
����������
�������

Citation: Ngo, A.C.R.; Tischler, D.

Microbial Degradation of Azo Dyes:

Approaches and Prospects for a

Hazard-Free Conversion by

Microorganisms. Int. J. Environ. Res.

Public Health 2022, 19, 4740. https://

doi.org/10.3390/ijerph19084740

Academic Editor: Paul B.

Tchounwou

Received: 15 March 2022

Accepted: 11 April 2022

Published: 14 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Review

Microbial Degradation of Azo Dyes: Approaches and Prospects
for a Hazard-Free Conversion by Microorganisms
Anna Christina R. Ngo and Dirk Tischler *

Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany;
anna.ngo@rub.de
* Correspondence: dirk.tischler@rub.de

Abstract: Azo dyes have become a staple in various industries, as colors play an important role in
consumer choices. However, these dyes pose various health and environmental risks. Although
different wastewater treatments are available, the search for more eco-friendly options persists.
Bioremediation utilizing microorganisms has been of great interest to researchers and industries,
as the transition toward greener solutions has become more in demand through the years. This
review tackles the health and environmental repercussions of azo dyes and its metabolites, available
biological approaches to eliminate such dyes from the environment with a focus on the use of different
microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that
could be applied for the treatment of azo dyes.

Keywords: azo dye degradation; decolorization; bioremediation; immobilization; p-phenylenediamine;
xenobiotics

1. Introduction

Colors play an important role to different industries and in consumer choices. It
also contributes to the aesthetic quality of a product, which drives consumers to purchase
and therefore contributes to economic growth. The different colors and hues that we see
are often derived from the dyes that were used. Natural dyes are the safer and more
eco-friendly option compared to synthetic dyes [1]. They also pose other advantages such
as having antimicrobial properties and offering protection from UV light [2–5].

Although natural dyes are the safer and the more environmentally friendly option
to use, they are quite costly, more tedious to apply, and more difficult to procure. Tyrian
purple, for example, is a natural dye from the mucus of Murex sp. snails that retails for
about €2000 per gram [6,7]. Therefore, the use of natural dyes has been deemed to be
impractical for many commercial applications. Moreover, natural sources of dyes usually
contain only about 2% of actual coloring material, which means that uneconomic amounts
of raw material might be needed to obtain the desired shades and hues. This drives up its
cost and is thus undesirable for mass production use. It is nearly impossible to reproduce
the same shade from batch to batch and fastness properties are rather poor, which make it
difficult to apply on textiles [1].

As an alternative, synthetic dyes such as azo dyes have become the primary coloring
agent in industries such as the food, cosmetics, and textile industries as trace amounts of
dyeing material already produce an intense color [8–10]. Azo dyes take account for most of
the synthetic dyes used as they are easy to synthesize, thus cost-efficient to produce, and
generate a variety of colors as there are about 10,000 different azo dyes available [10–12].
Since azo dyes are synthesized chemically, careful downstream treatments are needed to
ensure safety in its usage and disposal [13]. It is important to consider that only 10% of the
dye is transferred into the material permanently, and the majority goes into wastewater as
effluents [13]. At the same time, trace amounts of dye can lead to severe environmental
and health hazards as some azo dyes are toxic, carcinogenic, and mutagenic [14,15]. The
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presence of these synthetic dyes can also hamper various biological activities [16]. Therefore,
it is important to implement tight regulations for their treatment and disposal.

Several physical and chemical procedures are available for the downstream treatment
and waste handling of azo dye containing effluents [17–19]. Quite often, these approaches
are met with skepticism, as these have major downsides such as the ecologically question-
able waste disposal for filters and charcoals, generation of toxic intermediates, production
of sludge, and the high costs of equipment [19,20]. Thus, finding a more environmentally
friendly approach is essential. Here, biological methods can be a more promising solution.
This review tackles the treatment methods available for azo dyes especially on the biologi-
cal context (primarily bacteria) with emphasis on the approach of whole-cell biocatalysis
and/or enzymatic degradation. Physical parameters that affect dye decolorization and
degradation, such as pH and temperature, are not within the scope of this review.

2. Impacts of Azo Dyes on Human Health and the Environment

Azo dyes are characterized by the presence of an azo bond (-N = N-) between two
or more aromatic rings [21,22]. The versatility of azo dyes renders them very appealing
for various industries such as food and textiles. However, the xenobiotic nature of these
dyes calls for proper evaluation of their harmful effects. In the food industry, the use of
azo dyes should be critically assessed as they are often used as colorants for sweets and
desserts with children as target consumers [23]. Although there are regulations on which
dyes may be used or not, these are different by country, which adds to the difficulty of
standardizing protocols for the usage of dyes [23]. There are thousands of azo dyes used
in various industries. Some of the better-known azo dyes used in the food industry are
Brilliant Black BN, Tartrazine, Sunset Yellow FCF, Amaranth, Azorubine, Ponceau 4R, and
Allura Red AC [23] (Figure 1).

Figure 1. Commonly used azo dyes in the food industry.

The toxicity of some of these azo dyes can be attributed to the reduction of the azo
bond, which produces aromatic amines [24–26]. When ingested orally, the dye reaches the
gastrointestinal tract, and the intestinal microflora or mammalian azoreductases cleave the
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azo bond [25,27,28]. The aromatic amines, which are often the final product of azo dye
reduction, are subsequently hydroxylated or acetylated, and this adds to the mutagenicity
and carcinogenicity of these compounds. The intake of azo dyes can also increase the risk
of human bladder cancer, splenic sarcomas, hepatocarcinomas, and nuclear anomalies [25].
They can also cause allergies, dermatitis, and even DNA damage that results in the for-
mation of malignant tumors [29,30]. Methyl Yellow, which is now banned in different
countries, was formerly used for dyeing butter, and it was found to cause liver cancer
in rats after two to three months of exposure [31,32]. Another example is the dye Ama-
ranth, which was shown to induce DNA damage in the colon epithelium of mice [33–35],
while Brilliant Black BN has shown genotoxicity in human lymphocytes based on in vitro
experiments [36]. Sunset Yellow FCF can cause DNA damage and has shown to have
toxic effects on the reproductive and neurobehavioral system of tested rodents and chick
embryos [37,38]. Tartrazine was shown to bind to albumin, induce neurotoxicity, impair
mental functions, and promote various reactions such as angioedema, nasal congestion,
itchy skin, and hives [23]. In the cosmetic and textile industries, 4-aminobenzene or Aniline
Yellow, a dye used for printers and as a precursor of other dyes, has been shown to cause
high hepatocarcinogenicity and induce tumors to rats [39]. Sudan III, used for coloring
non-polar substances such as acrylic emulsions, was also reported as a carcinogen [40].

Aside from health issues, another significant problem of these azo dyes is their pres-
ence in the environment. Trace amounts of azo dyes in watercourses can cause aesthetic
pollution. It also leads to different chain reactions. Poor sunlight penetration into the
water decreases the photosynthetic activity from waterborne organisms, leading to a re-
duction in dissolved O2 concentration, and it can as a consequence cause acute effects
to the aquatic community [26]. The dissolved O2 concentration primarily restricts the
growth and development of plants. These dyes can also affect germination rates and even
inhibit the elongation of shoots and root seedlings [22,26]. As plants have a significant
role in ecology such as serving as a habitat for organisms, providing organic matters
that contribute to soil fertility, and keeping the soil from erosion, all these services are
threatened as dye-containing effluents, and other xenobiotics continue to be discharged
to the environment [22]. Moreover, the presence of these pollutants negatively affects the
chlorophyll content of plants, as they trigger the production of chlorophyllase and abscissic
acid, both of which can lead to chlorophyll degradation [26,41]. Aquatic organisms such as
fishes are affected by the water quality of their environment. The presence of azo dyes and
other toxic compounds impair the growth of several fishes—showing reduced growth and
affecting the muscles, gills, liver, and intestines [26]. The edible freshwater fingerling, Catla
catla, has shown histopathological alterations in gills such as hyperplasia and degenerated
central axis when treated with Reactive Red 120 [42]. It was also shown that the exposure
of embryo larval fathead minnows, Pimephales promelas, to the azo dyes Disperse Yellow 7
and Sudan Red G decreased the survival of larval fish with LC50 values of 25.4 µg/L and
16.7 µg/L, respectively [43]. These examples strikingly show how hazardous azo dyes can
be to all areas of nature if not properly treated.

3. Impact of Azo Dye Metabolites

As mentioned earlier, not all azo dyes are harmful. However, dyes that were not found
to be harmful still pose a threat, since oxidative and reductive metabolism could lead to the
formation of toxic aromatic amines. Different studies have identified compounds derived
from azo dye metabolism such as benzidine, p-phenylenediamine, aniline, and toluene,
which show carcinogenic and mutagenic properties [24,25,27,31,39].

Benzidine is a building block of azo dyes such as Congo Red, Direct Black 38, and
Direct Red 39. Earlier studies have shown that it can induce tumor cells on different body
parts such as the gastrointestinal tract, pancreas, liver, and gallbladder [39]. Benzidine and
its congeners, such as 3′3-dimethylbenzidine and 3′3′-dichlorobenzidine, were shown to
induce carcinoma and tumors. 3′,3′,-5,-5′ Tetramethylbenzidine was the only congener of
benzidine that was not found to be carcinogenic [39].



Int. J. Environ. Res. Public Health 2022, 19, 4740 4 of 24

Meanwhile, p-phenylenediamine is another compound that is used as a henna sub-
stitute, for the manufacturing of certain polymers in different industries, as a develop-
ing agent for films, and as a major component for hair dyes. Initial investigations on
p-phenylenediamine showed contrasting results. On the one hand, it was shown to be
carcinogenic via an Ames test. On the other hand, it was shown that it did not pose any car-
cinogenic potential to F344 rats regardless of the sex and the exposure time [44]. It was also
shown to not affect pregnant rats, and a multigenerational reproduction study also showed
no negative effects [44,45]. However, it was discovered that p-phenylenediamine only
becomes mutagenic after oxidation [46]. This was corroborated when p-phenylenediamine,
in the presence of microsomal fraction and after H2O2 oxidation, became mutagenic to a
Salmonella typhimurium tester strain TA1538 [47]. This poses a problem as most permanent
hair dyes need to be oxidized upon usage to exert their dyeing properties. It was shown
that upon absorption, p-phenylenediamine can lead to the formation of tumors in the liver,
kidney, urinary bladder, and thyroid gland of rats [48,49]. It was also found that it can
increase the expression of p53 proteins, thereby suggesting an increase in apoptosis and
affecting cell viability [49]. A correlation was also observed on the usage of hair dyes and
Non-Hodgkin lymphoma and cancer [50].

Other monocyclic aromatic amines such as p-nitroaniline, o-toluidine (2-methylaniline),
2-nitro-p-phenylenediamine, and o-phenylenediamine were also shown to have carcino-
genic and mutagenic properties [39]. These compounds are all highly relevant toxins, as
occupational exposure to aromatic amines can explain 25% of bladder cancer cases [51].

4. Physical and Chemical Treatment of Dyes

As azo dyes pose different risks and hazards to health and the environment, it is
necessary to find ways to treat these dyes. Various physical and chemical methods have
been explored [18,29,52]. Physical methods include techniques such as adsorption and
filtration [8]. Adsorption uses materials such as activated carbon that can accumulate
compounds to be removed from wastewater at their surface [53–55]. Although activated
carbon is effective and has been the primary option for this kind of treatment, it is not often
used due to its high cost. Alternatives have been explored, such as peat, banana peels, clay,
corn cob, maize, and wheat straw [55–58]. However, there are some drawbacks due to the
problematic waste disposal of these cheaper alternatives. Another frequently used physical
method is filtration. It often involves the use of membranes to remove suspended solids
and other unwanted materials from water [19]. Although effective, it likewise has some
drawbacks such as similarly high costs for investment and of materials, deterioration of
the membrane or membrane fouling, production of potentially toxic sludge, and again
problematic waste disposal [19,22].

Chemical treatment involves the use of different chemicals or techniques such as
coagulation–flocculation, Fenton’s reagent, ozone, and electrochemical methods [22].
Coagulation–flocculation followed by sedimentation are processes used in conventional
wastewater treatment facilities [59,60]. Coagulation involves the use of coagulants to neu-
tralize suspended solids (often with an opposite charge to the coagulant). Once neutralized,
the suspended solids can collide and form microflocs. During flocculation, these microflocs
can form macroflocs and sediment, upon which they can be removed from water using
gravity. Furthermore, the Fenton reaction allows the generation of hydroxyl radicals using
Fenton reagent (H2O2 and Fe2+ ions), which can destroy toxic pollutants in wastewater [61].
Although the overall process is cheap, it can lead to a high sludge production as sec-
ondary waste. Ozonation uses reactive ozone (O3) to oxidize and disassemble preferentially
the chromophores of dyes, but its unstable nature makes it undesirable for wastewater
treatment [62].

These physical and chemical treatments have been used traditionally for wastewater
treatment. However, as mentioned earlier, these approaches can pose several drawbacks.
Furthermore, dyes may be resistant or recalcitrant to these available treatments [63]. There-
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fore, it is necessary to find safer, more eco-friendly ways that can handle these synthetic
dyes, especially azo dyes.

5. Biological Treatment of Dyes

Microorganisms are ubiquitous. Their ability to withstand harsh conditions and to
thrive even in the most polluted environment make them a melting pot for the study of
interesting enzymes and metabolites that can be harnessed to potentially solve environmen-
tal problems. The use of microorganisms as an alternative to physicochemical treatments
is called bioremediation [64,65]. Bioremediation has sparked serious interest in the past
decades, and microorganisms have been well-documented to destroy polyaromatic hydro-
carbons [66–68], to transform heavy metals to less harmful or immobilized forms [69,70], to
degrade pesticides [71,72], and to reduce or mineralize azo dyes [73,74].

For dye degradation, the use of microorganisms has several advantages. In a com-
parably cost-efficient manner, the dyes are decomposed to a vast degree whilst less water
is required and less sludge produced. The mechanisms of how microorganisms can de-
colorize (i.e., reduce azo bonds to aromatic amines) and degrade (i.e., break down azo
dyes into small molecules leading to H2O, CO2, and mineral by-products) azo dyes have
been a subject of interest in different studies [75–80]. Microbiological dye removal or even
degradation can be achieved by means of various ways such as via adsorption, via the pro-
duction of enzymes that can attack the dyes, and even via the combination of both [81,82].
Adsorption occurs through ion exchange as the microbial cell wall has hydroxy and carboxy
groups that can serve as binding sites for the dyes to adhere to [83,84]. Adsorption can be
achieved by either live cells or dead cell biomass [85,86]. It has several disadvantages: azo
dyes cannot be transformed into non-toxic forms, thus making waste disposal similarly
problematic as in classical physical methods. As opposed to adsorption, the degradation of
azo dyes has been of significant interest as ideally, the dyes can be completely degraded
by the microbial enzymes. Microorganisms capable of decolorizing and degrading dyes
include filamentous fungi [87,88], yeasts [89,90], algae [91,92], and bacteria [93–95].

5.1. Biological Treatment of Dyes Using Filamentous Fungi

Filamentous fungi are versatile microorganisms that can produce intracellular and
extracellular enzymes able to degrade a variety of xenobiotics. They can be isolated
everywhere such as in soil and even from waste organic materials. The mechanisms on
how filamentous fungi decolorize and degrade azo dyes rely upon the combined activities
of the biosorption process and the extracellular enzymes produced [80,96,97]. Moreover,
investigations on filamentous fungi as a biosorbent for dye-containing effluents have been
performed on both living and dead biomass setups.

The dead biomass of fungi has been of significant interest, as it was shown to take up
higher concentration of dyes than the living biomass. The use of dead cells often relies on
physicochemical interactions such as adsorption, deposition, and ion exchange to serve
as a biosorbent for the treatment of dyes. In this process, dye molecules adhere to the
fungal mycelia via ion exchange [80]. The heteropolysaccharides present in the cell wall of
fungi such as chitin, chitosan, glucan, lipids, and phospholipids serve as binding sites with
functional groups such as carboxy, hydroxy, and phosphoryl groups that help facilitate the
biosorption process [80]. It was shown that dead fungal cells of Aspergillus niger can take
up the dyes Basic Blue 9, Acid Blue 29, and Reactive Brilliant Red [96,98,99]. The integrity
of the cell wall also plays an important role, as disrupted cells showed less efficiency in
adsorbing dye solutions after 24 h than intact ones [99,100]. Filamentous fungi also serve
as a powerhouse source for different enzymes that can convert various dyes. Some of the
known fungal enzymes involved in dye degradation are laccases, lignin peroxidases, and
manganese peroxidases (Table 1).



Int. J. Environ. Res. Public Health 2022, 19, 4740 6 of 24

Table 1. List of fungal cultures from various decolorization studies and involved enzymes.

Enzyme Class Involved Culture Dyes % Decolorization References

Laccases

Marasmius scorodonius

Congo Red 90%

[101]

Malachite Green 82%
Crystal Violet 69%

Methylene Green 63%
Reactive Orange 16 48%

(+ 1-hydroxybenzotriazole)
Remazol Brilliant Blue R 61%

(+ 1-hydroxybenzotriazole)

Myceliopthora thermophila

Acid Blue 74 15.20%

[97]
Acid Blue 25 53.30%

Acid Green 27 67%
Reactive Blue 19 31.20%

Direct Red 28 9.60%

Trametes versicolor

Acid Blue 74 88.40%

[97]
Acid Blue 25 66.00%

Acid Green 27 76.00%
Reactive Blue 19 64.50%

Direct Red 28 11.90%

Aspergillus ochraceus NCIM
1146

Reactive Navy Blue HER 90.00%
[102]Reactive Golden Yellow HER 90.00%

Methyl Orange
56.00%

Lignin peroxidases

Phanerochaete chrysosporium
(Crude lignin peroxidases

with 2 mM veratryl alcohol)

Bromophenol Blue 93%

[103]

Congo Red 54%
Methylene Blue ~85%
Methyl Green ~85%

Methyl Orange ~85%
Remazol Brilliant Blue R ~70%

Toluidine Blue 80%
Poly R-478 46%
Poly S-119 80%
Poly T-128 48%

Ganoderma lucidum IBL-05
(with 4 mM veratryl alcohol)

Sandal-fix Red C4BLN 66%

[104]
Sandal-fix Turq Blue GWF 59%

Sandal-fix Foron Blue E2BLN 52%
Sandal-fix Black CKF 40%

Sandal-fix Golden Yellow CRL 48%

Bjerkandera adusta CX-9

Acid Blue 158 ~40%

[105]

Cibacet Brilliant Blue BG 25%
Poly R-478 ~30%

Methyl Green 75%
Indigo Carmine 50%

Remazol Brilliant Blue R ~90%
Remazol Brilliant Violet 5R <20%

Manganese peroxidase

Bjerkandera adusta CX-9

Acid Blue 158 91%

[105]

Cibacet Brilliant Blue BG 70%
Poly R-478 80%

Methyl Green <20%
Indigo Carmine ~45%

Remazol Brilliant Blue R ~40%
Remazol Brilliant Violet 5R 70%

Cerrena unicolor BBP6

Congo Red 54%

[106]
Methyl Orange 78%

Remazol Brilliant Blue R 81%
Bromophenol Blue 62%

Crystal Violet 81%
Azure Blue (+gallic acid) 63%

Several studies have compared these two approaches for fungal biomass application
for dye treatments. It was shown that living and dead cells were equally effective for dye
color removal [107]. Meanwhile, a wide screening across different kinds of microorganisms
showed that dead forms had better decolorization rates for Reactive Black 5 and Reactive
Blue 19 [108]. A study of Przytas et al., compared the efficiency of immobilized fungi,
namely Pleurotus ostreatus BWPH, Gleophyllym odoratum DCa, and Polyporus picipes—in
living and in autoclaved form, and corroborated previous findings where it was shown
that the decolorization rates of the used dyes were higher in dead fungal biomass [109].

Both approaches for fungal biomass use have advantages and disadvantages. As
mentioned earlier, living cells can have a variety of different mechanisms for dye decol-
orization and degradation. However, this entails optimizing operating conditions such
as pH, moisture, temperature, nutrient supply, and culture maintenance, as all can affect
the ability of fungi to secrete enzymes. On the other hand, dead biomass seems to be an
effective biosorbent, but just like any (physical) adsorbent, the question of waste disposal
will always remain. This is especially true for the then dye-enriched adsorbent. The fungal
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biomass probably degrades fast, and the previously adsorbed dye persists at the disposal
site and might be exposed to weathering.

5.2. Biological Treatment of Dyes Using Yeasts

Yeasts are not widely used in dye decolorization and have not been as extensively
studied as bacteria and filamentous fungi. However, yeasts hold potential in this field
especially because they present a biotechnological advantage as they are fast-growers
and can also thrive in harsh conditions. Yeasts typically remove dyes by the process
of biosorption. The dyes adhere to cell peripheries and eventually enter into the cell
based on interactions made by the functional groups present on the cell surface through
electrostatic interactions, ion exchange, or ion chelation. In a screening by Yu and Wen
(2005), Reactive Brilliant Red K-2BP was removed through biosorption by Saccharomyces
cerevisae, Saccharomyces uvarum, Saccharomyces lipolytica, and Turolopsis candida [110].

Dye-degrading enzymes have not yet been well-studied on yeasts. However, it is
possible that yeasts also produce putative dye-degrading enzymes similar to filamentous
fungi. Some putative oxidative enzymes such as ligninolytic enzymes were found from
Pyricularia oryzae [111], while some lignin peroxidase activities were detected from the cells
of Saccharomyces cerevisiae after the decolorization of Methyl Red [112].

5.3. Biological Treatment of Dyes Using Algae

Algae are photosynthetic organisms widely distributed in different aquatic habitats.
Just like the microorganisms described above, they also exhibit dye degradation capabilities.
The algal cell wall contains many functional groups such as carboxy, carbonyl, hydroxy,
phosphoryl, and amide groups that play important roles in dye decolorization [113]. Some
algae are also able to assimilate the dye chromophores. They possess enzymes that can
transform the dyes to H2O and CO2, leading to the production of algal biomass [75].

Microalgae isolates, namely Chlorella vulgaris, Anabaena oryzae, and Wollea sacata,
showed efficient decolorization and degradation of different dyes from various dye classes,
including the azo dye Orange G [114]. It was also shown that species from Chlorella and
Oscillatoria degrade azo dyes to aromatic amines and further degrade these aromatic amines
to simpler organic compounds [115]. Thus, algal biomass can be exploited for the potential
treatment of azo dyes, especially as they thrive predominantly on aquatic environments,
where textile dye effluents go.

5.4. Biological Treatment of Dyes Using Bacteria

Bacteria have been the subject of different studies since they offer several advan-
tages in a biotechnological perspective such as being fast growers, having a plethora of
degradative enzymes, and being able to degrade a wide range of dyes. Compared with
all discussed microorganism groups, bacterial decolorization has been of considerable
interest [22,75]. Although filamentous fungi are effective and potent agents for dye degra-
dation, as discussed above, bacteria are more preferred owing to their faster growth rate
and easier handling. The mechanism of dye decolorization and degradation relies on the
ability of bacteria to produce enzymes such as azoreductases that can cleave the azo bond
(-N = N-) [22,75,116]. Moreover, the ability of bacteria to further reduce or decompose
aromatic amines, either aerobically or anaerobically, allows them to have more versatility
compared to other organisms [22]. Bacterial decolorization furthermore has more potential
for wastewater treatment application, as bacteria are less problematic to handle than fila-
mentous fungi. Some bacterial strains have shown a wide range of substrates that can be
reduced. Some have even shown the potential to completely degrade azo dyes. They are
also more environmentally friendly and produce less sludge [117–121].

Studies on bacterial decolorization range from pure cultures to mixed bacterial cultures
(Tables 2 and 3). The study of pure cultures in the context of dye degradation allows an
in-depth understanding on the mechanism of bacteria toward its behavior against the
dyes. It also allows the study of the metabolic and degradation pathways involved [22,122].
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Meanwhile, mixed bacterial cultures allow the possibility to explore synergistic activities
as well as functional redundancies that can be helpful on dye degradation and may thus
exploit alternative ways to degrade dyes [123,124]. Pure cultures can be limited in this
sense, as they may encode only for one single activity or pathway to attack azo compounds.
In mixed bacterial cultures, it is possible to mix, match, and explore multiple possibilities
that would lead to dye degradation. However, the downside is that it is important to
identify which bacterial isolates can be mixed and matched to untap the best results.

Table 2. List of single bacterial cultures used on different dye decolorization studies.

Culture Dyes
% Decolorization

References
(Time of Incubation)

Bacillus sp. AK1 Metanil Yellow 99% (24 h) [125]

Sphingomonas paucimobilis Methyl Red 99.6% (10 h) [126]

Proteus mirabilis Red RBN 95% (20 h) [127]

Aeromonas hydrophila Red RBN 90% (8 days) [128]

Brevibacterium sp. VN-15

Reactive Yellow 107 98% (96 h)

[129]
Reactive Black 5 95% (144 h)
Reactive Red 198 97% (120 h)

Direct Blue 71 94% (168 h)

Acinetobacter calcoaceticus
NCIM 2890

Amaranth 93% (48 h)

[93]
Methyl Red 95% (24 h)

Amido Black 10 B 87% (72 h)
Congo Red 17% (72 h)

Bacillus firmus H4 Novacron Red 80–89% (24 h) [130]

Bacillus filamentosus T13 Novacron Red 80–89% (24 h) [130]

Bacillus subterraneus A36 Novacron Red 80–89% (24 h) [130]

Micrococcus luteus 24M Congo Red 99% (11 days) [131]

Pseudomonas sp. SUK1 Red BLI 99% (1 h) [132]

Pseudomonas sp. SUK1 Reactive Red 2 >80% (48 h to 72 h) [133]

Shewanella putrefaciens

Acid Red 88 100% (4 h)

[134]
Direct Red 81 100% (4 h)

Reactive Black 5 100% (6 h)
Disperse Orange 3 100% (8 h)

Kocuria indica DP-K7 Methyl Red 68% (160 h) [135]

Arthrobacter bambusae DP-A9
Methyl Red 100% (24 h)

[136]Brilliant Black 100% (24 h)

Leifsonia shinshuensis DP-L11 Methyl Red 53% (24 h)
[136]Brilliant Black 85% (24 h)

Dermacoccus nishinomiyaensis
DP-D10

Methyl Red 84% (24 h)
[136]Brilliant Black 100% (24 h)

Paraburkholderia sp. DP-P12 Methyl Red 58% (24 h)
[136]Brilliant Black 62.5% (24 h)

Rhodococcus sp. UCC 0008 Methyl Red 100% (72 h) [137]

Rhodococcus sp. UCC 0016 Methyl Red 100% (24 h) [137]

Staphylococcus sp. EY-3 Congo Red >96% (48 h) [138]

Kocuria rosea MTCC 1532 Methyl Orange 100% (72 h) [139]

Citrobacter sp. CK3 Reactive Red 180 95% (36 h) [140]

Bacillus sp. YZU1 Reactive Black 5 95% (120 h) [141]
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Table 3. List of microbial consortia used in different dye decolorization studies.

Culture Dyes % Decolorization
(Time of Incubation) References

Bacterial consortium

Bacillus circulans BPB8 Textile effluents with mixed azo dyes
(Reactive Red, Reactive Brown,

Reactive Black) and Cr(VI)
82% (5 days) [142]Bacillus circulans HQB947

Bacillis subtilis
Terribacillus gorriensis

Fungal–bacterial
consortium

White Rot fungus 8-4*
Pseudomonas

Direct Fast Scarlet 4BS
(Sole Carbon Source) 100% (30 h) [143]

Bacterial consortium

Pseudomonas sp. ARa
Reactive Red 195

(Maltose and Proteose Peptone) 100% (14 h) [144]Bacillus sp. ARc
Bacillus sp. ARd

Ochrobactrum sp. ARf

Bacterial consortium

Bacillus cereus BN-7

Acid Red 88 100% (24 h) [145]Pseudomonas putida BN-4
Pseudomonas fluorescence

BN-5
Stenotrophomonas

acidaminiphila BN-3

Fungal–bacterial
consortium

Brevibacillus laterosporus
Galactomyces geotrichum Reactive Red 198 92% (18 h) [146]

Fungal–bacterial
consortium

Aspergillus ochraceous
NCIM-1146 Rubine GFL 95% (30 h) [147]

Pseudomonas sp. SUK1 Textile effluent 98% (35 h)

Bacterial consortium
Bacillus sp. AK1

Ponceau 4R 100% (18 h) [148]Lysinibacillus sp. AK2
Kerstersia sp. VKY1

Bacterial consortium
Paenibacillus polymyxa

Reactive Violet 5R 100% (36 h) [149]Micrococcus luteus
Micrococcus sp.

Bacterial consortium
Enterobacter dissolvens

AGYP1 Acid Maroon V 93% (20 h) [150]
Pseudomonas aeruginosa

AGYP2

Bacterial consortium
Bacillus odyssey SUK3

Red HE3B 97% (24 h) [151]Morganella morganii SUK5
Proteus sp. SUK7

Bacterial consortium Providencia sp. SDS Red HE3B 100% (1 h) [152]Pseudomonas aeruginosa
BCH

Bacterial consortium

Proteus vulgaris
NCIM-2027 (PV)

Scarlet Red
Dye Mixture

(Scarlet R, Navy Blue HER, Red HE7B,
Green HE4BD, Orange HE2R, Navy
Blue G, Red HE3B, Navy Blue HE2R,
Golden Yellow 24D, Brilliant Blue G,
Direct Brown MR, Direct Blue GLL)

100% (3 h)

[153]

Micrococcus glutamicus
NCIM-2168 (MG) 88% (72 h)

Bacterial consortium

Bacillus subtilis WGI3 Direct Red 23 70% (48 h)
[154]Bacillus subtilis WGI4 Direct Yellow 12 84% (48 h)

Bacillus cereus WGI9 Direct Blue 15 66% (48 h)
Dye Mixture 75% (48 h)

As the number of studies on dye decolorization and degradation increase, it is also im-
portant to investigate the mechanism of how azo dyes are being attacked by these bacteria.
Brilliant Black, despite having two azo bridges in its structure, is not reduced simultane-
ously by Dermacoccus abyssi MT1.1T (Figure 2). Most azoreductases of the organism are
known to be localized at the cell membrane. It is discussed that the azo bridge between the
two naphthalene rings is cleaved first, producing a naphthol-based compound (compound
1) and an orange intermediate, 8-amino-5-((4-sulfonatophenyl)diazenyl) naphthalene-2-
sulfonic acid. The orange intermediate, which still bears an azo bridge, is attacked by the
azoreductase again and produces the second naphthol-based compound (compound 2)
plus sulfanilic acid (compound 3). Compounds 1 and 2 could not be detected, and therefore,
it was proposed that they were translocated into the cell membrane [155].
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Figure 2. Proposed degradation pathway for Brilliant Black by Dermacoccus abyssi MT1.1T while the
degradation compounds or intermediates were reported earlier [155].

6. Enzymatic Degradation of Azo Dyes

There are several enzymes that have been found to reduce and degrade dyes. Some of the
best-known enzymes are manganese peroxidases [156–158], lignin peroxidases [103,111,159],
laccases [111,160], dye peroxidases [161,162], and azoreductases [163–166], all of which will
be introduced in this section.

Manganese peroxidase is an oxidative enzyme that can destroy phenolic compounds
and other xenobiotics with the oxidation of two Mn(II) to Mn(III) [167–169]. The Mn(III)
compounds are active oxidants, which are typically stabilized by chelating organic acids
such as oxalic acid [170]. Manganese peroxidases can break down lignin but can as well
decolorize azo dyes and phthalocyanine. It was furthermore demonstrated to degrade the
highly recalcitrant polymeric dye, Poly R-478 [171]. Although manganese peroxidase was
first discovered in the white rot fungi Phanaerochaete chrysosporium, the enzyme was also
reported to be responsible for the decolorization of the azo dye Ranocid Fast Blue and the
anthraquinone dye Procion Brilliant Blue-H-GR by the bacterium Serratia marcescens [172].

Lignin peroxidases are also oxidative enzymes that can degrade lignin, polychlorinated
biphenyls, and synthetic dyes [173]. Lignin peroxidases degrade dyes through the oxidation
of the phenolic group at the carbon bearing the azo bond to produce a radical group [111].
The water attacks this phenolic carbon and then produces phenyldiazene, which can
subsequently be oxidized by a one-electron reaction generating N2 [111]. Like manganese
peroxidases, this enzyme is often produced by fungal systems. However, there are also
bacteria that were reported to have lignin peroxidase activity, such as Bacillus sp. strain
VUS and Acinetobacter calcoaceticus NCIM 2890 [93,174]. Pseudomonas desmolyticum NCIM
2112 was also reported to degrade Direct Blue 6 with the involvement of lignin peroxidases,
laccases, and tyrosinases [175].

Dye-decolorizing peroxidases (DyP) are heme-peroxidases that were found to have
different sequences, structures, and features compared to the classic plant and mam-
malian peroxidases [176]. These enzymes were discovered to attack azo dyes and the
anthraquinone skeleton and hence earned the name dye-decolorizing peroxidases [177].
They contain the highly conserved GXXDG motif in their primary sequences and in addi-
tion a conserved Asp, a distal Arg, and a proximal His, which are important for stability,
heme-binding, and biocatalysis [162,178,179]. DyPs can be classified into four types (A–D),
where types A to C are widespread in bacteria and type D is of fungal origin [180,181].
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Laccases, on the other hand, are copper-containing enzymes that can oxidize a wide
range of aromatic and inorganic substances [182]. The four Cu2+ ions in their active site
play an important role in the oxidation of their substrate by taking four electrons from
the compound, while the four Cu2+ are reduced to Cu+ [183] (Figure 3). The reduced
laccase transfers the electrons to dioxygen and thereby produces water as it returns to
its resting state [183] (Figure 3). Meanwhile, the oxidized substrate automatically de-
composes into simple products as it has become an active cation radical [183] (Figure 3).
Although some oxidized substrates can revert to the original state, ABTS or 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) can be used as a redox mediator for dye decolorization
and degradation [184]. Most laccases have also been discovered from fungi such as Pichia
pastoris and Trametes versicolor [185–187]. However, a small number of reports has shown
that bacteria can exhibit phenol oxidase activity on azo dyes, as in the case of Pseudomonas
desmolyticum NCIM 2112 [175].

Figure 3. Proposed degradation pathway of azo dyes by laccases. Such activities were proposed for
the ascomycete Pyricularia oryzae [111].

Although most of the enzymes mentioned are oxidative enzymes, reductive enzymes
such as azoreductases are also involved in dye decolorization and degradation. In fact,
azoreductases have been a subject of interest for most azo dye decolorization and degrada-
tion studies [17,19,22,75,121], thus being worthy of some more in-depth discussion.

7. An Insight to Azoreductases

Azoreductases are enzymes that cleave azo bonds (-N = N-) present on azo dyes
and therefore lead to the formation of colorless aromatic amines [116,122,153]. Most
azoreductases operate via a ping-pong bi–bi mechanism (Figure 4). Earlier classifications
of azoreductases were based on their prosthetic group. Azorecuctases can depend on
flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), or they can also be
flavin-free [188–191]. Moreover, azoreductases can be further classified based on their
preferred co-substrate—NADH, NADPH, or both. However, a recent study by Suzuki
(2019) summarized that azoreductases can also be categorized based on sequences [121].

Accounting for the sequence-based classification, clade I azoreductases have the
NADPH-binding motif, GXGXXG, which was first observed on AZR from Bacillus sp.
OY1-2 [164]. The azoreductases that belong to the members of this clade preferentially use
NADPH and display about 52–100% sequence identities to each other [121]. Some of the
known azoreductases from this group are from Geobacillus stearothermophilus, Rhodobacter
sphaeroides, Bacillus subtilis ATCC 6633, and YhdA from Bacillus subtilis [117,192–194].
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Meanwhile, clade II azoreductases do not contain the GXGXXG motif. The primary
azoreductase sequences from this clade share about 30–80% identities and prefer NADH
over NADPH. Some of the known members are the azoreductases from the human in-
testinal microflora such as Enterococcus faecalis and Enterococcus faecium [188,195]. Another
member is the YvaB, which was found together with YhdA from Bacillus subtilis but lacks
the conserved binding motif and in comparison, YvaB and YhdA share only about 26%
sequence similarity [121].

Clade III members have about 201 amino acids and share about 25–71% sequence iden-
tities [121]. Like clade II members, they lack the NADPH-binding motif, and most have been
known as flavoproteins. Some of the known members are azoreductases from Shewanella
oneidensis, Rhodococcus opacus, Halomonas elongata, and Pseudomonas putida [116,190,196–198].
Almost all members of this clade accept both NADH and NADPH. One member can even
accept the NADH mimic, 1-benzyl-1,4-dihydronicotinamide (BNAH), as an alternative elec-
tron donor. It was shown that AzoRo from Rhodococcus opacus 1CP can accept BNAH, which
can allow the fast turnover of Methyl Red at pH 7 [198]. Most likely, more members of this
enzyme group can accept alternative electron donors, which remains to be demonstrated.

As for clade IV azoreductases, the members do not have the GXGXXG motif but
an alternative motif, GXXGXXG, at the N-terminus. Some of the known members were
discovered to be flavin-free, such as the azoreductase from Xenophilus azovorans [199],
Klebsiella oxytoca [200], and Kocuria indica -DP-K7 [135]. Due to the lack of flavin, the ping-
pong bi–bi mechanism does not seem applicable for the azoreductases from this group.
It has been stipulated that they catalyze the azo reduction via the formation of a ternary
complex where the enzyme binds to NADPH and the substrate transiently [201,202].

Through various studies, it was shown that that several microorganisms possess azore-
ductases. However, these azoreductases behave differently, as there are no degradation
patterns that can be derived even if the enzymes belong to the same clade [121]. The ques-
tion remains if the azo dye consumptions are just a side activity, as the real physiological
role of azoreductases is still to be unraveled as more studies on quinones and azoreductases
are completed.
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Moreover, azoreductases have shown significant versatility in reactivity toward other
substrates such as nitroaromatics [121]. Azoreductases have also been a subject of protein
engineering. One of the bottlenecks for applying azoreductases is their need of NAD(P)H
as an electron donor. NAD(P)H is quite costly and renders the application of azoreductases
impractical. However, recent studies have shown that azoreductases can be combined with
formate dehydrogenases, which are enzymes that oxidize formate (a cheaper substrate)
and donate it to NAD+ (Figure 5). Although the fusion protein exhibited only partial
degradation of Brilliant Black, this still shows that these enzymes have a potential not only
for azo dye degradation but also for other interesting substrates and applications [121].

Figure 5. Reduction of Brilliant Black by a fusion protein comprised of the formate dehydrogenase
(FDH) from Candida boidinii and the azoreductase (AzoRo) from Rhodococcus opacus 1CP according to
an earlier reported observation of respective degradation compounds or intermediates [203].

8. Mediators and Varying Energy Sources for a More Efficient Dye Degradation

Azo dye degradation can be improved by the addition of different carbon sources,
nitrogen sources, and redox mediators. Some microorganisms can use dyes as a sole
carbon source. The combination of a white rot fungus and Pseudomonas sp. as a co-
culture showed 100% decolorization of Direct Fast Scarlet 4BS without the addition of
any carbon source [143]. This was also shown on various actinobacterial isolates and
for a Parabukholderia sp., where the named organisms were enriched beforehand and
isolated by using solely Methyl Red as a carbon source [136]. This was also the case
for the bacterium similar to Hydrogenophaga palleronii, which was shown to grow on 4-
carboxy-4′-sulfoazobenzene [204]. The bacterium was known to degrade sulfanilate and
was pre-adapted to the sulfonated azo compound [204]. It was also demonstrated that
the microbial community comprised of different bacterial classes can partially degrade
azo dyes in the absence of an external carbon source [205], while the bacterial consortium
comprised of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05, and
Serratia marcescens strain MM06 could use Reactive Red 120 as a sole carbon source [206]

The addition of carbon sources can also increase the rate of dye decolorization and
degradation. This was shown in a study of Saranraj et al., (2018), wherein the decolorization
rate of different azo dyes (Reactive Orange 16, Reactive Black B, and Reactive Yellow MR)
increased for various isolates, namely Bacillus odyssey, Bacillus thuringiensis, Bacillus subtilis,
Bacillus cereus, Alcaligenes sp., and Nocardiopsis alba, when sucrose was added [207]. The
addition of 1% glucose also improved the degradation of Brilliant Black BN for different
isolates [136].

The use of redox mediators can furthermore enhance dye decolorization. Sun et al.,
(2013) showed that the usage of redox mediators such as anthraquinone-2,6-disulfonate
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(AQDS), riboflavin, and humic acid increased the decolorization of Congo Red by 394%, 450%,
and 258%, respectively [208]. Halomonas sp. GYW showed a more efficient decolorization
of Acid Red B with the addition of 1,5-dichloroanthraquinone, 1,8-dichloroanthraquinone,
anthraquinone, and 1,4,5,8-tetrachloroanthraquinone more than 1.5-fold [209]. Quinones
promote electron transfer in different chemical and microbiological reactions [19]. Therefore,
the addition of quinones enhances the electron transfer from the electron donor to the
electron acceptor, which is often the azo dye. This faster transfer usually leads to an
enhanced color removal rate [19,210].

9. Prospects on Azo Dye Degradation

Modern solutions to mitigate the repercussions of wastes and pollution are contin-
uously being explored. Azo dyes, which are often used in food, textile, cosmetics, and
pharmaceutical industries, pose threats and risks to health and environment. As greener
solutions are being considered for the treatment of azo dyes as discussed above, the tech-
niques that can be applied for azo dye degradation also evolve over time. It is important to
look through the advancements achieved for azo dye degradation listed below.

9.1. Immobilization

Immobilization is a technique of confining enzymes or whole cells into a matrix or
onto supports [211]. It is used in different industries especially for the ones that switched
to greener solutions. Immobilization allows enzymes or whole cells to be reused and
makes them more stable in, e.g., different temperatures or pH. This makes industrial
processes more cost-effective and robust. Several supports are available that can range from
natural polymers such as alginate, chitin, and sepharose, via synthetic polymers such as
Amberlite resins, and to inorganic materials such as zeolites, celites, and silica [211]. There
are different ways to facilitate immobilization such as through adsorption, encapsulation,
covalent binding, and cross-linking [211].

In the field of azo dye degradation, several studies have already shown the possibility
of immobilizing enzymes or whole cells. The study of Chen et al., (2003) exhibited the
possibility of immobilizing a microbial consortium with phosphorylated polyvinyl alcohol:
immobilized cell beads showed about 75% dye decolorization even with 500 mg/L concen-
tration of Red RBN after 12 h [212]. Another microbial consortium immobilized to polyvinyl
alcohol also yielded better decolorization of Direct Fast Scarlet 4BS and could be reused
for more than 30 cycles without affecting the dye degradation activity [143]. Although
immobilization can be detrimental to the activity of cells or enzymes, the immobilization
of Lysinibacillus sp. KPB6 in calcium alginate achieved about 98% degradation of Reactive
Blue-250 after 48 h as opposed to free cells, which achieved about 95% degradation within
72 h duration [213]. Meanwhile, the enzyme AzoRo, an azoreductase from Rhodococcus
opacus 1CP, was immobilized to mesoporous silica which showed significant improvement
on its stability, exhibiting activity even on incubation at pH 4 for 60 h and showing better
storability [197]. The immobilized laccase from Cyathus bulleri showed about 90–95% decol-
orization of simulated dye effluents for up to 20 cycles [214]. Another immobilized laccase
of Weissella viridescens LB37 on magnetic chitosan nanoparticles showed increased relative
activity, which was 2-fold compared to the free enzyme counterpart, and it presented a high
removal capacity for Direct Blue 15, Evans Blue, Reactive Black 5, and Acid Red 37 [215].

9.2. Bioreactors

Alongside immobilization, specialized bioreactors are often employed in different
industrial processes. Bioreactors are vessels or tanks designed to hold free/immobilized
whole cells or enzymes for the transformation of substrates to products. The bacterial
consortium comprising Sphingomonas paucimobilis, Bacillus sp. and an unidentified filamen-
tous bacterium was placed in a continuous stirred bed reactor and continuously fed with
textile wastewater where the predicted decolorization rate was at 86% [216]. The bacterium
Enterobacter aerogenes ES014 was also investigated and tested in a batch reactor wherein
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after treatment, the water quality of the wastewater improved [217]. The possibility of
constructing bioreactors using alkalophilic and thermophilic bacterial consortia was also
investigated where the color removal efficiency was about 85 to 94% after 192 h [218]. The
setup also exhibited a reduction of nitrites and nitrates and that the dye mixture became
non-toxic after treatment [217]. In an airlift bioreactor, it was also shown that Bjerkandera
adusta OBR105 exhibited more than 90% decolorization for Acid Red 114, Acid Blue 62, Acid
Black 172, and Reactive Blue 4 after 10–15 h [219]. Another demonstration of the efficiency
of dye decolorization in bioreactors was the immobilization of a laccase from Ganoderma sp.
KU-Alk4 in copper–alginate beads. This immobilized biocatalyst was also applied in an air-
lift bioreactor for dye removal. Results showed an enhanced stability of the catalyst toward
different temperatures, even maintaining its normal activity at 55 ◦C, and it displayed a
decolorization of Indigo Carmine after 14 runs without supplementation [220]. Meanwhile,
a rotating disk reactor was also investigated for the treatment of water containing Direct
Red-80 and Mordant Blue-9 using immobilized cells of Phanerochaete chrysosporium, and it
showed more than 90% decolorization efficiencies for individual dyes after 24 h [221]. This
highlights the applicability of these bioreactors for wastewater treatment.

9.3. Microbial Fuel Cells

Another emerging technology at present is the application of microbial fuel cells
(MFC) for different processes. MFCs take advantage of the ability of microorganisms to
convert chemical energy (usually from organic matters) to electricity. It has been shown
from different studies that electricity can be generated via wastewater treatment with
the simultaneous oxidation of different compounds. This technology has been adapted
for azo dye decolorization studies. In the study of Liu et al., the possibility of using azo
dyes as cathode oxidants was investigated in a cell designed to accept electrons from
the respiration of Klebsiella pneumoniae L17 in the anode [222]. It was also shown that
different dyes can affect the performance of MFCs, as Methyl Orange generated better
results than Orange I and Orange II [222]. Industrial wastes can also be used to feed
MFCs, as, e.g., brewery waste was used and presented the possibility of reducing Direct
Red 80 (200 mg/L) as confirmed by Fourier transform infrared spectroscopy (FT-IR) [223].
In addition, microbial communities that attached to the anode of the setup revealed the
presence of proteobacteria, betaproteobacteria, and Desulfovibrio [223]. Aside from azo dye
decolorization, the removal of sulfides was also observed and coupled with a maximum
power output of about 23.5 mW/m in a single chamber air cathode MFC setup [224]. The
use of glucose as a substrate to generate electricity and to degrade Acid Navy Blue R was
also demonstrated [225]. Different concentrations of dyes were tested, and 200 ppm of dye
attained 10.36% Coulombic efficiency and 2236 mW/m2 of power density [225].

10. Conclusions

Azo dyes have become important in different industries, especially because color plays
a huge role in consumer choices. However, with the increased usage of azo dyes, several
health and environmental problems have emerged, which are caused by some of these
azo dyes and its metabolites. As modern societies are striving toward greener solutions,
bioremediation should be taken advantage of. Microorganisms have shown versatile
performance not only in the biomedical field but also in the realms of environmental
application. Microorganisms have tremendous potential still to be explored, and there are
numerous enzymes from various microorganisms that should be further studied. The ability
of these microorganisms to accept a broad spectrum of xenobiotics must also be also looked
upon. Modern technology has displayed tremendous progress over the past decades. The
field of molecular biology and biochemistry has flourished, and the -omics approach is now
also being used in different applications in various industries. The combination of these
developments and the area of bioremediation, especially in the field of dye degradation, is
still an exciting venture to research. Ultimately, these microorganisms can pave the way for
a hazard-free conversion of azo dyes and other xenobiotics.
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