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General planar transverse domain 
walls realized by optimized 
transverse magnetic field pulses in 
magnetic biaxial nanowires
Mei Li1, Jianbo Wang1 & Jie Lu2

The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) 
have attracted continuous interests because of their theoretical significance and application potential 
in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse 
magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW 
azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting 
so as to minimize magnetization frustrations. Here we report the realization of a completely planar 
TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and 
well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely 
decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing 
the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this 
TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the 
asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under 
the same axial driving field. These results will help to design a series of modern magnetic devices based 
on planar TDWs.

A magnetic domain wall (DW) is the intermediate region separating adjacent magnetic domains with different 
orientations. The finite DW width comes from the competition between the magnetocrystalline anisotropy and 
the exchange interaction. For two-dimensional (2D) magnetic films, the even parity of the magnetocrystalline 
anisotropy generally results in an angular rotation of 180° of the magnetization vector in a DW. Among these 
180° walls, two types are of great interests: Bloch walls and Néel walls. They are the simplest cases and can be ana-
lyzed theoretically. In a Bloch wall, the magnetization vector rotates in the DW plane (interfacial plane between 
adjacent domains) and only generates surface magnetic charges. While for a Néel wall, the rotation plane of 
the magnetization is perpendicular to the DW plane, thus resulting in volume charges. Therefore Bloch (Néel) 
walls appear in thick (thin) magnetic films due to the energy minimization strategy. In reality, the magnetostatic 
interaction greatly complicates the situation and results in vortex or other more sophisticated wall structures. 
Traditionally, the magnetization dynamics is described by the nonlinear Landau-Lifshitz-Gilbert (LLG) equa-
tion1, in which the damping coefficient is phenomenologically introduced. Mathematically, DWs are soliton solu-
tions of the LLG equation. They are characterized by a topological charge index2 and protected by a finite energy 
barrier against the trivial single-domain state, thus can not be continuously deformed to it.

Another interesting topological non-trivial entity in 2D magnetic films is the skyrmion, which is a sta-
ble topological object with particle-like properties in numerous field theories. It was first proposed as a 
model of baryons in nuclear physics3 and was first experimentally observed in quantum Hall ferromagnets4. 
Skyrmions were also observed in helimagnets5, in which the inversion symmetry is broken, and stabilized by 
the Dzyaloshinskii-Moriya interaction (DMI)6,7. Most recently, they were proposed as the basic units of the 
next-generation magnetic memory devices8. The topological feature of an isolated skyrmion is characterized 
by the quantized winding number (skyrmion number), which describes how the electron changes its spin when 
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passing through the skyrmion core9. Two typical kinds of skyrmions are of special interests: the azimuthal10 and 
the radial11 skyrmions. Although skyrmions and DWs are different topological non-trivial entities, the spin tex-
tures in them can both be mapped onto a unit sphere, thus leading to a mapping connection between each other. 
More intuitively, when an azimuthal (radial) skyrmion is cut from the core along an arbitrary radial direction, 
one will obtain a structure similar to a Bloch (Néel) wall. This explains why an azimuthal (radial) skyrmion is also 
called a Bloch (Néel) skyrmion.

In the past decades, substantial improvements in film preparation and etching technology have generated a 
new class of physical systems: magnetic nanowires (NWs). Based on them, magnetic nanodevices, such as the 
domain-wall (DW) logics12, racetrack memories13, and shift registers14, etc., have developed rapidly. Advances 
in manufacturing thinner NWs greatly improve the integration level of these devices and make them quasi 
one-dimensional (1D) systems. Therefore, transverse DWs (TDWs) dominate15,16. For 1D NWs, generally the 
easy axis (or effective easy axis from magnetostatic interaction) coincides with the wire axis, which leads to 
head-to-head (HH) or tail-to-tail (TT) Néel-like TDW configuration. However, as we will show below, the tilting 
plane (in which the magnetization rotates) of the static TDW will be confined within the easy plane and cannot 
be arbitrarily controlled.

To manipulate the TDW tilting attitude, using a uniform transverse magnetic field (TMF) is the easiest way 
and has been intensively studied17–21. However, a uniform TMF have two influences. First it pulls the magnetiza-
tion out of the wire axis in the two domains and thus the TDW is not a 180° wall any more. Second, it induces a 
twisting in TDW azimuthal distribution21. For application in high-density NW devices, it is preferable to erase 
the twisting so as to minimize magnetization frustrations and stochastic fields. In this work, we smooth the TDW 
twisting by changing the TMF from uniform to space-dependent. We focus on the case where the TMF strength 
is fixed and its orientation is allowed to change freely. For statics, we will provide an optimized TMF profile that 
maintains a planar TDW with arbitrary tilting angle.

Besides the statics, the TDW dynamics is also attractive since it directly leads to fascinating inspirations of 
magnetic nanodevices in modern information industry. In magnetic NWs, TDWs can be driven to propagate 
along wire axis by magnetic fields22–27, spin-polarized currents28–31 or temperature gradient32–34, etc. Among them, 
the field-driven case is the most basic. The Walker’s analysis22 about field-driven DW dynamics based on the LLG 
equation indicates the crucial role of the transverse magnetic anisotropy of a NW, which leads to the “Walker 
limit” separating two distinct propagation modes: traveling-wave and reciprocating rotation. Meantime the TDW 
tilting plane departs from the easy plane and/or even rotates about the wire axis. Usually the traveling-wave mode 
attracts most attention since in this mode the DW propagates as a rigid body, bearing a velocity proportional to 
the driving field and inversely proportional to the damping coefficient. Alternatively, the reciprocating rotation 
mode is less interested due to the back and forth manner of the DW motion which greatly reduces its velocity. 
In this work, with the help of the asymptotic expansion method, the planar TDW dynamics carrying the corre-
sponding well-designed TMF profile along with it is investigated. It turns out that the planar TDW will acquire 
higher velocity than that under pure axial driving field in the traveling-wave mode from Walker’s analysis.

Results
The system is sketched in Fig. 1. A HH TDW with width Δ  is nucleated in a thin enough magnetic NW with 
thickness t and width w. The z axis is along wire axis, the x axis is in the thickness direction and = ×ˆ ˆ ˆy z x. The 
magnetization 

��� �M r( ) with constant magnitude Ms is fully described by its polar angle θ r( ) and azimuthal angle 
φ
r( ). A TMF profile with fixed strength H⊥ and tunable orientation angle Φ ⊥(z),

= Φ Φ⊥ ⊥ ⊥

��
H z H z z( ) [ cos ( ), sin ( ), 0], (1)TMF

is applied across the whole NW.

Figure 1. A HH TDW with width Δ in a nanowire with thickness t and width w. The coordinate system is 
set as: the z–axis is along wire axis, the x–axis is in the thickness direction and = ×ˆ ˆ ˆy z x. The magnetization 
vector 

��� �M r( ) is fully described by its polar angle θ r( ) and azimuthal angle φ r( ). In particular, the wall is called a 
planar TDW, when the magnetization vector therein rotates in a plane called the “tilting plane”.
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The time evolution of 
��� �M r( ) is described by the LLG equation,
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where γ is the gyromagnetic ratio, δ δ µ= −
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H E M( / )/eff tot 0 is the effective field and α is the phenomenological 

damping coefficient. For the biaxial NW under investigation, the total magnetic energy density is
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in which J is the exchange coefficient, k1(2)
0  is the dimensionless crystalline anisotropy coefficient in the easy 

(hard) axis, =
��

ˆH H ez1  is the axial driving field and Em is the magnetostatic energy density which is usually quite 
complicated due to the nonlocal nature of dipole-dipole interaction.

Planar TDW in easy plane without any external fields. In thin enough NWs with regular shapes, as 
we have illustrated before21, most part of Em can be described by quadratic terms of Mx,y,z in terms of three average 
demagnetization factors Dx,y,z, thus → = + −k k k D D( )y z1

0
1 1

0  and → = + −k k k D D( )x y2
0

2 2
0 . In this sense, 

the nonlocal magnetostatic energy is mimicked by local quadratic energy terms. This simplification neglects most 
magnetization frustrations, however will be quite good when the NW becomes a quasi 1D system. For 1D sys-
tems, θ θ≡r z( ) ( ), φ φ≡r z( ) ( ) hence θ θ φ∇ = ′ + ′ + ′ = ′ + ′

���
M M M M M( ) ( ) ( ) ( ) [( ) sin ( ) ]x y z s

2 2 2 2 2 2 2 2  where a 
prime means spatial derivative to z. In the absence of any external fields, the total magnetic energy is

∫ θ θ φ µ θ φ= ′ + ′ + +{ }wt J M k k z[( ) sin ( ) ] 1
2
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(4)V

s
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in which we have redefined the energy origin by dropping “ µ− k M V/2s0 1
2 ” with V being the wire volume.

To obtain a stable magnetization configuration, we need to minimize  . First one should let φ π≡ +z n( ) ( 1/2)  
to eliminate (φ′ )2 and cos2 φ terms. This makes the magnetization vector lie in the easy plane everywhere. Then 
the wire will have minimum energy when θ θ∆ ′ ≡( ) sin0

2 2  where µ∆ = J k M2 /( )s0 0 1
2 . Obviously, the 

single-domain solution θ ≡z( ) 0 (or π) is trivial. Now we focus on DW solutions. For a HH DW, the boundary 
conditions are θz=−∞ =  0, θz=+∞ =  π. While for a TT DW, they are θz=−∞ =  π, θz=+∞ =  0. Combing with the above 
boundary conditions, the resulting θ–profile is the well-known Walker’s solution22,

θ = − ±
−
∆z e( ) 2 tan , (5)

z z
1

0

0

with z0 being the TDW center and +  (− ) means HH (TT) TDW. In brief, for a thin enough biaxial NW, the stable 
TDW is a planar wall which lies in the easy yz–plane.

General static planar TDWs. In this work, we aim to realize a complete planar TDW with arbitrary tilting 
attitude. For simplicity, we focus on HH TDWs (TT TDWs can be investigated similarly). To achieve this, we 
need a TMF to pull the azimuthal angle plane out of the easy plane. However, a uniform TMF generally induces 
twisting around the TDW center21. To erase the twisting, we fix the TMF strength and allow it rotate freely to look 
for an optimized profile that results in a planar TDW.

First we rewrite the vectorial LLG equation (2) to two coupled scalar equations,

θ α γ α+ = − A B(1 )/ , (6)2

and

φ α θ γ α+ = + B A(1 ) sin / , (7)2

with
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where a dot means time derivative.
To realize a static planar TDW, first we need the magnetization orientations in the two faraway domains. In the 

left domain (z →  − ∞ ), the polar (azimuthal) angle of magnetization is denoted as θ∞ (φ∞), while those in the 
right domain (z →  + ∞ ) are π −  θ∞ and φ∞, respectively. The static condition θ =∞ 0, φ =∞ 0 and domain con-
dition θ θ′ = ″ =∞ ∞ 0, φ φ′ = ″ =∞ ∞ 0 turn equations (6) and (7) to
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φ θ φ φ− Φ = ∞ =⊥ ∞ ⊥ ∞ ∞ ∞H z k Msin[ ( )] sin sin cos , (10)s2
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From equation (12), a necessary condition of the TDW being planar is Φ = ± ∞ = Φ⊥ ⊥
∞z( ) . Without losing 

generality, suppose π< Φ <⊥
∞0 /2, we have φ π< Φ < <⊥

∞
∞0 /2. In addition, from equation (13) the TDW 

existence condition (θ π≠∞ /2) sets an upper limit of the TMF strength,

< .⊥ ⊥H H (15)max

Next we move to the TDW region. The static condition A =  B =  0 becomes
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Now we consider a complete planar TDW

φ φ≡ .∞z( ) (20)

Obviously, this solution makes f2(θ, φ) =  0 and thus
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On the other hand, f1(θ, φ) =  0 is reduced to

φ θ φ φ− Φ = .⊥ ∞ ⊥ ∞ ∞H z k Msin [ ( )] sin sin cos (22)s2

Comparing equation (22) with equation (10), we obtain the dependence of TMF orientation on TDW polar 
angle,
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or v ice  versa .  Equat ion  (23)  shows that  the  TMF cannot  be  uniform.  It  a lso  requires 
θ φ θ− Φ ≤∞ ⊥

∞
∞zsin ( ) sin( )/sin 1, which sets a lower limit of the TMF strength,
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Put equation (23) back into equation (21), we then have
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where φ∞ and θ∞ are given by equations (12) and (13) with Φ = ∞ ≡ Φ⊥ ⊥
∞z( ) .

When πΦ =⊥
∞ n /2, φ ≡ Φ∞ ⊥

∞ hence β =  0. Equation (25) is reduced to a Walker-ansatz-like form,

φ θ θ θ θ∆ ″ = − .∞ ∞( ) (sin sin ) cos (26)2

Its solution has been presented by equation (16) in our previous work21.
For the more general case where π< Φ <⊥

∞0 /2, obviously β >  0 and equation (25) is not a typical 
Walker-ansatz form. Actually β measures the deviation between our profile and the classical Walker’s solution. 
Simple calculus yields when Φ = +⊥
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When z ≥  z0, θ ≥  π/2. From equation (27), in principle the following integral

∫φ
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−
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= ≡
π

θ

∞

−z z d g g
( )

[ ( )] ( ),
(28)

0
/2

1
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gives the right-half profile θ = −−z g z z( ) ( )1
1

0 . For the left half with z <  z0, one has θ(z −  z0) =  π −  θ(z0 −  z) due to 
the symmetry about the TDW center. Put it back into equation (23), the corresponding TMF orientation profile 
is obtained.

Summarizing the above analytics, we propose the algorithm of realizing a rigorous planar HH TDW with an 
arbitrary tilting angle φ∞ (TT TDWs can be obtained similarly):

(1) Given φ∞, equation (12) gives the TMF orientation Φ⊥
∞ in the two domains and hence the parameter β in 

equation (25),
(2) Equations (15) and (24) provide the upper limit ⊥Hmax and lower limit ⊥Hmin of the TMF strength,
(3) For an allowed H⊥ ( ≤ <⊥ ⊥ ⊥H H Hmin max), equation (13) gives the TDW boundary condition θ(z =  − ∞ ) =  θ∞ 

in the left domain, while that in the right domain is θ(z =  + ∞ ) =  π −  θ∞.
(4) Based on the above boundary conditions, equation (28) gives the final θ–profile of this planar TDW,
(5) The corresponding TMF orientation distribution responsible for this planar TDW follows equation (23).

From the above algorithm, given TDW tilting attitude φ∞ in principle we are able to realize a variety of planar 
TDWs with different boundary conditions originating from different choices of TMF strength.

Next, we illustrate our algorithm in a 5 nm ×  100 nm ×  10 μm biaxial NW. For this wire geometry, the three 
average demagnetization factors are: Dx =  0.92793, Dy =  0.07140, Dz =  0.00067. The magnetic parameters are: 
Ms =  500 kA/m, = × −J 40 10 J/m12 , π=k 4/1

0 , = .k k0 32
0

1
0, and α =  0.01. After the “nonlocal-to-local” simplifi-

cation to the magnetostatic interaction, we have the following total anisotropy coefficients: 
= + − = .k k D D( ) 1 34397y z1 1

0  and = + − = .k k D D( ) 1 23851x y2 2
0 . In this wire, we want to realize a planar 

TDW with tilting plane φ φ π≡ =∞z( ) 5 /12 (blue dotted line in Fig. 2). We perform our calculation following 
the above algorithm. First, the TMF orientation in the two domains should be πΦ = .⊥

∞ 0 34865  hence the param-
eter β is 0.047. Second, the upper and lower limits of the allowed TMF strength are ≈⊥H 9174Oemax  and 

≈⊥H 2375Oemin . Different choice of TMF strength will result in different polar angle profile of the planar TDW. 
In step 3, we take H⊥ =  3 kOe as an example. Then the polar angle in the left domain is θ∞ =  0.1060π, while that in 
the right domain is 0.8940π. Based on them, in step 4 the θ–profile of the planar TDW is calculated from equa-
tion (28) and indicated by red dashed curve in Fig. 2. Fifth and finally, the orientation profile of the TMF pulse 
responsible for this planar TDW is shown by black solid curve in the same figure. Obviously, to maintain the 
planar TDW, the TMF vector should be closer to the hard xz–plane around the TDW center to resist its twisting 
trend.
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The above analytics completely describes a single planar TDW inside a biaxial NW. However, for real application 
in DW-based magnetic racetrack devices, a series of TDWs (HH and TT walls appear alternately) will be nucleated 
in a NW (generally biaxial since the magnetostatic interaction would induce an effective hard axis in transverse 
direction). If the TDW widths are quite small compared with the domain lengths, our analytics can be applied to 
each TDW independently and a series of planar TDWs with either identical or various tilting attitude can be realized 
by applying the corresponding TMF pulses segmentally. On the contrary, if the TDW widths are comparable with 
the domain lengths, the above analytics fails. When the TDWs are distributed evenly, similar to electrons in crystal-
line potential, a solution with Bloch-wave-like form should be appropriate, however beyond the scope of this article.

At last, although our analytics is performed in magnetic biaxial NWs, it can be easily generalized to other 
magnetic systems, such as magnetic films with periodic 180° stripe domains35,36, or exchange coupled magnetic 
hard/soft/hard sandwiched systems37. For a magnetic film with periodic 180° stripe domains, it can be viewed as 
a quasi-1D magnetic system. When the film is thin enough, HH or TT Néel walls separate the adjacent domains. 
Then the above discussion about a series of planar TDWs in racetrack NWs also applies in this situation. For a 
sandwiched hard/soft/hard magnetic system coupled by exchange interaction, when analytically solving the LLG 
equation for planar TDW solutions, besides the boundary conditions in the two faraway domains in hard materials, 
the magnetization distribution must satisfy the interfacial constraints at the two interfaces originating from the vari-
ation of the surface contributions to the total magnetic energy. Also, our analytics provides inspirations for scale and 
type manipulations of skyrmions by patterned magnetic field pluses in 2D skyrmion crystals10,11 or skyrmion-based 
racetrack memories8,38. Numerical simulation38 and experimental measurement39 both confirm that out-of-plane 
magnetic fields can control the skyrmion size. Meanwhile our results indicate the possibility that carefully designed 
in-plane circular magnetic field profile would induce the conversion between Néel and Bloch skyrmions.

Field-driven planar TDW dynamics. Next we turn to planar TDW dynamics with the help of the asymp-
totic expansion method19–21. In this method, the dynamical behavior of a TDW is regarded as the response of its 
static profile to external driving factors. In this sense, it belongs to the linear response framework and suitable for 
traveling-wave mode of a TDW which occurs under small axial driving fields. From equations (15) and (24), the TMF 
strength should be finite, thus we rescale the axial driving field and the TDW propagation velocity V simultaneously,

ε ε= =H h V v, , (29)1 1

where ε is a dimensionless infinitesimal. We focus on the traveling-wave mode and define the traveling coordinate

ξ ε≡ − = − .z Vt z vt (30)

The TMF in dynamical case takes the same profile as that in static case, except for the substitution ξ→z  
which means it moves along with the TDW center. Then we expand θ(z, t), φ(z, t) as follows:

θ θ ξ εθ ξ ε= + +z t O( , ) ( ) ( ) ( ), (31)0 1
2

Figure 2. Example of a general planar TDW (neither in easy nor in hard planes) and the corresponding 
TMF orientation profile in a 5 nm × 100 nm × 10 μm biaxial nanowire. The magnetic parameters of the wire 
are: Ms =  500 kA/m, J =  40 ×  10−12 J/m, π=k 4/1

0 , = .k k0 32
0

1
0, and α =  0.01. The TDW tiling angle is selected as 

φ∞ =  5π/12 (blue dotted line). This leads to πΦ = .⊥
∞ 0 34865 , ≈⊥H 2375Oemin  and ≈⊥H 9174Oemax . The polar 

profile of the TDW for H⊥ =  3 kOe is shown by the red dashed curve and the corresponding TMF orientation 
profile is indicated by the black solid curve.
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φ φ ξ εφ ξ ε= + + .z t O( , ) ( ) ( ) ( ) (32)0 1
2

in which θ0 and φ0 denote the zeroth-order solution of the problem, while θ1 and φ1 describe the lowest order 
deviations with respect to the zeroth-order solutions. Put the above expansion series into scalar LLG equations (6) 
and (7), to the zeroth order of ε, we have

ξ φ θ φ φ
µ

θ φ θ φ θ= Φ − + + ′ ′ + ″⊥ ⊥H k M J
M

0 sin [ ( ) ] sin sin cos 2 (2 cos sin ),
(33)

s
s

0 2 0 0 0
0

0 0 0 0 0

and

θ θ φ
φ

θ ξ φ
µ

θ

=




 + +

′ 





− Φ − − ″⊥ ⊥

k M k
k c

H J
M

0 sin cos 1 cos ( )

cos cos [ ( ) ] 2 ,
(34)

s

s

1 0 0
2

1

2
0

0
2

2

0 0
0

0

where a prime means partial derivative with respect to ξ and ≡ ∆c 1/ 0. Under the comoving TMF profile (23) 
( ξ→z ), the solutions to equations (33) and (34) are just equations (20) and (28). To obtain the TDW velocity, we 
need to proceed to the next order.

At the first order of ε, we have

θ α θ φ γ= − ′ + ′A v ( sin )/ , (35)1 0 0 0

and

αθ θ φ γ= − − ′ + ′B v ( sin )/ , (36)1 0 0 0

where

θ φ= +A P Q , (37)1 1 1

µ
φ θ

ξ
θ θ φ θ θ φ φ≡






′



 ⋅

∂
∂
− ′





+ ″






+

J
M

k MP 2 2 cos sin cos cos sin cos ,
(38)s

s
0

0 0 0 0 0 0 2 0 0 0

ξ φ θ φ

µ
θ θ

ξ
θ
ξ

≡ − Φ − +

+




′ ∂

∂
+

∂
∂






⊥ ⊥H k M

J
M

Q cos [ ( ) ] sin cos 2

2 2 cos sin ,
(39)

s

s

0 2 0 0

0
0 0 0

2

2

and

θ θ φ= + +B h R Ssin , (40)1 1 0 1 1

θ φ
φ

θ ξ φ

µ ξ

≡




 + +

′ 



 + Φ −

−
∂
∂

⊥ ⊥k M k
k c

H

J
M

R cos 2 1 cos ( ) sin cos [ ( ) ]

2 ,
(41)

s

s

1 0
2

1

2
0

0
2

2 0 0

0

2

2

θ
φ
ξ

φ φ θ ξ φ≡





′ ∂
∂
−





− Φ − .⊥ ⊥k M

c
k
k

HS sin 2 sin cos cos sin [ ( ) ]
(42)

s1 0
0
2

2

1
0 0 0 0

Obviously, we need to simplify operators R and S for v(h1) relationship. It is clear that now θ0 and φ0 have been 
fully decoupled. The partial derivative of “B0 =  0” with respect to θ0 gives

µ
θ
θ

θ φ
φ

θ ξ φ
′″
′
=





 + +

′ 



 + Φ −⊥ ⊥

J
M

k M k
k c

H2 cos 2 1 cos ( ) sin cos [ ( ) ],
(43)s

s
0

0

0
1 0

2

1

2
0

0
2

2 0 0

hence simplifies R to

µ ξ
θ
θ

=




−
∂
∂
+
′″
′






J
M

R 2 ,
(44)s0

2

2
0

0

which is the same 1D self-adjoint Schrödinger operator L as introduced in previous works19–21. Meantime, by 
partially differentiating B0 =  0 with respect to φ0, we have
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θ
φ

φ φ θ ξ φ=





″
−





− Φ −⊥ ⊥k M

c
k
k

H0 sin2 sin cos cos sin [ ( ) ],
(45)

s1 0
0
2

2

1
0 0 0 0

which simplifies S to

θ
φ
ξ

φ=




′ ∂
∂
− ″





≡

k M
c

S sin 2 0,
(46)

s1 0
2 0 0

since here we are considering a complete planar TDW (φ0 =  const). As a result, equation (36) becomes

θ θ αθ γ= − + − − ′ .h vL sin ( )( )/ (47)1 1 0 0

The “Fredholm alternative” requests the right hand side of equation (47) to be orthogonal to the kernel of L 
(i.e., θ ′0 ) for a solution θ1 to exist. Noting that from equation (27),

θ θ φ θ θ′ ′ < ∆ ′−
∞, ( ) , sin , (48)0 0

1
0 0

thus we finally have,

θ θ
θ θ

γ
α

γ φ
α

=
′
′ ′

>
∆

.∞V H H
, sin

,
( )

(49)
Planar

0 0

0 0
1 1

which means the planar TDW acquires a higher propagation velocity than that from the Walker analysis.
At last, it is worth of addressing the stability of the planar TDW when driven by an axial field and the feasi-

bility of our analytical approach to TDW dynamics in rigid-body mode. In principle, the axial driving field will 
induce extra gyro-torque to the magnetization inside any DW. Since our planar TDW with a general tilting atti-
tude is not the Walker-ansatz form, this extra torque would have non-uniform effect along the wire axis, hence 
distort the TDW tilting plane. However, in this work we focus on the field-driven dynamics in the rigid-body 
mode of the TDW. The critical axial field (above which the rigid-body mode collapses) is approximately the same 
order of magnitude as the product of the total transverse field (TMF plus transverse anisotropy field) strength 
and the damping coefficient. Therefore, the distortion of the TDW tilting plane in rigid-body mode should be 
very slight since the damping coefficient is usually pretty small. On the other hand, in this work the dynamics of 
a general planar TDW with the corresponding TMF pulse comoving is investigated using the asymptotic expan-
sion method. In this approach, any slight deviation from the rigorous planar TDW is viewed as higher order 
expansion terms of the real solution. The TDW velocity comes from the existence condition of the first-order 
terms, in which only zeroth-order solutions come into real calculus, thus should not be affected by these slight 
distortions.

Discussion
First, we would like to clarify that our strategy presented in this work differs from an existing one40. In that work, 
they maximized the wall velocity by optimizing the total external field with fixed strength and totally free ori-
entation. For biaxial case, they found the optimal strategy was to let the constant-strength field always lie in the 
wire axis. However, they did not concentrate on the shape and attitude of the TDW (whether static or dynamic). 
In our work, we realize a complete planar TDW at any tilting angle by a suitable TMF pulse with fixed strength 
and well-designed orientation profile. The total external field also has fixed strength, but cannot freely orientate 
since it has a specified axial component. In brief, our strategy is not optimal for the purpose of maximizing wall 
velocity. However, it manipulates general planar TDWs which should have widespread applications in modern 
nanodevice engineering.

Second, our strategy has the challenge of statically generating and dynamically synchronizing the 
well-designed TMF pulse with the TDW in real experiments. For static cases, for a given TDW tilting attitude, 
after selecting the TMF strength and calculating the TMF orientation profile, we propose two possible methods 
to realize the TMF configuration in real experiments. In the first method, a series of rotatable ferromagnetic 
scanning tunneling microscope (STM) tips are placed along the wire axis to produce a series of localized TMF 
pulses. The envelope of these pulses is tuned to be the TMF profile we have calculated. In the second method, 
an extra nanoferromagnet with strong ferromagnetic coupling to the NW produces the effective TMF. To realize 
the designed TMF profile, the shape and thickness of the nanoferromagnet should be designed carefully. For 
dynamics, the major concern is how to effectively synchronize the TMF profile with the propagating TDW. Since 
the TDW velocity can be precalculated from the selected material parameters, with the help of a mature servo 
system, the STM tips in the first method can be tuned to rotate around the wire axis automatically to produce the 
comoving TMF profile.

Finally, in real experiments, the edge roughness of the wire and the resulting stochastic fields may affect 
the consistency between our theoretical predictions and experimental measurements. Following some pioneer 
works41,42, the effect of single or series of edge-notches on static profile and field-driven dynamics of planer TDWs 
should be an interesting issue. On the other hand, our strategy of realizing and manipulating planar TDWs can 
be generalized to the cases where TDW motion is driven by spin-polarized currents or temperature gradient, etc. 
These directions of future research would be attractive and fascinating.
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