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In recent years, tremendous efforts have been devoted into the fields of valuable

diagnosis and anticancer treatment, such as real-time imaging, photothermal, and

photodynamic therapy, and drug delivery. As promising nanocarriers, gold nanomaterials

have attracted widespread attention during the last two decades for cancer diagnosis

and therapy due to their prominent properties. With the development of nanoscience and

nanotechnology, the fascinating bio-applications of functionalized gold nanomaterials

have been gradually developed from in vitro to in vivo. This mini-review emphasizes some

recent advances of photothermal imaging (PTI), surface-enhanced Raman scattering

(SERS) imaging, and photoacoustic imaging (PAI)-guided based on gold nanomaterials in

vivo therapy in near infrared region (>800 nm). We focus on the fundamental strategies,

characteristics of bio-imaging modalities involving the advantages of multiples imaging

modalities for cancer treatment, and then highlight a few examples of each techniques.

Finally, we discuss the perspectives and challenges in gold nanomaterial-based

cancer therapy.

Keywords: gold nanomaterials, in vivo, photothermal therapy, surface-enhanced Raman scattering,

photoacoustic imaging

INTRODUCTION

Because of the high incidence and mortality of cancer, scientists have paid long term attention
to the diagnosis and treatment of cancer. Conventional cancer therapies have clear side effects
(Liu et al., 2019a), thus these shortcomings have prompted researchers to look for effective
diagnostic strategies to struggle against cancer (Chen et al., 2016; Ju et al., 2019). With the
development of modern technology and biological medicine, diagnosis, and treatment based
gold nanomaterials are emerging to improve the therapeutic effect. Particularly, photothermal
therapy (PTT) based on gold nanomaterials is a promising therapeutic modality, which can be
combined with the advanced imaging modalities for the multi-functional therapeutic application
(Huang et al., 2017; Wu et al., 2019).

Gold nanomaterials have been widely investigated as considerable biocompatible platforms for
the biological field due to the advantages of simple synthesis, large surface area, adjustable optical
property, and multiple surface modification (Conde et al., 2012; Jackman et al., 2017). Over the
past decade, numerous fundamental reviews have comprehensively investigated the synthesis, size,
optical properties, andmodification of gold nanoparticles (Daniel and Astruc, 2004; Jain et al., 2008;
Sardar et al., 2009; Sau et al., 2010; Jones et al., 2011; Cao et al., 2014; Chauhan and Mukherji, 2014;
Singh et al., 2014; Rai et al., 2016; Amendola et al., 2017; Pareek et al., 2017), so these characteristics
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will be only briefly mentioned in this mini-review. Herein,
the photothermal imaging (PTI), surface-enhanced Raman
scattering (SERS), and photoacoustic imaging (PAI) guided in
vivo cancer therapy are focused.What is worth noting is excellent
photothermal effect, the localized surface plasmon resonance
(LSPR) effect and enhanced electromagnetic field (SERS) of gold
nanoparticles in the near infrared (NIR) region. Due to low
absorption of water and hemoglobin, the NIR region (700–
1,300 nm) is ideal for gold nanomaterials to have a deeper
penetration depth in the tumor therapy and imaging (Bao et al.,
2016). Gold nanomaterial can convert the absorbed light energy
into overheating in the surrounding environment through non-
radiative conversion owing to the desirable absorption cross
sections and photothermal conversion efficiencies (η) in NIR
region (Cao et al., 2019). Therefore, gold nanomaterials are
considered as exogenous photothermal transduction agents for
PTI and contrast agents for PAI, which can accumulate at tumor
tissue via the enhanced permeability and retention (EPR) effect
(Henry et al., 2016). Moreover, LSPR effect is a surface plasmon
resonance phenomenon of the noble metal nanomaterials, which
is heavily dependent on the composition, shape, size, and micro-
environmental medium (Guo et al., 2015; Tian et al., 2016,
2018). In addition, SERS is generated from the strong phonon-
electron interaction in the nanogaps (Girard et al., 2016). Thus,
the Raman signals are enhanced by several orders of magnitude,
and gold nanomaterials labeled with reporter molecules can be
used as nanotags for in vivo imaging (Ding et al., 2016). In
short, these gold nanomaterials having resonance peak within
NIR (>800 nm), including gold nanorods, gold nanocages,
gold nanoshells, and assemblies, can be used as photothermal
agents, imaging agents, contrast agents, and therapeutic agents
(Shanmugam et al., 2014). Table 1 presents some examples of

TABLE 1 | Examples of different structural characteristics, optical properties, and in vivo imaging modality.

Structure and surface Size (nm) Wavelength (nm) Laser Models Imaging

modalities/η

References

Nanoshells/nanomatryoshkas,

thiol-PEG

150/90 ∼800 2 W/cm2, 810 nm TNBC tumor- bearing

female mice

PTI, 39%/63% Ayala-Orozco et al.,

2014

Nanocages, PVP and

RBC-membrane

71–89 810–817 1 W/cm2, 850 nm 4T1 tumor- bearing

BALB/c mice

PTI Piao et al., 2014

Nanoshells, thiol-PEG ∼120 780–800 4.5W, 810 nm Prostate cancer-

patients

PTI Rastinehad et al.,

2019

Nanospheres, Au–Cu9S5,

PMHC18-PEG5000

∼20 ∼1,100 0.6 W/cm2,

1064 nm

CT26 tumor- bearing

mice

PTI, 37% Ding et al., 2014

Nanospheres, Au-silica ∼120 0.29W, 785 nm Female nude mice SERS Bohndiek et al., 2013

Linear gold nanospheres assemblies,

rBSA-FA

71.6 ∼650 0.5 W/cm2,

808/785 nm

MCF-7 tumor-bearing

mice

PTI, SERS Xia et al., 2018

Nanorods, Au-Ag-silica, PEG 80–97 ∼585 3 W/cm2, 660 nm Ovarian cancer

xenograft model and

RCAS/TVA GBM

mouse

PTI, SERS Pal et al., 2019

Nanovesicles (PEG-b-PCL) 145 ∼800 1 W/cm2, 808 nm MDA-MB-435

tumor-bearing mice

PTI, PAI, 37% Huang et al., 2013

Nanorods, PDL/IR775c layered silica 400 780 795/920 nm Female FVB/n mice PAI Dhada et al., 2019

Nanorods, PNIPAM 320 760 808 nm Prostate cancer-

bearing mice

PAI Chen Y. S. et al., 2017

in vivo imaging and therapeutic modalities based on different
types of gold nanomaterials.

After intravenous injection, considering the pH, high
ionic strength and serum concentration in the complex
biological environment of organism, surface functionalization
of gold nanomaterials is essential to ensure the adequate
repeatability and stability (Chen et al., 2010). Basically,
modulation of the surface charge, biocompatible pH values,
controllable biodistribution patterns, and better aqueous
dispersion of gold nanomaterials could benefit from the
surface modification approaches (Huckaby and Lai, 2018;
Ruiz-Muelle et al., 2019). Furthermore, the rational surface
modification strategies in anticancer application can also
reduce the toxicity of nanomaterials, target effectively in the
cancer tissue, increase the circulatory half-life, block absorption
of serum proteins, avoid unexpected side effects, escape the
clearance by the reticuloendothelial system and the liver and
spleen macrophages (Otsuka et al., 2003; Kooijmans et al.,
2016; Dai et al., 2018; Sztandera et al., 2019). Due to the
facile surface chemistry properties, functional groups can
combined with gold nanomaterials through weak interactions
and the stable covalent anchors (Kou et al., 2009; Moraes
Silva et al., 2016; Zou et al., 2016; Wang K. et al., 2017). So
far, many modification approaches have been introduced
by covering and ligand exchange, so gold nanoparticles
can be modified with biopolymer (e.g., polyethylene glycol
(PEG), oligonucleotides, antibodies, peptides) (Loh et al.,
2016; Chen Y. et al., 2017; Anantha-Iyengar et al., 2019;
Delpiano et al., 2019), hydrophobic drug molecules (e.g.,
paclitaxel, cisplatin, tamoxifen, doxorubicin) (Avitabile et al.,
2018; Ma et al., 2018), biofunctional molecules (chitosan,
silica, folic acid, polyunsaturated fatty acids, and hyaluronic
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FIGURE 1 | Illustration of multifunctional NIR gold nanomaterials platform for three imaging modalities.

acid, etc.) (Vigderman and Zubarev, 2013; Sztandera et al.,
2019) and other amphiphilic ligands through functional
bridges, such as thiol ligands (e.g., thiolate, dithiolate,
thioctic acid), amino, and carboxyl moieties (Figure 1)
(Daraee et al., 2014; Kong et al., 2017).

Based on the physical and optical properties of gold
nanomaterials, the bioimaging techniques using gold
nanomaterials are beneficial to enhance the accuracy of in
vivo treatment and effectiveness of real-time monitoring.
Recently, the non-invasive imaging-guided cancer therapy based
on gold nanomaterials have been applied for providing more
valuable information and improving the therapy outcomes. This
mini review displays some examples of gold nanomaterials-based
imaging modes in NIR region for in vivo diagnosis and therapy,
including PTI, SERS, PAI, and their multiple imaging modalities.
These characteristics of the three imaging modalities are shown
in Figure 1.

PHOTOTHERMAL IMAGING (PTI)

For PTT, gold nanomaterials can transduce the absorbed light
energy into heat energy for improving the temperature of tumor
cells microenvironment. When the temperature exceeds 42◦C,
malignant cells are destroyed without damaging the adjacent
healthy tissues (Qi et al., 2019). As a result, the therapeutic effect
is far superior to that of laser irradiation alone (Abadeer and
Murphy, 2016). The laser safety standard establish the maximum
permissible exposure (MPE) values, which is on the basis of

the damage threshold levels of laser light for skin (Jiao et al.,
2019). For example, the MPE corresponding to 808 nm laser
for skin is 0.33W cm−2, and the MPE of 1,000–1,350 nm is
1W cm−2 (Lin et al., 2017). Photothermal effect based on gold
nanomaterials also afford a considerable imaging modality, that
is, photothermal imaging (PTI), which has significant advantages
over fluorescence imaging (Wang et al., 2009). PTI based on
gold nanomaterials provides the accurate positioning, effective
treatment, non-invasive therapy for various cancers in short time
(Kang et al., 2018). Because it does not involve photobleaching or
illumination saturation, and it is almost immune to background
signals even accompanied with scattering (Boyer et al., 2002;
Vines et al., 2019).

Conventional photothermal imaging is capable of detecting
single molecules and differentiating gold nanoparticles, which
is restricted by diffraction and resolution. A super-resolution
photothermal imaging could be performed based on non-linear
amplification signal for resolving multiple gold nanoparticles
(Nedosekin et al., 2014). On account of the poor blood supply,
tumors show reduced heat tolerance and thus can be destroyed in
tens of minutes under hyperthermia condition (Qi et al., 2019).
As known, intensive laser irradiation may lead to overheating
and harm the nearby normal tissue. However, gold nanomaterials
serve as the photothermal conversion agents to produce regional
heating rapidly for PTT, and this method can effectively reduce
irreversible tissue damage caused by laser irradiation (Ren et al.,
2013). Owing to maximum transmittance in the blood and
tissues in the NIR region, gold nanomaterials have deeper tissue
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penetration and lower background signal (Liu et al., 2014).
With inherent advantages of multi-functionalization and tunable
optical properties, gold nanomaterials coated with biomolecules
had been developed to increase biological stability and prolong
the circulation time in vivo (Choi et al., 2011). For example,
red blood cell membranes coated gold nanocages (RBC-Au NCs)
were combined with photothermal effects from gold nanocages
and biological characteristics from RBCs, which showed good
biological stability, observably improved tumor uptake, and
longer retention time in blood (Piao et al., 2014). This work
achieved 100% survival during 45 days and facilitated the RBC-
Au NCs for the in vivo treatment with an improved efficacy using
surface engineering.

Compared with other shapes, elongated nanoparticles have
better affinity, greater diffusion and transmembrane rates,
and they can penetrate the tumors rapidly and accumulate
extensively (Lee et al., 2017). These had been demonstrated
that the multifunctional nanomaterials had a high accumulation
at tumor tissue in mice, which were able to kill cancer cells
effectively by producing enough heat and reactive oxygen
species. Chitosan/gold nanorod nanocarriers with loading anti-
cancer drug cisplatin were prepared, which improved the
therapeutic efficacy via synergistic effect of combining PTT
and chemotherapy (Chen et al., 2013b). It had been found
that the temperature of tumor site could reach 49◦C in
10min with IR irradiation and the tumor growth was almost
completely suppressed by cisplatin-loaded nanospheres. As
known, lanthanide ions have the ability to convert the NIR long-
wavelength into visible wavelengths in photon upconversion
process (Wang and Liu, 2009). Customarily, lanthanide doped
nanocrystals having novel luminescent properties are considered
as upconversion luminescence nanoparticles, which exhibit
superior features in biological assays, such as low auto-
fluorescence signals, narrow emission bandwidths, large anti-
Stokes shifts, high penetration depth, and low toxicity (Huang
et al., 2014; Gnach et al., 2015; Liu et al., 2019b). In
order to increase the photothermal conversion efficiency
and penetration depth in biological tissues, gold nanorods
combined with rare-earth ions had been designed for PTT
and multimodal imaging for anti-tumor therapy, because
upconversion luminescence nanoparticles displayed deeper
penetration and lower autofluorescence signals by anti-Stokes
emission, and they could also transfer NIR light to gold
nanorods via luminescence resonance energy transfer (Wang
et al., 2018). With combination of phototherapy, gene therapy,
and chemotherapy, the rational treatment strategy has an
overwhelming superiority of tumor shrinkage and survival rate,
which also could monitor host reactions and comprehensively
evaluate tumor microenvironment. Lee et al. introduced silica-
coated gold nanorods modified with rabies virus glycoprotein
for treating brain tumors (Lee et al., 2017). The surface-
modified nanomaterials could enter the brain through central
nervous system and bypass the blood–brain barrier. The
rod nanostructure increased the chance of interacting with
the nicotinic acetylcholine receptor and the response to
hyperthermia in NIR laser irradiation.

According to the reports, drug release, and chemotherapy
displayed higher cytotoxicity for enhancing the therapeutic

efficacy at raised temperatures from PTT (Vines et al., 2019;
Wu et al., 2019). Indocyanine green was successfully sealed in
chitosan/gold nanorod nanocapsule for PTT and photodynamic
combined therapy (Chen et al., 2013a). Conde et al. adapted a
triple-combination therapy that relied on drug-gold nanorods
and siRNA-gold nanospheres for drug release, distinguish cancer
and normal cells, and prevented cancer recurrence in a mouse
model of colon cancer (Conde et al., 2016). In spite that drug-
loaded nanocarriers with hyperthermia effect have therapeutic
advantages for releasing targeting agents for tumor, there are
still some drawbacks, such as insufficient or excessive dose by
intravenous delivery (Tong et al., 2016; Wilhelm et al., 2016;
Nabil et al., 2019). Recently, Lee et al. proposed a transplantable
therapeutic interface based on a gold-coated nanoturf structure
for on-demand hyperthermia therapy and drug delivery (Lee
et al., 2018). The gold-coated polymeric nanoturf structure could
not only serve as drug reservoir but also provide an induced heat
under NIR irradiation, thus modulating drug releasing rate and
controlling the surface temperature precisely for an esophageal
cancer model. Moreover, to maximize the synergistic effects by
exogenous and endogenous stimuli, two smart gold nanocages
containers coated with photothermal and pH responsive polymer
were designed for loading doxorubicin (Dox) and erlotinib (Erl),
respectively (Feng et al., 2019). In the NIR irradiation and
acidic tumor microenvironment stimulation, tumors were killed
by synergistic therapy of PTT and time-staggered drug release
strategy of Dox and Erl. The combination strategy obviously
improved the therapy efficacy by controlling the order and
continuance of drug in timing and spacing scale. These results
show that it is difficult to completely ablate the tumor without
any recurrence only based on PTI, because local photothermal is
unable to impede the spread of cancer cells. Therefore, multiple
imaging techniques need to be combined for redeeming the
shortcomings of PTI.

In addition, gold nanoparticles are eliminated from the
body to minimize health hazard at reasonable concentrations,
which are supervised as medical devices by the Food and
Drug Administration. Tremendous investigations on gold
nanomaterials had been studied for biomedical sciences, and
the preclinical safety of gold nanoshells had been established
in vitro and in vivo (Gad et al., 2012). Recently, Halas et al.
reported a study of photothermal ablation for prostate tumors
in clinical trials which gold-silica nanoshells (7.5 mL/kg dose
volume) were utilized in combination with imaging modality,
without significant adverse events in 94% of patients (Rastinehad
et al., 2019). This treatment protocol was demonstrated to be
safe and feasible procedure for localized prostate cancer with
low or intermediate risk, and it would open the door for gold
nanomaterials in the clinical anticancer application. However,
the bioinert and lack of biodegradation of gold nanomaterials
bring uncertainty and toxicity to the human body. These negative
feedbacks will directly affect the further clinical application of
gold nanomaterials.

SERS IMAGING

In general, Raman reporter molecules are attached to the
surface of gold nanomaterials, providing unique, and certain
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representative peaks as the signal source (Lu et al., 2010b). The
inelastic scattering of gold nanotags has narrow characteristic
bandwidths with several orders of amplification, which provides
sufficient structural and quantitative information for biological
interactions and analyte (Maiti et al., 2010). SERS imaging
is being recognized as a promising optical modality for
preclinical and clinical cancer application. Compared with
fluorescent imaging, SERS imaging can avoid photobleaching
and photoblinking and serve as an eligible alternative with good
photostability for in vivo imaging (Pal et al., 2019). Normally,
magnetic resonance imaging (MRI) is time-consuming imaging
with low sensitivity. While SERS imaging is not only fast speed
and super sensitivity, but also has excellent multiplex capabilities
and fine specificity for multiplex targeting (Von Maltzahn et al.,
2009). In recent decades, SERS-based detection with enhanced
electromagnetic field is extremely sensitive for trace analysis in
nanoscale regions (Bardhan et al., 2014). More importantly, SERS
imaging has weak interference signals in biological tissues, thus it
is popular in high-sensitive cell tracking (Wang Z. et al., 2017).

As known, MRI has been usually used for preoperative
directions and determining the macroscopic profile of the tumor.
However, the typical imaging methods were limited by low
sensitivity, and spatial resolution, and it was particularly difficult
to describe the actual margins of tumors due to the brain shift
in surgery (Orringer et al., 2010). For preoperative evaluation
and intraoperative treatment, Kircher et al. showed a triple-
modality to delineate the brain tumor boundaries in living mice
(Kircher et al., 2012). Ideally, SERS imaging is a type of real-
time imaging technique, which plays a main role in navigation
for accurately delineating the brain tumor margins and guiding
the tumor resection. With the development of SERS imaging
for tissue in small animals, an imaging system with large area
and high spatial resolution had been exploited (Bohndiek et al.,
2013). This unique spectroscopic instrument showed an ultra-
high sensitivity for a non-invasive imaging modality. It simplified
animal handling, and thus could realize rapid and multiplex
detection for the characterization of uptake dynamics in vivo.
Gold nanoparticles covered with Raman active molecules are
contrast agents with an enhanced scattering intensity. The size
of core nanomaterials, the properties of Raman molecules, and
the number of the molecules absorbed on the surface determine
the order of magnitude of amplification. Harmsen et al. presented
an administrative SERS nanoparticle for intraoperative imaging
in mouse models of glioblastoma, which was composed of a
gold core and a layer of Raman reporter molecules embedded
in a silica shell (Harmsen et al., 2015). As a result, the
limit of detection (LOD) reached femtomolar. Furthermore,
Wang’s group synthesized 3D flower-like hierarchical gold
nanostructures and gold nanostars for cancer therapy (Song et al.,
2016, 2018, 2019). The SERS-active gold nanomaterials could use
as SERS tags and nanocarriers for cell imaging and drug delivery,
which were suitable candidates for promising SERS-imaging.

For in vivo SERS mapping, gold nanostars conjugated
with antibodies and Raman tags were able to detect the
immunomodulators and immunomarkers simultaneously (Ou
et al., 2018). With the accumulation of gold nanostars by
intravenous injection, the real-time longitudinal tracking of
the both biomarkers was implemented, and the sensitivity and

specificity of the relevant SERS signals displayed different levels
in breast cancer tumors. Furthermore, the high-resolution SERS
imaging could evaluate the distributions of gold nanostars
in tumors which were closely related to vascular density.
With wonderful optical properties, one-dimensional gold
nanoparticle assemblies (GNAs) with good dispersion, stability,
and biocompatibility were developed for in vivo imaging (Xia
et al., 2018). The GNAs exhibited numerous ultra-small nanogaps
(smaller than 1.0 nm) and flexible caterpillar-like nanostructures,
which could change their morphology randomly. Due to the
remarkable SERS signal and good photothermal effect, the
GNAs were used as an efficient platform for SERS imaging
and photothermal imaging. Currently, SERS scanners are
dependent on the point-by-point acquisition, with a relatively
slow speed, which could not be satisfied for real-time and
rapid imaging in oncological application. Encouraged by the
versatility of fluorescence imaging and the specificity of SERS
detection, rational design of nanoprobes had been carried out
for fluorescence and SERS imaging in ovarian cancer xenograft
models (Pal et al., 2019). The bimodal nanoprobes based on
DNA and gold nanorods with three consecutive layers were
used successfully for imaging-guided tumor ablation and PTT.
Meanwhile, aptamer-conjugated gold nanocage has also been
built as the bifunctional theranostic platforms for SERS imaging
and NIR-triggered PTI (Wen et al., 2019). However, the real
biological environment of the human body is more intricate than
animal models, and most of the modified nanoprobes are likely
to be metabolized directly by immune system. Therefore, the
results can lead to the reduced active targeting, the limitation of
circulation time and insufficient dose of these nanoprobes that
will affect the therapeutic and imaging effects.

PHOTOACOUSTIC IMAGING (PAI)

As known, contrast agents or tissue can absorb the non-
ionizing laser and be heated, leading to a transient thermoelastic
expansion. Subsequently, wideband acoustic waves are produced
as photoacoustic waves, which can be captured on the surface of
target substance (Ju et al., 2019). Usually, computed tomography
(CT) imaging is high toxicity, the non-specific distribution
of contrast agents, and short imaging time (Xu et al., 2019).
However, PAI relies on the photoacoustic effect with high
reliability, and the gold contrast agents can be purposely
modified. Additionally, compared with MRI and fluorescent
imaging, PAI is non-invasive, quantitative, and speedy, and it
also presents high spatial-resolution of ultrasound imaging and
contrast of optical imaging (Zackrisson et al., 2014). PAI has
been demonstrated as a powerful tool to visualize biological
tissues with the advantages of deep penetration and high spatial-
resolution (Agarwal et al., 2007).

Gold nanomaterials are one kind of contrast agents for
providing improved photoacoustic signals because of chemical
inertness and large absorption cross sections in NIR region
(Yang et al., 2015). PEG-coated Au nanocage and pegylated
hollow gold nanospheres had been described as optical contrast
agents for in vivo PAI (Yang et al., 2007; Lu et al., 2010a).
Specifically, PEGylation-modified gold nanostructures with
different shapes, including nanospheres, nanodisks, nanorods,
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and cubic nanocages, had already been investigated for
bioactivity analyses in EMT6 breast cancer model (Black et al.,
2014). Furthermore, gold nanorods had been applied to image
in ovarian tumor models with a multimodal imaging (Jokerst
et al., 2012a). In this study, the parallel PAI and SERS imaging
had complementary capabilities, where the PAI characterized the
size, morphology, and stage of the tumor, and SERS imaging
guided the surgical resection. The silica-coated gold nanorods as
PAI agents exhibited a higher cellular up-take and had no toxic
effect on normal cells. They had been prepared to quantitate
and image mesenchymal stem cells for living mice in real time,
and the results showed the spatial resolution of 340µm and the
temporal resolution of 0.2 s (Jokerst et al., 2012b). To track the
stem cell in cardiovascular diseases, silica-gold nanorods with
coating IR775c, which was a sensitive dye of reactive oxygen
species, had been developed for PAI (Dhada et al., 2019). The
nanoprobe had a high spatial and temporal resolution, and they
displayed a 5% viability of mesenchymal stem cells after 10 days.

Due to the small size of nanoparticles with the overlap heating
volume, the intensity of photoacoustic signal could be increased
proportionally to the huge thermal energy which was rapidly
generated from the conversion from optical absorption (Chen
et al., 2012). Chen et al. synthesized small gold nanoparticle with
controlled aggregation in a volume-changing nanocarrier that
had photothermal stimuli-responsive behavior (Chen Y. S. et al.,
2017). Overall, the PAI shows a dynamic contrast-enhancement,
while the background signals from tissue is suppressed. Although
the photonic nanoclusters are well-understood and have been
applied in a variety of bioimaging, the bottom-up assembly based
on nucleic acid scaffolds is still a challenge. As an example,
the plasmonic self-assembles had been exploited as photo-
responsive probes for multimodal SERS and PAI in vivo (Köker
et al., 2018). In this method, the discrete gold nanoparticles
were functionalized with two complementary split fragments
of green fluorescent protein. Park et al. manufactured a gold
nanoclusters based on gold nanoparticles (about 4.5 nm) and
albumin for optically visualizing and treating colon cancers via
PTT, fluorescence imaging, and PAI (Park et al., 2019). By
optimizing the size, shape, and optical absorption of the hybrid
albumin nanostructures, the promising platform displayed a
strong hyperthermic effect, as well as a balance between LSPR and
fluorescence resonance energy transfer effects.

CONCLUSIONS AND PERSPECTIVES

The research on bioimaging has been mainly promoted by the
systematic exploitation of nanomaterials and the combination
of modern techniques. Different types of functionalized gold
nanosensors have been reported with the development of
the surface modification. In this review, the multifunctional
gold nanomaterials have been showed for imaging-guided
in vivo cancer therapy using photothermal, SERS, PAI,
and multiples imaging modalities. Various types of gold
nanostructured loading platforms have been studied for imaging
and treatment of cancers. Nonetheless, there remain some
challenges and opportunities for further and higher demand for

in vivo and clinical studies. Firstly, the development of gold
nanomaterials is crucial for the applications of optical imaging
and synergetic therapy. For ideal imaging and therapeutic
results, three-dimensional structure, special configuration of
assemblies and composite gold nanomaterials are popular for
the bio-application. For example, some gold nanomaterials with
well-defined architectures and luxuriant hot spots, including
composite gold nanomaterials and self-assemblies, may generate
stronger electromagnetic-field enhancement for SERS imaging.
These novel nanomaterials also can be explored as excellent
contrast agents for PAI to overcome the problem of penetration
depth. Meanwhile, the multifunctional agents and biological
responsive (acceerative or passivated) molecules also necessary
to be developed with less toxic and better dispersion for the
organism. Therefore, the appropriate multifunctional agents can
avoid the possibility that the partial malignant cells are intact
after local hyperthermia in the effective PTT. It is also possibility
to enhance the NIR responsiveness, improve the accuracy of
targeting, and increase the efficiency of the delivery during
the cancer treatment. On the other hand, SERS possess single
molecule sensitivity in vitro experiment, and the elaborated gold
nanomaterials will be promising candidate to reach this level
and free from the interference of other species in the biological
system. Consequently, efficient composite gold nanoparticles
with desirable surface modification agents are pressingly needed
to achieve the desired effect in vivo. Similarly, the thermal
resistance also can be reduced by modifying interfacial agents
to improve the photoacoustic signal and resolution. Almost
all of the experimental and theoretical researches have focused
on the animal modes, while the clinical study is still lacking.
Lastly, it is necessary to integrate diagnosis, multimodal imaging,
and enhanced therapies for clinical application. Elaborate
detecting strategies and sensitive multiplex techniques can
enhance the spatial and temporal resolution, capture actual
dynamic processes in real-time, and answer the fundamental
biological questions in modern medicine. Finally, most of the
research has focused on the biological interactions, intracellular
distribution, and the transport behaviors of gold nanomaterials,
while the detailed mechanism of different interaction with
biomolecules and the process of internalization are still lack of
deep understanding.
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