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Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to

their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous

fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and

Mucor circinelloides, have been well studied for the ability to accumulate fatty acids

with commercial application. Here, we review recent progress toward fermentation,

extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions

from raw materials were also summarized. Then, the synthesis mechanism of fatty acids

was introduced. We also review recent studies of the metabolic engineering strategies

have been developed as efficient tools in oleaginous fungi to overcome the biochemical

limit and to improve production efficiency of the special fatty acids. It also can be

predictable that metabolic engineering can further enhance biosynthesis of fatty acids

and change the storage mode of fatty acids.

Keywords: oleaginous fungi, triacylglycerols, regulation strategy, fatty acids, Commercial application

INTRODUCTION

Similar to vegetable lipids, microbial lipids mainly include neutral fatty acids (FAs), free FAs
and phospholipids (1, 2). Moreover, they share the same existence form with animal and plant
lipids, i.e., existing in the cell structure such as membrane with constant content or forming lipid
droplets or fat particles in the cytoplasm (3). The bright spheres in Figure 1 are lipid droplets
in cells of different types of strains. Specifically, the outer layer of lipid droplets is a monolayer
composed of phospholipids and specific proteins, and the inner core is mainly neutral lipids such
as triacylglycerol (TAG) and sterol ester (SE) (4–7).

Microbial lipids are also widely used in the production of biodiesel. Excessive consumption and
environmental damage caused by fossil fuels have hindered economic sustainable development
(8, 9). Therefore, finding renewable and clean energy that can replace fossil energy is an important
prerequisite for the development of green economy, energy conservation, emission reduction,
and environmental protection (2). Methyl or ethyl fatty acid ester is obtained from methyl or
ethyl esterification of FAs. The cellular lipids are mainly produced in the form of free FAs
and acylglycerols (mostly as triglycerides) and are stored in the globular organelles called lipid
bodies. Transesterification of microbial lipids is an essential step in microbial lipid production
at both laboratory and commercial scale. Direct transesterification can considerably reduce costs,
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FIGURE 1 | Lipid bodies from different oleaginous fungi. (A) Wang et al. (4);

(B) Fillet et al. (5).

increase sample throughput and improve lipid yields (in
particular fatty acid methyl esters, FAMEs). Fatty acid ethyl
esters (FAEEs) are typically produced via the chemical
transesterification of plant lipids and animal fats. Biosynthesis of
FAEEs is limited by the supply of precursor lipids and acetyl-CoA
(10–13).

Oleaginous fungi, as lipid-producing microorganisms, are
attractive in lipid production due to their short growth
cycle, large amount of biomass and high yield of lipids (14,
15). Some filamentous fungi species have been reported able
to accumulate polyunsaturated fatty acids (PUFAs), such as
Mortierella isabellina, Mucor circinelloides, Pythium ultimum
(2, 9). PUFAs play a vital role in human body; (PUFAs)
belonging to the ω-3 and ω-6 classes are also substantial as
precursors of eicosanoids or being structural components of
various membrane phospholipids (9, 16, 17).Table 1 summarizes
some high-yield fungi species and their lipid content.

As fungus-like protists, Thraustochytrids are progressively
studied for his or her quicker growth rates and high lipid
content (28). Thraustochytrids were first reported in 1936 and
have attracted much attention since 1990 due to their high
yield of FAs (29). The accumulated lipids account for more
than 50% of dry cell weight (DCW), of which more than 25%
is docosahexaenoic acid (DHA) with extremely high economic
value. Aurantiochytrium sp. is a kind of thraustochytrids, which
has a high yield of PUFAs, especially DHA (9). At present, the
research on FA synthesis from Aurantiochytrium sp. is mainly
focused on the optimization of culture conditions to increase the
yield of unsaturated FAs, especially DHA (7).

Different from oleaginous yeasts, accumulation of fatty
acids with important functions is the most attractive point of
oleaginous fungi. However, unlike oleaginous yeasts, the recent
developments of production, biosynthesis, and commercial
applications of fatty acids from oleaginous fungi, have not been
reviewed. In this article, we tried to summarize the studies of fatty
acids from oleaginous fungi, and provided a point of reference.

TABLE 1 | Lipid contents of some fungi.

Species Carbon

source

Lipid

content (%)

PUFAs (%) References

Aurantiochytrium

sp.

Glucose 72.4 +25 (DHA) (18)

Umbelopsis

vinacea

Glucose 63.55 + (19)

Aurantiochytrium

SW1

Fructose 44 52.3 (DHA) (14)

Aurantiochytrium

sp. T66

Glycerol 55 40 (DHA) (20)

Mortierella alpina Potato

industry

wastes

40 35 (ARA) (21)

Aurantiochytrium

sp. SY25

Glucose / 59.98 (22)

Mucor

wosnessenskii

CCF 2606

Soybean 6.7 ± 0.3 8.5 ± 0.2

(GLA)

(15)

Mortierella

isabelline

ATHUM 2935

Glucose

(commercial)

83.3 / (23)

Thraustochytrium

sp. T18

Glucose 46.9 35.2 (DHA) (24)

Galactomyces

geotrichum

TS61

molasses 69.6 23.67 (LA) (25)

Mortierella alpina Glycerol

(crude)

33.3 49.2 (LA) (26)

Mortierella alpina

CCFM698

Glucose 31.5 26.7 (EPA) (27)

REGULATION OF FUNGAL FATTY ACID
FERMENTATION

Fungal lipid fermentation can be divided into two stages, i.e., the
cell proliferation and the lipid accumulation (30). During the cell
proliferation stage, cells proliferate and metabolize vigorously,
with the nutrients in the medium consumed rapidly. During the
fatty acid accumulation stage, the nitrogen source is exhausted
but the carbon source is sufficient in the medium, which makes
cells stop proliferating for the most part, with the lipid synthesis
becoming the dominated metabolic activity (31–33).

According to the characteristics of fungal lipid fermentation
production, controlling the nutrient composition of medium and
regulating environmental conditions are a common strategy to
promote lipid biosynthesis in lipid fermentation engineering.
At present, three regulation strategies are widely adopted for
lipid fermentation. The carbon-to-nitrogen (C/N) ratio, carbon
and nitrogen sources, pH, incubation temperature and dissolved
oxygen are the main factors influencing fatty acid production
(18, 34). Nevertheless, other factors also play a crucial role
in microbial activity, such as minerals (e.g., sulfur, zinc and
phosphorus) and vitamins (e.g., thiamine and biotin) (35).
Moreover, secondary metabolites (like citrate) are also an
influencing factor for lipid production (34).
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Promoting Lipid Accumulation by Nutrients
Restriction
As for the de novo lipid accumulation, concentrations of nitrogen
and carbon sources respectively determine the biomass content
and the quantity of lipids in general (36). Accordingly, the
C/N ratio is significant for the accumulated lipid content and
the oleaginous microbial biomass (36–39). Previous studies
demonstrate that the lipid accumulation is boosted at a C/N
molar ratio of greater than 20. It is worth noting that the
lipid production declines instead at the C/N ratio higher than
70 in some cases (40). Therefore, to achieve a high-level lipid
accumulation, the initial C/N molar ratio should be optimized
(41–43). For the lipid fermentation of the Thraustochytridae
sp. PKU#Sw8, the increase in DHA production coincided
with the up-regulation of gene expression under nitrogen-
deficient culture conditions (44). Chen et al. (45) optimized
the culture of Thraustochytrid sp. PKU#SW8 under optimal
culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80%
seawater; pH 4.0; 28◦C), the cell mass, DHA concentration
and yield of PKU#SW8 were increased to 7.5 ± 0.05 g/L,
2.14 ± 0.03 g/L and 282.9 ± 3.0 mg/g, respectively, on a 5-L
scale fermentation.

Cellular lipid content and lipid yield were 62.2% and 0.205
g/g glucose, respectively, using a medium with a carbon
to nitrogen (C/N) molar ratio of 6.1 and a C/P molar
ratio of 9,552 (46), which means that the accumulation of
lipid can also be regulated by limiting phosphorus in the
medium. As a consequence, the regulation of phosphorus
and sulfur limitation is of great significance for the
production of lipids from nitrogen-rich crude materials
(41, 45, 47, 48).

Promoting Lipid Accumulation by Small
Molecules
Some small molecules can also regulate the accumulation of lipids
(37, 48, 49). Li et al. (50) cultured Thraustochytriidae sp., a kind
of marine oleaginous protists, by addition of different levels of
sodium nitrate (1-50mM) or urea (1-50mM) in fermentation
culture has a significant effect on fatty acid synthesis. They
found that urine (50mM) culture the cells accumulated 1.16
times the ω-3 PUFAs, of which DHA accounted for 49.49%
and docosapentaenoic acid (DPA) was 5.28% compared with
the original culture conditions. To sum up, it is easy to
control lipid accumulation by small molecules, which is of great
significance for the optimization of lipid production conditions
(48, 51).

The accumulation of biomass and lipid-synthesizing fungi
in any oily substance is highly affected by factors such as pH,
temperature, light, and ventilation. Temperature change is also
one of the factors affecting lipid accumulation (52, 53). They
found that the low temperature has a significant impact on
the formation of DHA, which can increase the DHA content
from 43 to 65% of the total fatty acids. Low temperature may
increase DHA content by facilitating a relatively large amount of
substrates to enter the polyketide synthase (PKS) pathway (52).

Promoting Lipid Accumulation by Using
Different Fermentation Modes
Generally speaking, there are three ways of microbial
fermentation: batch culture, fed-batch culture and continuous
culture (38, 54–57). The batch culture is the most widely used
for lipid fermentation. Wang et al. (58) studied Schizochytrium
sp. PKU#Mn4 and Thraustochytrid sp. PKU#Mn16, found that
the largest DHA yields were 21% and 18.9%, and the yields were
27.6 mg/L-h and 31.9 mg/L-h, respectively in in 5-L bioreactor
fermentation operated with optimal conditions and dual oxygen
control strategy. The production of DHA increased by 3.4 times
and 2.8 times (g/L) respectively. Rhizopus sp. using solid-state
fermentation and submerged fermentation can produce valuable
alternative feed ingredient due to their high protein and the
well-balanced lipid content and amino acid profile (59).

In addition, electro-fermentation is a promising technology
that can improve the performance of biological processes.
When lipids are produced yeast R. toruloides under electro-
fermentation conditions, the proportion of saturated FAs
increases significantly from 37 to 50% (60).

EXTRACTION OF FUNGAL FATTY ACID

The conventional methods of wall breaking mainly include
the following: grinding method, acid treatment, cell autolysis
method, repeated freezing and thawing, ultrasonication and
enzyme treatment (61–65). Among them, the autolysis method
has simple steps and low cost, but has poor crushing result
and low lipid yield; the enzymatic treatment method has mild
conditions and no damage to intracellular substances, but
is expensive and cannot be used for large-scale treatment.
Ultrasonication is one in every of the additional normally used
strategies. Using ultrasound to reinforce the synthesis of designer
lipids, researchers have discovered an eco-friendly technique
for enhancing the synthesis of designer lipids with numerous
nutritional values (66).

The extraction of lipids is mostly done with low-boiling
organic solvents. Commonly used solvents are ether, petroleum
ether and chloroform. At present, the commonly used extraction
methods of microbial lipids are as follows: acid heat method,
Soxhlet extraction method, and supercritical CO2 extraction
method (67–71). Among them, the Soxhlet extraction method
is relatively accurate, but it is time-consuming and consumes
too much organic solvent; the acid-heat method, although
the yield is low, is fast and simple, and is suitable for the
operation of multiple samples; the supercritical CO2 extraction
method has high instrument requirements and requires Strictly
control parameters (67, 71). The process of extracting lipid
from fungi using acid-catalyzed predicament, microwave, and
rapid ultrasonic-microwave treatment can create it have a high
extraction rate, up to 70% (w/w) content (71). It is a novel green
extraction method (63).

Cost Estimation of Fungal Fatty Acids
Take DHA as an example for cost estimation (72). If all the carbon
sources needed to produce DHA were glucose, the amount of
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glucose required to produce 1 ton of biomass would be 2.78 tons.
At the 2021 glucose price of us $903.9 per ton, it would cost US
$2,512.84 to produce one ton of biomass. If there is only 50% lipid
content in 1 ton of biomass, 40% of the lipid content is DHA
(73). That’s 0.2 tons of DHA. If one ton of DHA is produced,
the calculated cost of glucose is $12,564.2. All this takes into
account only glucose substrates, but if you add in other cost
factors, including water and electricity, publicity, equipment, and
so on, the cost of DHA increases further (72).

Recovery processes downstream of the fermenter typically
contribute 60–80% to the cost of production of a fermentation
product, therefore the fermentation step contributes only around
20–40% to the total production cost. The above analysis leads
to the conclusion that the Schizochytrium limacinum grown on
glucose cannot provide DHA cheaper than fish oil at present. If
the biomass was used simply as an aquaculture feed additive, the
downstream processing requirements would mostly disappear,
although on the basis of equal DHA content, the biomass would
still be more expensive than fish oil. Hence the need for cheaper
nutrients for growing thraustochytrids (72).

In the future development, it is very important to improve
production efficiency and reduce cost. First of all, in terms
of carbon sources, the focus should be on replacing glucose
while maintaining high biomass and lipid yields. In addition,
lignocellulose hydrolysate may prove to be an inexpensive
source of carbon for biomass production, which can efficiently
metabolize xylose, and xylose metabolic engineering may help
reduce fermentation costs (74). Metabolic engineering is also
very important (75, 76). Therefore, strains should be improved,
complete metabolic flux analysis should be carried out, and the
protein engineering field should be evaluated with the goal of
metabolic engineering, etc., in order to maximize the fatty acid
production in the biomass.

Taking into consideration from another angle, developing new
valuable products such as enzymes, and cell wall polysaccharides,
during fungal fermentation besides fatty acids, would effectively
reduce the cost. This “fungal-based biorefinery” strategy has not
been applied in the studies, it may be the another choice to make
the production of fatty acids more feasible (77).

FATTY ACID PRODUCTION FROM RAW
MATERIALS

Glucose is the most basic carbon source of microorganisms.
Many studies explore the glucose-based lipid accumulation of
fungi, and the lipid content can reach higher than 70% (w/w)
(41, 78–80). However, the large-scale production of microbial
fatty acids with glucose as a raw material will face the problems
of “competing with people for food” and “competing with food
for land”, which necessitates the search for other suitable raw
materials to reduce the costs (9, 81, 82). Recently, some cheap
and available “raw materials” have been widely concerned, such
as lignocellulose, non-grain sugar raw materials and commercial
wastes (9, 79, 83). Table 2 summarizes some high-yielding fungal
species that use non-glucose as substrates for lipid accumulation.

TABLE 2 | Non-glucose substrates for lipid production.

Species Carbon source Lipid content

(%)

References

M. circinelloides Xylose 17.2-17.7 (84)

Ashbya gossypii Xylose 55 (85)

M. circinelloides

Q531

Mulberry

branches

28.8±2.85 (86)

M. circinelloides

ZSKP

Kitchen vegetable

waste

21.4 (87)

M. alpina

CBS 528.72

Potato waste 40 (21)

Aurantiochytrium

sp. YLH70

Jerusalem

artichoke

46.9% (DHA) (88)

Aurantiochytrium

sp. T66

Glycerol 55 (65)

Aspergillus

caespitosus

ASEF14

Sago

processing wastewater

(SWW)

37.2 (89)

Cutaneotrichosporon

curvatus

Lignocellulose 63 (90)

Lignocellulose
Lignocellulose is constituted by hemicellulose, cellulose and
lignin (91). In recent years, lignocellulosic biomass has been
recognized as a potential alternative feedstock to produce
biofuels (9). The fatty acid production with lignocellulosic
biomass includes the following two steps: (1) the degradation
of biomass to corresponding monosaccharides by heat-acid
treatment or enzyme hydrolysis, and (2) the biodegradable
sugar fermentation by promising oleaginous microorganisms
(92–95). Lignocellulose cannot be directly utilized, but must
be hydrolyzed, which produces compounds that inhibit the
growth of fungi, such as furan aldehydes, weak acids, and
aromatic compounds, during the pretreatment process (96).
The cumulative deleterious effects of some inhibitors (such as
furfural, formic acid, acetic acid, and vanillin) on fatty acid
accumulation in oleaginous fungi have been investigated (96, 97).
Intasit et al. (98) used an integrated biotechnology, fungi and
yeast to bioconvert lignocellulosic biomass into biodiesel, first
pretreatment of the fungus, the fungus Aspergillus tubingensis
TSIP 9 lipid yield 121.4 ± 2.7 mg/g-EFB (empty fruit bunch),
the integrated biotechnology can greatly facilitate the conversion
of lignocellulosic biomass to biodiesel feedstock is a cost-
effective and sustainable biotransformation. Zhang et al. (84)
deeply analyzed the effects of corn stover hydrolyzate on lipid
accumulation by using xylose metabolism engineering strains of
M. circinelloides strains. The results showed that the fatty acid
contents of the engineeredM. circinelloides strains were increased
by 19.8% (in Mc-XI) and 22.3% (in Mc-XK), respectively,
compared with the control strain.

Glucose and xylose coexist in lignocellulose hydrolysate.
Lipid-producing yeasts consume glucose first and then xylose,
and even some lipid-producing yeasts are unable to utilize
xylose. Therefore, lignocellulose hydrolysate suffers from long
fermentation cycle and low substrate utilization.
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High-Carbonhydrate Plant Materials
Jerusalem artichoke is a kind of perennial plant resistant to
barren, cold and drought. The planting of Jerusalem artichoke
should not occupy cultivated land and other agricultural lands
(99). The storage form of sugar in Jerusalem artichoke is inulin,
which is a polyfructose linked by β-2,1 glycosidic bond with a
glucose residue at the end (100). Yeast or molds can accumulate
large amounts of lipids from inulin hydrolysates (101–103).
In the medium containing inulin, fatty acids can be produced
and the lipid content and biomass of cells can be changed. By
converting the inulinase gene, the gene accumulates higher fatty
acids (100). Aurantiochytrium sp. YLH70 can produce lipid in a
medium with 695 mL/L hydrolysate of Jerusalem artichoke. The
biomass higher biomass (32.71 g/L) and DHA content (46.9% of
the total fatty acid) (88).

Commercial Organic Wastes
The combination of low-cost organic compounds contained
in agro-commercial waste and the cultivation of lipid-
producing microorganisms can effectively achieve the
effect of accumulating lipids (104, 105). Lipid-producing
microorganisms use some forms of carbon sources and
nutrients for growth and fatty acid accumulation. Organic waste
usually contains organic particles, which may be an ideal and
inexpensive substrate for microbial fatty acid production, but
the chemical composition of organic waste affects the lipid
production of different species (104, 106). Lipid-producing
yeasts can also transform commercial organic wastes into
lipid (105, 107). Crude glycerol is a by-product of biodiesel
industry, which is usually treated as commercial waste (64).
The engineered strain of the filamentous fungus Ashbya
gossypii can produce microbial lipids, whose efficiency is
improved by three genomic manipulation methods. Using
organic commercial waste as a raw material, the strain can
accumulate lipid at about 40% of DCW (85). The use of
commercial waste to produce lipid is also of great significance to
environmental governance.

SYNTHESIS MECHANISM OF FATTY
ACIDS IN FUNGI

Essentially, the synthesis of microbial lipids is similar to that
of animal and plant lipids. After the carboxylation of acetyl-
CoA, saturated or unsaturated FAs are generated through chain
extension and desaturation, and then triacylglycerols (TAGs)
are formed.

General FA Biosynthesis
The synthesis of FAs in microbial cells requires acetyl-CoA
acting as the precursor of FAs and a sufficient supply of
NADPH to provide reducibility for the synthesis. It is generally
believed that when nitrogen is depleted, the activity of AMP-
deaminase increases. This can supplement NH+

4 for various
metabolisms, decrease intracellular AMP level and the activity
of isocitrate dehydrogenase (IDH) activated and cause the
accumulation of isocitrate in mitochondria (108). Aconitase
(AT) in mitochondria is able to catalyze the conversion of

over-accumulated isocitrate to citric acid. The citric acid is
then transported to the cytoplasm, where the ATP-citrate lyase
(ACL) helps its cracking catalysis to acetyl-CoA and oxaloacetic
acid (OAA). As a result, abundant acetyl-CoA is produced as
the precursor of FAs (109). Acetyl-CoA directly participates
in the FA synthesis, while oxaloacetate is first reduced to
malate dehydrogenase (MD) and then undergoes oxidative
decarboxylation in the presence of malic enzyme (ME) to release
NADPH (110). Studies have shown that ME can regulate lipid
accumulation in oleaginous microorganisms (111). Accordingly,
if the activity of ME is inhibited, the lipid accumulation will
decrease. This is because although many reactions in the
cellular metabolic network can produce NADPH, the NADPH
required by FA synthesis comes almost entirely from ME-
catalyzed reactions (111). Catalyzed by acetyl-CoA carboxylase
(ACC), acetyl-CoA and CO2 were transformed into monoyl-
CoA. Multiple reactions can be continued in the presence of
FAS. Acetyl-CoA combines with ACP to form acetyl-ACP, and
malonyl-CoA and acetyl-CoA yield acyl-CoA via a condensation
reaction. The three steps of reduction, dehydration and re-
reduction are continued, and the FA chain extends by two
carbon atoms. NADPH is taken as the reducing cofactor by
FAS, and two NADPH molecules are required in each step
of the acyl-CoA chain elongation. The chain is repeatedly
extended to the desired length of the synthetic organism,
and then some FAs are desaturated to form unsaturated FAs
(112–114). The related reactions and enzymes are shown in
Figure 2.

PKS Pathway
The synthesis of some special FAs in microorganisms may
be related to PKS. PKS is a sophisticated molecular machine
responsible for synthesizing polyketides, which are natural
products from the secondary metabolism with similarities to
FA (115–117).

The DHA synthesis in Thraustochytrium, Schizochytrium
limacinum, Aurantiochytrium sp. is considered to involve
the PKS pathway. The successive condensation reactions
of precursors catalyzed by PKS can form a variety of
polyketides, and then numerous complex compounds are
generated through modification reactions such as methylation,
redox, glycosylation and hydroxylation (116, 118). In terms
of structure and properties, PKS can be divided into three
types: modular type (type I), repetition type (type II) and
chalcone type (type III). The PKS found in fungi is mostly
type I, which is large multifunctional proteins encoded by
a single gene. It has multiple similar modules, and some
domains are reused in the compound synthesis (117). The
type I has a multidomain architecture whose active sites were
distributed on large modules, while the type II is composed
of monofunctional enzymes, with catalytic sites separated on
different proteins (119). Type III polyketide synthases (PKSs)
produce secondary metabolites with diverse biological activities,
including antimicrobials (120, 121). In contrast to types I
and II, type III PKSs are dimers of ketone synthases that
undergo a series of reactions such as initiation of primer
substrates, decarboxylation condensation of extended substrates,
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FIGURE 2 | TAGs and fatty acid synthesis in microbial cells. MIT, Mitochondria; ER, Endoplasmic reticulum; ACL, ATP-citrate lyase; FAS, Fatty acid synthase; MD,

Malic dehydrogenase; ME, Malic enzyme; ACC, Acetyl-CoA carboxylase; TCA, Tricarboxylic acid cycle; DAG, Diacylglycerol; PA, Phosphatidic acid; TAG,

Triacylglycerol; FA, Fatty acid; OA, Oleic acid; LA, Linoleic acid; ALA, α-Linolenic acid; GLA, γ-Linolenic acid; DGLA, Dohomo-γ-linolenic acid; ARA, Arachidonic acid;

EPA, Eicosapentaenoic acid; DPA, Docosapentaenoic acid; DHA, Docosahexaenoic acid.

FIGURE 3 | Examples of PUFA synthase organization in various representative organisms. KS, β-ketoacyl synthase; MAT, malonyl-CoA: ACP transacylase; ACP,

acyl-carrier protein; KR, β-ketoreductase; DH, dehydratase; CLF, chain length factor; AT, acyl transferase; ER, enoyl-reductase; DH/I, dehydratase/isomerase.

ring closure of growing polyketide chains and aromatization,
and produce a variety of biologically active aromatic compounds
(122). The PKS pathway of some species is shown in
Figure 3 (119).

TAG Synthesis
At present, TAGs are viewed as an important form of carbon
source and energy storage unit in microorganisms. The TAG
synthesis pathway is triggered at the point when carbon is
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abundant but nitrogen is depleted in the medium. The FA
biosynthesis in cytosol involves several reactions which convert
the precursor, acetyl-CoA, into long-chain FAs (123). The
synthesized acyl-CoA has a typical chain length of 18 or 16
carbon atoms. These C18:0 and C16:0 molecules are then
delivered to the endoplasmic reticulum (ER) to be further
elongated and desaturated (124–126). The TAG synthesis
requires a variety of enzymes, and phosphatidic acid (PA) and
diglyceride are two key intermediates in anabolic metabolism.

Generally, the TAG synthesis involves the Kennedy pathway,
with glycerol-3-phosphate (G3P) and acyl-CoA serving as the
direct substrates in the process (126, 127). The first step of
TAG assembly is the conversion of G3P into lysophosphatidic
acid (LPA) with G3P acyltransferase (SCT1) as the catalyst
(128). Subsequently, the LPA acylation occurs to generate
PA in the presence of LPA acyltransferase (SLC1). Further,
under the action of phosphatidic acid phosphatase (PAP), PA
is dephosphorylated to produce diacylglycerol (DAG) (129).
Finally, TAG is formed after the DAG acylation at the sn-3
position by an acyl-CoA-independent or acyl-CoA-dependent
reaction (130, 131). Regarding the acyl-CoA-independent
reaction, glycerophospholipid is the acyl group donor and
phospholipid DAG acyl-transferase (LRO1) catalyzes the process.
With respect to the acyl-CoA-dependent reaction, acyl-CoA acts
as the final donor of acyl group and DAG acyltransferases, i.e.,
DGA1 or DGA2, are responsible for the catalysis. Furthermore,
acting as the acyl-transferase of an acyl-CoA-dependent reaction,
the steryl ester synthetase, which is encoded by ARE1, is proved
able to promote the DAG acylation (123). The related enzymes
and specific reactions are displayed in Figure 2.

TAG Degradation
The TAGs accumulated in cells store energy for them. Once
carbon becomes insufficient, TAGs would be degraded with
acetyl-CoA release so that the cellular metabolism can be
maintained. Initially, free fatty acids (FFAs) can be produced
from TAGs in the presence of intracellular lipases (TGL3 and
TGL4) (132). These FFAs are activated by FAA1 to generate
acyl-CoAs, which are then transported by specific transporters
(Pxa1 and Pxa2) into the peroxisome (133). Alternatively, the
transportation of the produced FFAs into the peroxisome takes
place first, followed by the activation to acyl-CoAs therein by
acyl/aryl-CoA ligase (AAL) (134). Afterward, acyl-CoAs are
degraded in the peroxisome via the β-oxidation pathway to
generate acetyl-CoA.

METABOLIC ENGINEERING OF
OLEAGINOUS FUNGI

Researchers have modified a variety of lipid-producing fungi
to improve production efficiency of fatty acids. On the whole,
these modifications can be divided into four categories: (1)
enhancement of FA synthesis pathway, (2) enhancement of
TAG synthesis pathway, (3) overexpression of key enzymes for
providing cofactors, and (4) the blocking competitive pathway

TABLE 3 | Researches about lipid synthesis by overexpressing genes or

knocking-out genes.

Genes Species Lipid content

(%)

References

sodit M. lusitanicus +24.6 (111)

mt M. lusitanicus +33.8 (111)

1Snf-β M. circinelloides +32 (137)

g6pdh1 M. circinelloides +23-38 (138)

g6pdh2 M. circinelloides +41-47 (138)

leuB M. circinelloides +67-73 (138)

CT M. circinelloides +51% efflux

rate of [14C]

citrate

(139)

1CT M. circinelloides −18% efflux

rate of [14C]

citrate

(139)

1-15D, MFE1,

PEX10

Y. lipolytica 77.8 (140)

DGA1, MFE1,

PEX10

Y. lipolytica 71 (141)

ACC1 M. rouxii 40 (142)

MA-GAPDH1 M. alpina +13 (143)

YlGSY1 Y. lipolytica +60% TAG (144)

IDH M. alpina +8.2 (145)

ER S.

limacinum SR21

+47.63 (146)

Overexpression of

ACL and ACC

Schizochytrium

sp. ATCC 20888

73 (147)

ELO3 Schizochytrium

sp. S31

+1.39 times

DHA

(148)

sodit-a or/and

sodit-b

M. circinelloides +10-40 (149)

(32, 135, 136). Table 3 summarizes some studies on genetic
modification of genes related to lipid synthesis.

Enhancement of FA Synthesis Pathway
Previous studies have shown that the expression of acetyl-
CoA carboxylase (encoded by accA, accB, accC and accD) and
thioesterase I (encoded by tesA) in Escherichia coli can speed up
the FA synthesis by six times. This suggests that the catalytic
reaction of acetyl-CoA carbohydrase is a rate-limiting step for
FA synthesis (150–153). Overexpression of both heterologous
1-15 desaturase (1-15D) sourced from flax and endogenous
genes (SCD, ACC1, DGA1 and 1-12D) along with the deletion of
endogenousMFE1 and PEX10 can yield a superior lipid producer
(140). It is able to produce lipid with content of 77.8% and titer
of 50 g/L using glucose as the substrate in a 5 L stirred-tank
bioreactor (140).

Han et al. (147) overexpressed in Schizochytrium sp.
ATCC 20888 using the strong constitutive promoter ccg1,
Schizochytrium ATP-citrate lyase (ACL) and acetyl-CoA
carboxylase (ACC). The lipid content of overexpressed strains
obtained by fermentation culture can reach a maximum of
73.0%, an increase of 38.3%. However, the ACC1 gene from
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mold M. rouxii is expressed in the Hansenula polymorpha,
and the fat content is only 40% higher than the original (142),
possibly because the fungus has a more powerful metabolic
regulation system.

Enhancement of TAG Synthesis Pathway
Diacylglycerol acyltransferase (DGAT) catalyzes the conversion
of DAG and acetyl-CoA to TAG, which is the last step in the
TAG synthesis (32, 154, 155). When grown in batch conditions
and minimal medium, the resulting strain consumes 12 g/L
cellulose and accumulates 14% (DCW) lipids (156). Blazeck
et al. (141) synergistically regulated multiple key genes related
to the degradation and biosynthesis of lipids in Y. lipolytica
with a combinatorial strategy, including MFE1, AMPD, PEX10,
MAE, DGA1, ACL1, ACL2 and DGA2, with 57 distinct genotypes
generated. The double deletion of MFE1 and PEX10 and the
overexpression of DGA1 were most effective for modification.
After the optimization of bioreaction conditions, the engineered
strain had a lipid content of 71% (DCW) and a lipid titer of
25 g/L. Markedly, a 60-fold improvement was realized over the
original strain.

Overexpression of Key Enzymes for
Providing Cofactors
IDH and ME probably play a crucial role in the accumulation
of lipids. When glucose-6-phosphate dehydrogenase (G6PD),
6-phosphogluconate dehydrogenase (PGD), IDH and ME are
overexpressed in M. alpina, total FAs can be increased by 1.7
times; while ME2 is more effective in desaturation, and the
content of arachidonic acid (AA) is increased by 1.5 times
compared to the control (157). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) is an enzyme highly conserved in the
glycolytic pathway. The lipid-producing filamentous fungus M.
alpina was used to characterize two copies of the gene encoding
GAPDH, and the overexpression strain MA-GAPDH1 increases
the lipid content by about 13% (143). First, the total lipid

accumulation was increased by overexpressing a malic enzyme
from Crypthecodinium cohnii to elevate NADPH supply. Then,
the inhibition effect on acetyl-CoA carboxylase was relieved by
overexpressing a codon-optimized ELO3 gene from M. alpina.
After the above two-step engineering, contents of DHA was
increased by 1.39-fold, reaching a level of 26.70% of dry cell
weight, respectively (148).

The PKS cluster genes are supposed to synthesize PUFAs
in S. limacinum. Ling et al. (146) improved lipid production
domain expression by homologous recombination knocking out
two enolate reductase (ER) genes located on the PKS cluster. The
addition of triclosan as a modulator of the ER domain resulted in
a 51.74% increase in PUFA production and a 47.63% increase in
lipid production.

Blocking Competitive Pathways
The main competitive pathways blocking the lipid accumulation
in microbial cells include β-oxidation of FAs, synthesis of
phospholipids and conversion of phospho-enol-pyruvic acid
(PEP) to oxalacetic acid. The β-oxidation occurs in peroxisomes,
and peroxisome biogenesis is generally downregulated by the
deletion of PEX3, PEX10 and PEX11 so that the degradation
of TAGs can be prevented in commercial strains (158,
159). As an important intermediate metabolite, malate, its
subcellular location and concentration have significant effects
on fungal lipid metabolism. Yang et al. (149) deleted the two
plasma membrane malate transporters “2-oxoglutarate:malate
antiporter” (named SoDIT-a and SoDIT-b) of M. circinelloides
WJ11 and analyzed their effects on growth ability, lipid
accumulation andmetabolism. Their results showed that the lipid
content of the mutant was increased by ∼10–40% compared to
the control strain, indicating that defects in plasma membrane
malate transport lead to an increase in malate for lipid synthesis.

Additionally, the genes involved in the β-oxidation pathway
are often the deletion targets to increase lipid accumulation
(160). After the characterization and deletion of the YlGSY1 gene

TABLE 4 | Sources and uses of various unsaturated fatty acids.

Category Species Functions

DHA Thraustochytrium, Schizochytrium limacinum, Aurantiochytrium sp. Conducive to retinal development, promote brain development,

prevent cardiovascular disease

EPA Diasporangium sp , Mucor, Mortierella alpine Cunninghamell Lowers cholesterol levels, resists arteriosclerosis, prevents

Alzheimer’s disease and vision loss, improves brain function, is

added to healthy food and baby food

ARA Mortierella, Mortierella alpina, Mortierella isabellina Promoting brain and nervous system development

ALA Saccharomyces cerevisiae Inhibiting thrombotic diseases, reducing blood pressure and blood

lipids

GLA Mucor hiemalis, Mucor circinelloides, Rhizopus, Zygomycetes Plays an important physiological role in cardiovascular, immune,

reproductive and endocrine systems, lowers blood sugar and

blood lipids

Palmitic acid Schizochytrium Treatment of inflammation in cells and organs caused by

excessive consumption

LA Galactomyces geotrichum, Mortierella alpina, Mucor circinelloides Reducing blood lipid, soften blood vessels, reducing blood

pressure, promoting microcirculation

DGLA Mortierella alpina, Pythium, Entomophyhora Treating atherosclerosis
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encoding glycogen synthase, Bhutada et al. (144) increased the
TAG accumulation of the engineered strain by 60% as compared
with the wild-type strains. This proves that glycogen synthesis
is a competing pathway, and its elimination is beneficial for the
production of neutral lipids.

COMMERCIAL APPLICATIONS OF
FUNGAL FAs

Recently, many researchers make efforts to explore the
applications of microbial lipids in various fields from the
food and health industry to the production of plasticizers,
lubricants, spices and pesticides. Additionally, they are also
promising intermediates in fine chemicals and other industries.
This part mainly introduces the applications of polyunsaturated
fatty acids from fungi. Polyunsaturated fatty acids (PUFAs)
have received increasing attention for their beneficial effects
on human health. PUFAs refer to long-chain FAs containing
two or more double bonds, mainly including linoleic acid
(LA), conjugated linoleic acid (CLA), γ-linolenic acid (GLA),
AA, eicosapentaenoic acid (EPA), DHA, which are mostly the
precursors of bioactive substances. They have the capabilities of
anti-aging, anti-oxidation and anti-inflammation and are able to
inhibit the formation, proliferation and metastasis of tumor cells
and treat heart disease, hypertension, etc.Table 4 summarizes the
production of unsaturated fatty acids by some fungi and their
application functions.

DHA

DHA is an important member of the ω-3 PUFA family and
has a wide distribution. Among marine organisms such as fish,
shrimps, crabs, and seaweeds, DHA is particularly abundant
in lipids of deep-sea fish (161). It can be produced in the
Thraustochytrium, Schizochytrium limacinum, Aurantiochytrium
sp. and so on. Although DHA can be produced from α-linolenic
acid, the reaction rate is low, which thus necessitates its intake
from diet (7). It accumulates in retinal tissue and gray matter
in general and plays a key role in early visual and neural
development (162). Besides, it is conducive to the development
of the retinal, neuronal and immune systems at embryonic
and post-natal stages (163, 164) and is effective to prevent
cardiovascular disease, maintain brain and learning functions
and protect inflammation response systems in adulthood (165).
As a nutrient, DHA can be used in maternal and infant products.
DHA and other unsaturated FAs in microalgae can be fully
digested and absorbed by some aquatic organisms to meet the
growth and development of juvenile fish and improve their
survival rate (166).

EPA

EPA belongs to the ω-3 series of PUFAs. Natural phospholipids
containing EPA are mainly found in the eggs and muscle
tissues of marine animals. EPA can be produced in Mucorales,
M. alpina and so on. Studies have revealed that EPA is able

to protect the heart against the deleterious effects of sepsis
in female rats. The following two reasons account for this
beneficial action: (1) The anti-inflammatory activity of EPA
which reduces the oxidative stress and preserves the energy
metabolism through an increase in UCP3; (2) the incorporation
of EPA inmembrane phospholipids that increases the vasodilator
reserve of the coronary microvessels (167, 168). EPA and DHA
have various physiological functions such as reducing cholesterol
content, resisting arteriosclerosis, preventing Alzheimer’s disease
and vision loss and improving brain function (164, 169). EPA
and DHA are usually added to health foods and baby foods.
High levels of EPA and DHA can be used as drugs to treat
cardiovascular and cerebrovascular diseases, e.g., hyperlipidemia
and arteriosclerosis. The preparation of high-purity EPA and
DHA is the current deep processing target of fish lipids (27, 170).
EPA is also an important functional component of breast milk,
which is essential for the development of the baby’s brain and
vision. Therefore, more and more researchers are committed
to applying EPA to infant milk powder in hope of improving
its nutritional value through simulating the nutrients in breast
milk (171).

ARA

ARA is an important member of the ω-6 PUFA family and has
a wide distribution. Like DHA, which plays an important role in
the development of infants’ brains and retinas, it is one of the
important factors affecting the quality of infant milk powder (21,
172).Mortierella, a fungus of the orderMucor, is a good producer
of ARA. Research shows that ARA and DHA together constitute
20% of the weight of the human brainstem and are mainly
concentrated in the outer neuron membrane and iliac sheath
(173, 174). Bieren et al. (175) discovered that ARA metabolites
can promote the occurrence of acute inflammation and produced
pro-inflammatory mediators, such as PGE2 and PGfc. Lipoxin
A4 derived from ARA can promote the degradation of lipid
mediators. ARA accounts for 15–17% of the total FAs in skeletal
muscle, which benefits the growth and repair of skeletal muscle
tissue (176). Studies have shown that ARA supplementation
can stimulate prostaglandin release and induce skeletal muscle
hypertrophy through COX-2 dependent pathways (177).

GLA

GLA, one of the essential FAs, is an important component
of biofilm (15). The microbial sources of GLA are mainly
fungi and microalgae. For example, the microbial sources of
GLA mainly include Spirulina (S. maxima, S. arthrospirulina),
Mucor (M. rucus and M. microflora), Rhizopus, and Crucifera
(15, 178, 179). GLA plays a significant physiological role in
cardiovascular, immune, reproductive and endocrine systems.
It is important because of its nutritional value and medicinal
applications (180). GLA can act on lipoprotein enzyme and lipase
to affect the formation and expression of TAGs, total cholesterol
and very-low-density and low-density lipoproteins, thus having
the capacity to lower blood lipid (181).

Frontiers in Nutrition | www.frontiersin.org 9 May 2022 | Volume 9 | Article 873657

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zhang et al. Fatty Acids From Oleaginous Fungi

High-Value Chemicals Production From
Oleaginous Fungi
In addition to the above-mentioned polyunsaturated fatty acids,
some of these strains can also produce high levels of squalene
and carotenoids, two other compounds of commercial value with
rapidly growing market potential (182). Squalene has antioxidant
and anticancer activities with broad applications in food and
cosmetics industries. Besides, squalene has been used as vaccine
adjuvant in vaccine formulations (43, 183). Since, the demand
for squalene has increased during the last decade, microbial
production of squalene has been investigated as a promising
alternative source for traditional extraction methods from shark
liver or plant lipids (184). Microbial strains are capable of
producing non-polluting, low-cost, high-quality and sustainable
sources of squalene, which is themain direction of the lipid-based
biofuel industry.

Aurantiochytrium strains have the potential to produce large
amounts of squalene, and Aurantiochytrium is known for its
potential to produce large amounts of polyunsaturated DHA on a
large scale (185). Furthermore, Thraustochytrid reported the co-
production of squalene and DHA from inexpensive feedstocks
such as organic solvent pretreatment spruce hydrolysis (186).

CONCLUSION

Accumulation of fatty acids with important functions is the most
attractive point of oleaginous fungi. However, the cost limits
application of the functional fatty acids. It is very important to
improve production efficiency and reduce cost of the fatty acids.
Replacing glucose with raw materials, while maintaining high
biomass and lipid yields, was considered a feasible strategy. More

fundamentally, many metabolic engineering strategies have been
developed as efficient tools in oleaginous fungi to overcome the
biochemical limit and to improve production efficiency of fatty
acids. Particularly, the special kind of functional fatty acid can
be enhanced by modifying the biosynthetic pathway with much
higher yield. It also can be predictable that metabolic engineering
can change the storage mode of fatty acids, even simplify the
extraction. Thus, oleaginous fungi can be developed as hosts for
high-value fatty acids and fatty acid-derived chemicals.
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