequencies within discrete ecoregions or along contin-

uous climate gradients, we used longitudinal environmental data for the zip codes attached to

our study individuals as dependent variables in univariate and multivariate genome-wide

LMMs implemented in GEMMA (Version 0.98.1). We fit three univariate envGWAS models

that used 30-year normal temperature, precipitation, and elevation data as dependent vari-

ables. These used an identical model to Eq 1, but used environmental values as the dependent

variable (y) instead of birth date. We also fit a combined multivariate model using all three

environmental variables to increase power. To identify loci associated with entire climates as

opposed to only continuous variables, we fit univariate and multivariate case-control

envGWAS analyses using an individual’s region assignment described in the “Environmental

Data” section as binary phenotypes. Proportion of variation explained (PVE), phenotypic cor-

relations, and genetic correlations were estimated for continuous environmental variables and

discrete environmental regions using GEMMA’s implementation of REML.

To ensure that envGWAS signals were not driven by spurious associations, we performed

two separate permutation analyses. In the first, we randomly permuted the environmental var-

iables and regions associated with an individual prior to performing each envGWAS analysis,

detaching the relationship between an individual’s genotype and their environment. In the sec-

ond, to ensure that envGWAS signals were not driven by the over-sampling of individuals at

particular zip codes, we permuted the environmental variables associated with each zip code

prior to envGWAS analysis. These two types of permutation analyses were performed for each

dataset and for each type of univariate and multivariate envGWAS analysis. We determined

significance using a permutation-derived p-value cutoff (p< 1⨯10−5) [88].

GPSM meta-analyses

To identify variants undergoing ecoregion-specific allele frequency changes, we performed

GPSM analyses within each region with more than 600 individuals. The SNP significance test-

ing effects and standard errors from each of the within-region GPSM analyses were combined

into a single meta-analysis for each population using METASOFT (v2.0.1) [89]. We identified

loci with high heterogeneity in allele effect size, suggesting region-specific selection. An m-

value indicating the posterior-probability of a locus having an effect in a particular ecoregion

was calculated for each of these loci [90].

Gene set and tissue set enrichment analysis

Using the NCBI annotations for the ARS-UCD1.2 Bos taurus reference assembly, we located

proximal candidate genes near significant SNPs from each of our analyses. We generated two

candidate gene lists each from significant GPSM and envGWAS SNPs. Lists contained all

annotated genes within 10 kb from significant SNPs. We consolidated significant SNPs from
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all envGWAS analyses to generate a single candidate gene list for each breed. Using these can-

didate gene lists, we performed gene ontology (GO) and KEGG pathway enrichment analysis

using Clue GO (v2.5.5) [91] implemented in Cytoscape (v3.7.2) [92]. We identified pathways

and GO terms where at least two members of our candidate gene list comprised at least 1.5%

of the term’s total genes. We applied a Benjamini-Hochberg multiple-testing correction to

reported p-values and GO terms with FDR corrected p-values < 0.1 were considered

significant.

Using the above gene sets, we performed three separate Tissue Set Enrichment Analyses

(TSEA) using existing databases of human, mouse, and worm gene expression data. We

searched for enriched gene expression with data from the Human Protein Atlas [93] and

Mouse ENCODE [94] using the Tissue Enrich tool (v1.0.7) [95]. Additionally, we performed

another Tissue Set Enrichment Analysis using GTEx data [96] and a targeted Brain Tissue Set

Enrichment Analysis in the pSI R package (v1.1) [97]. Finally, we used Ortholist2 [98] to iden-

tify C. elegans genes orthologous with members of our envGWAS and GPSM gene lists. We

then queried these lists in WormBase’s Tissue Enrichment Analysis tool [99,100] to identify

specific tissues and neurons with enriched expression in C. elegans. We used each tool’s respec-

tive multiple-testing correction to determine significance. We deemed an enrichment in a tis-

sue “suggestive” when its p-value was < 0.1.

Summary data

Summary data from GPSM and envGWAS analyses are publicly available as a Zenodo reposi-

tory [101].

Supporting information

S1 Text. Supplementary Information for Powerful detection of polygenic selection and

environmental adaptation in US beef cattle. This file includes supplementary text, Tables

A-J, and SI References.

(DOCX)

S1 Fig. Distributions of continuous birth date in sampled Red Angus, Simmental, and

Gelbvieh populations. (a) Birth date histograms for complete datasets. (b) Histograms of ani-

mal birth dates born before 2000. (c) Q-Q plots of residual error from a GREML analysis of

birth date in each population. Points represent individuals, and are colored by the number of

years since the animal’s birth date.

(TIF)

S2 Fig. TreeSelect results for Red Angus dataset. a) Single SNP -log10(p-values) for Red

Angus branch of across-breed TreeSelect analysis. TreeSelect Manhattan plots for b) oldest ⅓,

c) middle ⅓, and d) youngest ⅓ branches in within-breed analysis for the Red Angus popula-

tion. Red line indicates significance at p< 1 x 10−5. Green points are SNPs that were signifi-

cant (q< 0.1) in GPSM analysis of Red Angus dataset.

(TIF)

S3 Fig. Manhattan plots of discrete envGWAS in Red Angus cattle. Q-Q plots for envGWAS

p-values of (a) a linear model for Forested Mountains ecoregion membership, (b) a linear

mixed model for Forested Mountain ecoregion membership, and (c) a multivariate linear

mixed model of ecoregion membership. Univariate discrete envGWAS for (d) Forested Moun-

tain linear model, (e) Forested Mountains linear mixed model, (f) Southeast, (g) Fescue Belt,

(h) Arid Prairie, (i) High Plains, and (j) Upper Midwest & Northeast ecoregions. In all Man-

hattan plots the red line indicates an empirically-derived p-value significance threshold from

PLOS GENETICS Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009652 July 22, 2021 20 / 29

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009652.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009652.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009652.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009652.s004
https://doi.org/10.1371/journal.pgen.1009652


permutation testing (p< 1×10–5). Note the drastically inflated p-values from the linear model

in (a). Further, note that associated loci are not consistent between linear model and linear

mixed model, highlighting the need to control for geographic dependency with a genomic

relationship matrix.

(TIF)

S4 Fig. Manhattan plots of discrete envGWAS in Simmental cattle. (a) Nine ecoregions of

the continental United States defined by K-means clustering of 30-year normal temperature,

precipitation, and elevation. (b) Locations of Simmental animals colored by breeder’s ecore-

gion and sized by number of animals at that location. (c) Multivariate envGWAS (case-control

for regions with > 600 animals). Univariate discrete envGWAS for (d) Desert, (e) Southeast,

(f) Fescue Belt, (g) Forested Mountains, (h) High Plains, and (i) Upper Midwest & Northeast

ecoregions. In all Manhattan plots the red line indicates an empirically-derived p-value signifi-

cance threshold from permutation testing (p< 1×10−5). Maps were plotted using public

domain data from the US Department of Commerce, Census Bureau via the R package maps

(version 3.1, https://cran.r-project.org/web/packages/maps/).

(TIF)

S5 Fig. Manhattan plots of discrete envGWAS in Gelbvieh cattle. (a) Nine ecoregions of the

continental United States defined by K-means clustering of 30-year normal temperature, pre-

cipitation, and elevation. (b) Locations of Gelbvieh animals colored by breeder’s ecoregion

and sized by number of animals at that location. (c) Multivariate envGWAS (case-control for

regions with> 600 animals). Univariate discrete envGWAS for (d) Desert, (e) Southeast, (f)

Fescue Belt, (g) Forested Mountains, (h) High Plains, and (i) Upper Midwest & Northeast

ecoregions. In all Manhattan plots the red line indicates an empirically-derived p-value signifi-

cance threshold from permutation testing (p< 1×10−5). Maps were plotted using public

domain data from the US Department of Commerce, Census Bureau via the R package maps

(version 3.1, https://cran.r-project.org/web/packages/maps/).

(TIF)

S6 Fig. Plots of first eight principal components from PCA analysis. Plots for Red Angus

(A-D), Simmental (E-H), and Gelbvieh (I-L). Points indicate individuals, colored by their

assigned ecoregion.

(TIF)

S7 Fig. Continuous environmental variable envGWAS in Red Angus cattle. Q-Q plots for

envGWAS p-values of (a) a linear model for temperature, (b) a linear mixed model for temper-

ature, and (c) a multivariate linear mixed model of temperature, precipitation, and elevation.

Geographic distributions colored by (d) temperature, (e) precipitation, (f) elevation. Manhat-

tan plots for univariate envGWAS analysis of (g) temperature, (h) precipitation, (i) elevation.

Red lines indicate permutation-derived p-value cutoff of 1×10−5. Maps were plotted using pub-

lic domain data from the US Department of Commerce, Census Bureau via the R package

maps (version 3.1, https://cran.r-project.org/web/packages/maps/).

(TIF)

S8 Fig. Continuous environmental variable envGWAS in Simmental cattle. (a) Multivariate

envGWAS of temperature, precipitation, and elevation for Simmental cattle. Geographic dis-

tributions colored by (b) temperature, (d) precipitation, (f) elevation. Manhattan plots for uni-

variate envGWAS analysis of (c) temperature, (e) precipitation, (g) elevation. Red lines

indicate permutation-derived p-value cutoff of 1×10−5. Maps were plotted using public

domain data from the US Department of Commerce, Census Bureau via the R package maps
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(version 3.1, https://cran.r-project.org/web/packages/maps/).

(TIF)

S9 Fig. Continuous environmental variable envGWAS in Gelbvieh cattle. (a) Multivariate

envGWAS of temperature, precipitation, and elevation for Gelbvieh cattle. Geographic distri-

butions colored by (b) temperature, (d) precipitation, (f) elevation. Manhattan plots for uni-

variate envGWAS analysis of (c) temperature, (e) precipitation, (g) elevation. Red lines

indicate permutation-derived p-value cutoff of 1×10−5. Maps were plotted using public

domain data from the US Department of Commerce, Census Bureau via the R package maps

(version 3.1, https://cran.r-project.org/web/packages/maps/).

(TIF)

S10 Fig. PM-plots and region-specific allele frequency trajectories for meta-analysis SNPs

of interest in the Red Angus population ecoregions with > 1,000 genotyped animals. (a)

PM-plots for lead SNPs of significant within-region GPSM meta-analysis (Cochran’s Q p-

value > 1×10−5 and significant in at least one region-specific GPSM analysis p< 1×10−5).

Each box represents the lead SNP, colored by ecoregion, and sized by Cochran’s Q value (for

heterogeneity). (b) Region-specific allele frequency trajectories for lead SNPs since 1980, gen-

erated by fitting smoothed loess regression of allele frequency on birth date. Trajectories are

colored by ecoregion.

(TIF)

S11 Fig. PM-plots and region-specific allele frequency trajectories for meta-analysis SNPs

of interest in the Simmental population ecoregions with > 1,000 genotyped animals. (a)

PM-plots for lead SNPs of significant within-region GPSM meta-analysis (Cochran’s Q p-

value > 1×10−5 and significant in at least one region-specific GPSM analysis p< 1×10−5).

Each box represents the lead SNP, colored by ecoregion, and sized by Cochran’s Q value (for

heterogeneity). (b) Region-specific allele frequency trajectories for lead SNPs since 1980, gen-

erated by fitting smoothed loess regression of allele frequency on birth date. Trajectories are

colored by ecoregion.

(TIF)

S12 Fig. PM-plots and region-specific allele frequency trajectories for meta-analysis SNPs

of interest in the Gelbvieh population ecoregions with > 1,000 genotyped animals. (a) PM-

plots for lead SNPs of significant within-region GPSM meta-analysis (Cochran’s Q p-

value > 1×10−5 and significant in at least one region-specific GPSM analysis p< 1×10−5).

Each box represents the lead SNP, colored by ecoregion, and sized by Cochran’s Q value (for

heterogeneity). (b) Region-specific allele frequency trajectories for lead SNPs since 1980, gen-

erated by fitting smoothed loess regression of birth of allele frequency on birth date. Trajecto-

ries are colored by ecoregion.

(TIF)

S1 Table. GPSM stochastic simulation results. Descriptions of 36 selection scenarios, and the

corresponding true and false positive rates for GPSM detecting simulated QTL under selection

(simulated QTL GPSM q-value < 0.1). Each scenario’s true and false positive statistics were

calculated based on 10 replicates starting with different founder populations and selected ran-

domly (false positives) or based on true breeding value (true positives). For each scenario, we

report the number simulated QTL, the number of total crosses performed using 50 males and

500 females, the distribution from which QTL effects were drawn from, and the number of

generations of selection performed. The mean PVE was reported for both selection on true

breeding value (TBV) and random mating. We report results when 10,000 simulated
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individuals were randomly chosen to be genotyped (evenly each generation) and when more

recent animals were genotyped more frequently (uneven sampling).

(XLSX)

S2 Table. Summary statistics and candidate genes from significant GPSM SNPs for Red

Angus, Simmental, and Gelbvieh populations. Variants are significant if GPSM q-

value < 0.1. Genomic locations are reported based on coordinates from ARS-1.2 genome

assembly. Candidate genes were assigned to a SNP if within 10 kb of a significant SNP.

(XLSX)

S3 Table. Gene enrichment analysis of GPSM candidate genes in Red Angus, Simmental,

and Gelbvieh populations. Candidate genes were annotated genes< 10 kb to significant

GPSM SNPs (q< 0.1). Significant (FDR-corrected p-values < 0.1) KEGG pathways and GO

biological processes are reported for each breed.

(XLSX)

S4 Table. TissueEnrich analysis using GPSM gene sets from Red Angus, Simmental, and

Gelbvieh populations. TSEA from TissueEnrich software using Human Protein Atlas gene

expression data. Enrichment analysis carried out for candidate genes within 10 kb of signifi-

cant envGWAS SNPs. For each test, we report the number of tissue specific genes, their aver-

age fold change, and the FDR-corrected log10 p-value for tissue enriched expression.

(XLSX)

S5 Table. Tissue enrichment analysis results from GPSM gene sets in Red Angus, Simmen-

tal, and Gelbvieh populations using the pSI R package and human GTEx expression data.

Enrichment significance values for four specificity index thresholds (pSI) of 25 human tissues

types. Each combination of stringency for enrichment (pSI) and tissue reports a p-value for

Fisher’s Exact Test and a Benjamini Hochberg corrected p-value reported in parentheses. Tis-

sue-gene-set combinations that are significant (Benjamini-Hochberg p-value < 0.1) are

highlighted in red, those that are suggestive (raw p-value < 0.1) are highlighted in green.

(XLSX)

S6 Table. envGWAS significant SNPs and candidate genes. SNPs were significant when

p< 1×10−5. Candidate genes are genes within < 10 kb of significant envGWAS SNPs. We

report significant SNPs from all univariate and multivariate analyses for both continuous envi-

ronmental variables and discrete environments in Red Angus, Simmental, and Gelbvieh popu-

lations.

(XLSX)

S7 Table. Gene enrichment analysis of envGWAS candidate genes in Red Angus, Simmen-

tal, and Gelbvieh populations. Candidate genes were annotated genes < 10 kb to significant

envGWAS SNPs (p-value < 1×10−5). A single gene list for each breed was generated using sig-

nificant SNPs from all combinations of univariate/multivariate, continuous/discrete

envGWAS. Significant (FDR-corrected p-values < 0.1) KEGG pathways and GO biological

processes are reported, along with the associated genes.

(XLSX)

S8 Table. TissueEnrich analysis using envGWAS gene sets from Red Angus, Simmental,

and Gelbvieh populations. TSEA from TissueEnrich software using Human Protein Atlas

gene expression data. Enrichment analysis carried out for candidate genes within 10 kb of sig-

nificant envGWAS SNPs. For each test, we report the number of tissue specific genes, their
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average fold change, and the FDR-corrected log10 p-value for tissue enriched expression.

(XLSX)

S9 Table. Tissue enrichment analysis results from envGWAS gene sets in Red Angus, Sim-

mental, and Gelbvieh populations using the pSI R package and human GTEx expression

data. Enrichment significance values for four specificity index thresholds (pSI) of 25 human

tissues types. Each combination of stringency for enrichment (pSI) and tissue reports a p-

value for Fisher’s Exact Test and a Benjamini Hochberg corrected p-value reported in paren-

theses. Tissue-gene-set combinations that are significant (Benjamini-Hochberg p-value < 0.1)

are highlighted in red, those that are suggestive (raw p-value < 0.1) are highlighted in green.

(XLSX)

S10 Table. Brain region and cell-type enrichment analysis results from envGWAS gene

sets in Red Angus, Simmental, and Gelbvieh populations using the pSI R package with

expression data from the Allen Brain Atlas. Enrichment significance values for four specific-

ity index thresholds (pSI) of six brain regions and 35 brain cell types. Each combination of

stringency for enrichment (pSI) and brain region/cell type reports a p-value for Fisher’s Exact

Test and a Benjamini Hochberg corrected p-value reported in parentheses. Combinations that

are significant (Benjamini-Hochberg p-value < 0.1) are highlighted in red, those that are sug-

gestive (raw p-value < 0.1) are highlighted in green.

(XLSX)

S11 Table. Cell-type specific expression of homologous C. elegans genes derived from

envGWAS candidate gene lists of Red Angus, Simmental, and Gelbvieh populations. C. ele-
gans gene homologs were generated from Ortholist2, requiring that genes be present in at least

three data sources to be included in enrichment analysis. For each breed’s gene list, we include

a list of worm tissues with significant enrichment of listed genes (q-value < 0.1).

(XLSX)
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37. Serão NV, González-Peña D, Beever JE, Faulkner DB, Southey BR, Rodriguez-Zas SL. Single nucle-

otide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genet. 2013;

14: 94. https://doi.org/10.1186/1471-2156-14-94 PMID: 24066663

PLOS GENETICS Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009652 July 22, 2021 26 / 29

https://doi.org/10.1186/1471-2164-13-606
http://www.ncbi.nlm.nih.gov/pubmed/23140540
https://doi.org/10.1371/journal.pone.0005350
https://doi.org/10.1371/journal.pone.0005350
http://www.ncbi.nlm.nih.gov/pubmed/19390634
https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc
https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc
https://books.google.ca/books?hl=en&lr=&id=L2liDwAAQBAJ&oi=fnd&pg=PP1&ots=y9dWVmdg1F&sig=pOREAZIAXXiV3gcMJ2WO-qKSEkc
https://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
https://www.beefmagazine.com/cattle-genetics/us-beef-herd-mostly-black-changing-slightly
https://www.beefmagazine.com/cattle-genetics/us-beef-herd-mostly-black-changing-slightly
https://doi.org/10.2527/jas.2016-0707
https://doi.org/10.2527/jas.2016-0707
http://www.ncbi.nlm.nih.gov/pubmed/27898850
https://doi.org/10.1093/jas/skx080
https://doi.org/10.1093/jas/skx080
http://www.ncbi.nlm.nih.gov/pubmed/29385483
https://doi.org/10.1186/s12711-019-0470-x
http://www.ncbi.nlm.nih.gov/pubmed/31221081
https://doi.org/10.1186/s12864-019-6231-y
http://www.ncbi.nlm.nih.gov/pubmed/31801456
https://doi.org/10.1101/2020.01.09.900902
https://doi.org/10.1101/2020.01.09.900902
https://doi.org/10.1371/journal.pone.0176474
http://www.ncbi.nlm.nih.gov/pubmed/28459870
https://doi.org/10.1534/genetics.110.114819
https://doi.org/10.1534/genetics.110.114819
http://www.ncbi.nlm.nih.gov/pubmed/20516501
https://doi.org/10.1534/genetics.113.152462
http://www.ncbi.nlm.nih.gov/pubmed/23821598
https://doi.org/10.1038/nrg3706
http://www.ncbi.nlm.nih.gov/pubmed/24739678
https://doi.org/10.1111/1755-0998.12280
http://www.ncbi.nlm.nih.gov/pubmed/24834845
https://doi.org/10.1371/journal.pone.0093435
http://www.ncbi.nlm.nih.gov/pubmed/24671182
https://doi.org/10.1111/age.12249
https://doi.org/10.1111/age.12249
http://www.ncbi.nlm.nih.gov/pubmed/25515556
https://doi.org/10.1111/j.1365-2052.2009.02007.x
https://doi.org/10.1111/j.1365-2052.2009.02007.x
http://www.ncbi.nlm.nih.gov/pubmed/19968642
https://doi.org/10.1186/1471-2156-14-94
http://www.ncbi.nlm.nih.gov/pubmed/24066663
https://doi.org/10.1371/journal.pgen.1009652


38. Snelling WM, Allan MF, Keele JW, Kuehn LA, McDaneld T, Smith TPL, et al. Genome-wide associa-

tion study of growth in crossbred beef cattle. J Anim Sci. 2010; 88: 837–848. https://doi.org/10.2527/

jas.2009-2257 PMID: 19966163

39. Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, et al. Genome-wide asso-

ciation study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics. 2017; 18: 386.

https://doi.org/10.1186/s12864-017-3754-y PMID: 28521758

40. Chelh I, Picard B, Hocquette J-F, Cassar-Malek I. Myostatin inactivation induces a similar muscle

molecular signature in double-muscled cattle as in mice. Animal. 2011; 5: 278–286. https://doi.org/10.

1017/S1751731110001862 PMID: 22440772

41. Espigolan R, Baldi F, Boligon AA, Souza FRP, Fernandes Júnior GA, Gordo DGM, et al. Associations

between single nucleotide polymorphisms and carcass traits in Nellore cattle using high-density pan-

els. Genet Mol Res. 2015; 14: 11133–11144. https://doi.org/10.4238/2015.September.22.7 PMID:

26400344

42. Chen Y, Gondro C, Quinn K, Herd RM, Parnell PF, Vanselow B. Global gene expression profiling

reveals genes expressed differentially in cattle with high and low residual feed intake. Anim Genet.

2011; 42: 475–490. https://doi.org/10.1111/j.1365-2052.2011.02182.x PMID: 21906099

43. Kuehn LA, Thallman RM. Across-Breed EPD Tables For The Year 2016 Adjusted To Breed Differ-

ences For Birth Year Of 2014. 2016 [cited 9 Feb 2020]. Available: https://digitalcommons.unl.edu/

hruskareports/380/

44. Guo B, Greenwood PL, Cafe LM, Zhou G, Zhang W, Dalrymple BP. Transcriptome analysis of cattle

muscle identifies potential markers for skeletal muscle growth rate and major cell types. BMC Geno-

mics. 2015; 16: 177. https://doi.org/10.1186/s12864-015-1403-x PMID: 25887672

45. Rolf MM, Taylor JF, Schnabel RD, McKay SD, McClure MC, Northcutt SL, et al. Genome-wide associ-

ation analysis for feed efficiency in Angus cattle. Anim Genet. 2012; 43: 367–374. https://doi.org/10.

1111/j.1365-2052.2011.02273.x PMID: 22497295

46. Breeds—Red Angus. In: The Cattle Site [Internet]. [cited 28 Feb 2020]. Available: https://www.

thecattlesite.com/breeds/beef/99/red-angus/

47. Gareis NC, Huber E, Hein GJ, Rodrı́guez FM, Salvetti NR, Angeli E, et al. Impaired insulin signaling

pathways affect ovarian steroidogenesis in cows with COD. Anim Reprod Sci. 2018; 192: 298–312.

https://doi.org/10.1016/j.anireprosci.2018.03.031 PMID: 29622349

48. Davis SL, Hossner KL, Ohlson DL. Endocrine Regulation of Growth in Ruminants. In: Roche JF,

O’Callaghan D, editors. Manipulation of Growth in Farm Animals: A Seminar in the CEC Programme

of Coordination of Research on Beef Production, held in Brussels December 13–14, 1982. Dordrecht:

Springer Netherlands; 1984. pp. 151–178.

49. Hill WG. Applications of population genetics to animal breeding, from wright, fisher and lush to geno-

mic prediction. Genetics. 2014; 196: 1–16. https://doi.org/10.1534/genetics.112.147850 PMID:

24395822

50. Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic signature of adapta-

tion to climate in Medicago truncatula. Genetics. 2014; 196: 1263–1275. https://doi.org/10.1534/

genetics.113.159319 PMID: 24443444

51. Li J, Chen G-B, Rasheed A, Li D, Sonder K, Zavala Espinosa C, et al. Identifying loci with breeding

potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol. 2019;

28: 3544–3560. https://doi.org/10.1111/mec.15169 PMID: 31287919

52. Lasky JR, Upadhyaya HD, Ramu P, Deshpande S, Hash CT, Bonnette J, et al. Genome-environment

associations in sorghum landraces predict adaptive traits. Sci Adv. 2015; 1: e1400218. https://doi.org/

10.1126/sciadv.1400218 PMID: 26601206

53. Sathiaraj D, Huang X, Chen J. Predicting climate types for the Continental United States using unsu-

pervised clustering techniques. Environmetrics. 2019. p. e2524. https://doi.org/10.1002/env.2524

54. Sansregret L, Nepveu A. The multiple roles of CUX1: insights from mouse models and cell-based

assays. Gene. 2008; 412: 84–94. https://doi.org/10.1016/j.gene.2008.01.017 PMID: 18313863

55. Bertolini F, Servin B, Talenti A, Rochat E, Kim ES, Oget C, et al. Signatures of selection and environ-

mental adaptation across the goat genome post-domestication. Genet Sel Evol. 2018; 50: 57. https://

doi.org/10.1186/s12711-018-0421-y PMID: 30449276

56. Aiken GE, Klotz JL, Looper ML, Tabler SF, Schrick FN. Disrupted hair follicle activity in cattle grazing

endophyte-infected tall fescue in the summer insulates core body temperatures1. The Professional

Animal Scientist. 2011; 27: 336–343.

57. León CD, De León C, Manrique C, Martı́nez R, Rocha JF. Research Article Genomic association

study for adaptability traits in four Colombian cattle breeds. Genetics and Molecular Research. 2019.

https://doi.org/10.4238/gmr18373

PLOS GENETICS Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009652 July 22, 2021 27 / 29

https://doi.org/10.2527/jas.2009-2257
https://doi.org/10.2527/jas.2009-2257
http://www.ncbi.nlm.nih.gov/pubmed/19966163
https://doi.org/10.1186/s12864-017-3754-y
http://www.ncbi.nlm.nih.gov/pubmed/28521758
https://doi.org/10.1017/S1751731110001862
https://doi.org/10.1017/S1751731110001862
http://www.ncbi.nlm.nih.gov/pubmed/22440772
https://doi.org/10.4238/2015.September.22.7
http://www.ncbi.nlm.nih.gov/pubmed/26400344
https://doi.org/10.1111/j.1365-2052.2011.02182.x
http://www.ncbi.nlm.nih.gov/pubmed/21906099
https://digitalcommons.unl.edu/hruskareports/380/
https://digitalcommons.unl.edu/hruskareports/380/
https://doi.org/10.1186/s12864-015-1403-x
http://www.ncbi.nlm.nih.gov/pubmed/25887672
https://doi.org/10.1111/j.1365-2052.2011.02273.x
https://doi.org/10.1111/j.1365-2052.2011.02273.x
http://www.ncbi.nlm.nih.gov/pubmed/22497295
https://www.thecattlesite.com/breeds/beef/99/red-angus/
https://www.thecattlesite.com/breeds/beef/99/red-angus/
https://doi.org/10.1016/j.anireprosci.2018.03.031
http://www.ncbi.nlm.nih.gov/pubmed/29622349
https://doi.org/10.1534/genetics.112.147850
http://www.ncbi.nlm.nih.gov/pubmed/24395822
https://doi.org/10.1534/genetics.113.159319
https://doi.org/10.1534/genetics.113.159319
http://www.ncbi.nlm.nih.gov/pubmed/24443444
https://doi.org/10.1111/mec.15169
http://www.ncbi.nlm.nih.gov/pubmed/31287919
https://doi.org/10.1126/sciadv.1400218
https://doi.org/10.1126/sciadv.1400218
http://www.ncbi.nlm.nih.gov/pubmed/26601206
https://doi.org/10.1002/env.2524
https://doi.org/10.1016/j.gene.2008.01.017
http://www.ncbi.nlm.nih.gov/pubmed/18313863
https://doi.org/10.1186/s12711-018-0421-y
https://doi.org/10.1186/s12711-018-0421-y
http://www.ncbi.nlm.nih.gov/pubmed/30449276
https://doi.org/10.4238/gmr18373
https://doi.org/10.1371/journal.pgen.1009652


58. Guo J, Tao H, Li P, Li L, Zhong T, Wang L, et al. Whole-genome sequencing reveals selection signa-

tures associated with important traits in six goat breeds. Sci Rep. 2018; 8: 10405. https://doi.org/10.

1038/s41598-018-28719-w PMID: 29991772

59. Gurgul A, Jasielczuk I, Ropka-Molik K, Semik-Gurgul E, Pawlina-Tyszko K, Szmatoła T, et al. A

genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in

Poland. BMC Genet. 2018; 19: 95. https://doi.org/10.1186/s12863-018-0681-0 PMID: 30348079

60. Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, et al. Whole-genome analysis

of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat Genet.

2017; 49: 470–475. https://doi.org/10.1038/ng.3775 PMID: 28135247

61. Guo D-F, Cui H, Zhang Q, Morgan DA, Thedens DR, Nishimura D, et al. The BBSome Controls

Energy Homeostasis by Mediating the Transport of the Leptin Receptor to the Plasma Membrane.

PLoS Genet. 2016; 12: e1005890. https://doi.org/10.1371/journal.pgen.1005890 PMID: 26926121

62. Davis RE, Swiderski RE, Rahmouni K, Nishimura DY, Mullins RF, Agassandian K, et al. A knockin

mouse model of the Bardet–Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly,

retinopathy, and obesity. Proc Natl Acad Sci U S A. 2007; 104: 19422–19427. https://doi.org/10.1073/

pnas.0708571104 PMID: 18032602

63. Igoshin AV, Yurchenko AA, Belonogova NM, Petrovsky DV, Aitnazarov RB, Soloshenko VA, et al.

Genome-wide association study and scan for signatures of selection point to candidate genes for body

temperature maintenance under the cold stress in Siberian cattle populations. BMC Genet. 2019; 20:

26. https://doi.org/10.1186/s12863-019-0725-0 PMID: 30885142

64. Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, et al. Adaptation and possible ancient interspecies

introgression in pigs identified by whole-genome sequencing. Nat Genet. 2015; 47: 217–225. https://

doi.org/10.1038/ng.3199 PMID: 25621459

65. Morrison SF. Central control of body temperature. F1000Res. 2016;5. https://doi.org/10.12688/

f1000research.7958.1 PMID: 27239289

66. Garner JB, Douglas ML, Williams SRO, Wales WJ, Marett LC, Nguyen TTT, et al. Genomic Selection

Improves Heat Tolerance in Dairy Cattle. Sci Rep. 2016; 6: 34114. https://doi.org/10.1038/srep34114

PMID: 27682591

67. Decker JE. Agricultural Genomics: Commercial Applications Bring Increased Basic Research Power.

PLoS Genet. 2015; 11: e1005621. https://doi.org/10.1371/journal.pgen.1005621 PMID: 26539986

68. Fraser HB. Gene expression drives local adaptation in humans. Genome Res. 2013; 23: 1089–1096.

https://doi.org/10.1101/gr.152710.112 PMID: 23539138

69. Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol. 2002; 17: 183–189.

70. Castric V, Bechsgaard J, Schierup MH, Vekemans X. Repeated adaptive introgression at a gene

under multiallelic balancing selection. PLoS Genet. 2008; 4: e1000168. https://doi.org/10.1371/

journal.pgen.1000168 PMID: 18769722

71. Rowan TN, Hoff JL, Crum TE, Taylor JF, Schnabel RD, Decker JE. A multi-breed reference panel and

additional rare variants maximize imputation accuracy in cattle. Genet Sel Evol. 2019; 51: 77. https://

doi.org/10.1186/s12711-019-0519-x PMID: 31878893

72. Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, et al. De novo assembly of the

cattle reference genome with single-molecule sequencing. Gigascience. 2020; 9. https://doi.org/10.

1093/gigascience/giaa021 PMID: 32191811

73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81: 559–

575. https://doi.org/10.1086/519795 PMID: 17701901

74. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, A Reshef Y, K Finucane H, et al. Reference-

based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016; 48: 1443. https://

doi.org/10.1038/ng.3679 PMID: 27694958

75. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputa-

tion service and methods. Nat Genet. 2016; 48: 1284–1287. https://doi.org/10.1038/ng.3656 PMID:

27571263

76. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association

studies. Nat Methods. 2014; 11: 407–409. https://doi.org/10.1038/nmeth.2848 PMID: 24531419

77. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A.

2003; 100: 9440–9445. https://doi.org/10.1073/pnas.1530509100 PMID: 12883005

78. R Core Team R, Others. R: A language and environment for statistical computing. R foundation for

statistical computing Vienna, Austria; 2013.

79. Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational. 2011. Available: https://

onlinelibrary.wiley.com/doi/abs/10.1002/wics.147

PLOS GENETICS Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009652 July 22, 2021 28 / 29

https://doi.org/10.1038/s41598-018-28719-w
https://doi.org/10.1038/s41598-018-28719-w
http://www.ncbi.nlm.nih.gov/pubmed/29991772
https://doi.org/10.1186/s12863-018-0681-0
http://www.ncbi.nlm.nih.gov/pubmed/30348079
https://doi.org/10.1038/ng.3775
http://www.ncbi.nlm.nih.gov/pubmed/28135247
https://doi.org/10.1371/journal.pgen.1005890
http://www.ncbi.nlm.nih.gov/pubmed/26926121
https://doi.org/10.1073/pnas.0708571104
https://doi.org/10.1073/pnas.0708571104
http://www.ncbi.nlm.nih.gov/pubmed/18032602
https://doi.org/10.1186/s12863-019-0725-0
http://www.ncbi.nlm.nih.gov/pubmed/30885142
https://doi.org/10.1038/ng.3199
https://doi.org/10.1038/ng.3199
http://www.ncbi.nlm.nih.gov/pubmed/25621459
https://doi.org/10.12688/f1000research.7958.1
https://doi.org/10.12688/f1000research.7958.1
http://www.ncbi.nlm.nih.gov/pubmed/27239289
https://doi.org/10.1038/srep34114
http://www.ncbi.nlm.nih.gov/pubmed/27682591
https://doi.org/10.1371/journal.pgen.1005621
http://www.ncbi.nlm.nih.gov/pubmed/26539986
https://doi.org/10.1101/gr.152710.112
http://www.ncbi.nlm.nih.gov/pubmed/23539138
https://doi.org/10.1371/journal.pgen.1000168
https://doi.org/10.1371/journal.pgen.1000168
http://www.ncbi.nlm.nih.gov/pubmed/18769722
https://doi.org/10.1186/s12711-019-0519-x
https://doi.org/10.1186/s12711-019-0519-x
http://www.ncbi.nlm.nih.gov/pubmed/31878893
https://doi.org/10.1093/gigascience/giaa021
https://doi.org/10.1093/gigascience/giaa021
http://www.ncbi.nlm.nih.gov/pubmed/32191811
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/ng.3679
https://doi.org/10.1038/ng.3679
http://www.ncbi.nlm.nih.gov/pubmed/27694958
https://doi.org/10.1038/ng.3656
http://www.ncbi.nlm.nih.gov/pubmed/27571263
https://doi.org/10.1038/nmeth.2848
http://www.ncbi.nlm.nih.gov/pubmed/24531419
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.147
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.147
https://doi.org/10.1371/journal.pgen.1009652


80. Faux A-M, Gorjanc G, Gaynor RC, Battagin M, Edwards SM, Wilson DL, et al. AlphaSim: Software for

Breeding Program Simulation. Plant Genome. 2016;9. https://doi.org/10.3835/plantgenome2016.02.

0013 PMID: 27902803

81. Chen GK, Marjoram P, Wall JD. Fast and flexible simulation of DNA sequence data. Genome Res.

2009; 19: 136–142. https://doi.org/10.1101/gr.083634.108 PMID: 19029539

82. Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative traits in livestock.

Genet Sel Evol. 2001; 33: 209–229. https://doi.org/10.1186/1297-9686-33-3-209 PMID: 11403745

83. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse.

JOSS. 2019; 4: 1686.

84. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis.

Am J Hum Genet. 2011; 88: 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 PMID: 21167468

85. Wellmann R. Optimum contribution selection for animal breeding and conservation: the R package

optiSel. BMC Bioinformatics. 2019; 20: 25. https://doi.org/10.1186/s12859-018-2450-5 PMID:

30642239

86. Bhatia G, Patterson N, Pasaniuc B, Zaitlen N, Genovese G, Pollack S, et al. Genome-wide compari-

son of African-ancestry populations from CARe and other cohorts reveals signals of natural selection.

Am J Hum Genet. 2011; 89: 368–381. https://doi.org/10.1016/j.ajhg.2011.07.025 PMID: 21907010

87. PRISM Climate Group. PRISM 30-year Normal Climate Data. Available: http://prism.oregonstate.edu

88. Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans.

Genet Epidemiol. 2008; 32: 227–234. https://doi.org/10.1002/gepi.20297 PMID: 18300295

89. Han B, Eskin E. Random-effects model aimed at discovering associations in meta-analysis of

genome-wide association studies. Am J Hum Genet. 2011; 88: 586–598. https://doi.org/10.1016/j.

ajhg.2011.04.014 PMID: 21565292

90. Han B, Eskin E. Interpreting meta-analyses of genome-wide association studies. PLoS Genet. 2012;

8: e1002555. https://doi.org/10.1371/journal.pgen.1002555 PMID: 22396665

91. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape

plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformat-

ics. 2009; 25: 1091–1093. https://doi.org/10.1093/bioinformatics/btp101 PMID: 19237447

92. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-

ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498–2504.

https://doi.org/10.1101/gr.1239303 PMID: 14597658

93. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-

based map of the human proteome. Science. 2015; 347: 1260419. https://doi.org/10.1126/science.

1260419 PMID: 25613900

94. Mouse ENCODE Consortium, Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T,

et al. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol. 2012; 13: 418.

https://doi.org/10.1186/gb-2012-13-8-418 PMID: 22889292

95. Jain A, Tuteja G. TissueEnrich: Tissue-specific gene enrichment analysis. Bioinformatics. 2019; 35:

1966–1967. https://doi.org/10.1093/bioinformatics/bty890 PMID: 30346488

96. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene reg-

ulation in humans. Science. 2015; 348: 648–660. https://doi.org/10.1126/science.1262110 PMID:

25954001

97. Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD. Cell type-specific expression analysis to iden-

tify putative cellular mechanisms for neurogenetic disorders. J Neurosci. 2014; 34: 1420–1431. https://

doi.org/10.1523/JNEUROSCI.4488-13.2014 PMID: 24453331

98. Kim W, Underwood RS, Greenwald I, Shaye DD. OrthoList 2: A New Comparative Genomic Analysis

of Human and Caenorhabditis elegans Genes. Genetics. 2018; 210: 445–461. https://doi.org/10.1534/

genetics.118.301307 PMID: 30120140

99. Angeles-Albores D, N Lee RY, Chan J, Sternberg PW. Tissue enrichment analysis for C. elegans

genomics. BMC Bioinformatics. 2016; 17: 366. https://doi.org/10.1186/s12859-016-1229-9 PMID:

27618863

100. Angeles-Albores D, Lee RYN, Chan J, Sternberg PW. Two new functions in the WormBase Enrich-

ment Suite. microPublication Biology: 2018. https://doi.org/10.17912/W25Q2N PMID: 32550381

101. Rowan TN, Durbin HJ, Seabury CM, Schnabel RD, Decker JE. Data From: Powerful detection of poly-

genic selection and environmental adaptation in US beef cattle. Zenodo; 2021. https://doi.org/10.

5281/zenodo.4455543

PLOS GENETICS Powerful detection of polygenic selection and evidence of environmental adaptation in US beef cattle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009652 July 22, 2021 29 / 29

https://doi.org/10.3835/plantgenome2016.02.0013
https://doi.org/10.3835/plantgenome2016.02.0013
http://www.ncbi.nlm.nih.gov/pubmed/27902803
https://doi.org/10.1101/gr.083634.108
http://www.ncbi.nlm.nih.gov/pubmed/19029539
https://doi.org/10.1186/1297-9686-33-3-209
http://www.ncbi.nlm.nih.gov/pubmed/11403745
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1186/s12859-018-2450-5
http://www.ncbi.nlm.nih.gov/pubmed/30642239
https://doi.org/10.1016/j.ajhg.2011.07.025
http://www.ncbi.nlm.nih.gov/pubmed/21907010
http://prism.oregonstate.edu
https://doi.org/10.1002/gepi.20297
http://www.ncbi.nlm.nih.gov/pubmed/18300295
https://doi.org/10.1016/j.ajhg.2011.04.014
https://doi.org/10.1016/j.ajhg.2011.04.014
http://www.ncbi.nlm.nih.gov/pubmed/21565292
https://doi.org/10.1371/journal.pgen.1002555
http://www.ncbi.nlm.nih.gov/pubmed/22396665
https://doi.org/10.1093/bioinformatics/btp101
http://www.ncbi.nlm.nih.gov/pubmed/19237447
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1126/science.1260419
https://doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
https://doi.org/10.1186/gb-2012-13-8-418
http://www.ncbi.nlm.nih.gov/pubmed/22889292
https://doi.org/10.1093/bioinformatics/bty890
http://www.ncbi.nlm.nih.gov/pubmed/30346488
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.1523/JNEUROSCI.4488-13.2014
https://doi.org/10.1523/JNEUROSCI.4488-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24453331
https://doi.org/10.1534/genetics.118.301307
https://doi.org/10.1534/genetics.118.301307
http://www.ncbi.nlm.nih.gov/pubmed/30120140
https://doi.org/10.1186/s12859-016-1229-9
http://www.ncbi.nlm.nih.gov/pubmed/27618863
https://doi.org/10.17912/W25Q2N
http://www.ncbi.nlm.nih.gov/pubmed/32550381
https://doi.org/10.5281/zenodo.4455543
https://doi.org/10.5281/zenodo.4455543
https://doi.org/10.1371/journal.pgen.1009652

