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Abstract
1.	 With increasing application of pooled-sequencing approaches to population 
genomics robust methods are needed to accurately quantify allele frequency dif-
ferences between populations. Identifying consistent differences across stratified 
populations can allow us to detect genomic regions under selection and that differ 
between populations with different histories or attributes. Current popular statisti-
cal tests are easily implemented in widely available software tools which make 
them simple for researchers to apply. However, there are potential problems with 
the way such tests are used, which means that underlying assumptions about the 
data are frequently violated.

2.	 These problems are highlighted by simulation of simple but realistic population ge-
netic models of neutral evolution and the performance of different tests are as-
sessed. We present alternative tests (including Generalised Linear Models [GLMs] 
with quasibinomial error structure) with attractive properties for the analysis of al-
lele frequency differences and re-analyse a published dataset.

3.	 The simulations show that common statistical tests for consistent allele frequency 
differences perform poorly, with high false positive rates. Applying tests that do 
not confound heterogeneity and main effects significantly improves inference. 
Variation in sequencing coverage likely produces many false positives and re-scal-
ing allele frequencies to counts out of a common value or an effective sample size 
reduces this effect.

4.	 Many researchers are interested in identifying allele frequencies that vary consist-
ently across replicates to identify loci underlying phenotypic responses to selection 
or natural variation in phenotypes. Popular methods that have been suggested for 
this task perform poorly in simulations. Overall, quasibinomial GLMs perform better 
and also have the attractive feature of allowing correction for multiple testing by 
standard procedures and are easily extended to other designs.
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1  | INTRODUCTION

With the increasing application of pooled genome sequencing (pool-
seq) approaches to population genomics (Boitard, Schlo, Nolte, Pandey, 
& Futschik, 2012; Ferretti, Ramos-Onsins, & Pérez-Enciso, 2013; 
Schlötterer, Kofler, Versace, Tobler, & Franssen, 2015; Schlötterer, 
Tobler, Kofler, & Nolte, 2014) researchers are interested in accurately 
quantifying allele frequency differences between populations and 
using these to infer the action of selection. Such data can provide us 
with insights into the evolutionary and demographic history of popu-
lations and to identify regions under selection and alleles that consis-
tently differ in frequency between population substrata with different 
characteristics, across populations.

In particular, several tests of frequency differences have been used 
to compare allele frequencies at markers throughout the genome. The 
aim is usually to determine whether the frequencies of an allele at 
a particular marker (typically single nucleotide polymorphisms; SNPs) 
consistently differ between subsets of a population or whether such 
differences are consistent across replicated experimental evolution 
lines. This consistency is important because it provides a criterion to 
identify alleles that underlie the same trait in many populations and 
to distinguish consistent responses to selection from idiosyncratic 
responses or effects of drift in experimental evolution studies. A hypo-
thetical example is where three replicate lines of a large mass selection 
treatment are set up from three separate but identical base line pop-
ulations and allowed to evolve for several generations. Pooled whole 
genome sequencing (Pool-seq; Schlötterer et al., 2014) can then be 
applied to determine the allele frequencies at different SNP markers 
throughout the genome. Markers that show a consistent difference 
across replicates are more likely to be functionally important in pro-
ducing the phenotype under study.

Many of the statistical tests applicable to this kind of scenario 
are implemented in popular population genomic software tools (e.g. 
PoPoolation2) which make them routine to apply. However, here we 
find serious consequences of the misapplication of these tests that 
arise from two main sources. First, heterogeneity in allele frequency 
differences (e.g. arising from genetic drift) is often confused for sig-
nificant main effects. Second, very little attention has been paid to 
pseudoreplication of allele counts that is inherent in pool-seq exper-
imental designs (where single chromosomes are “counted” multiple 
times). We show that these violations of statistical assumptions pro-
duce high false discovery rates (FDRs). These problems are highlighted 
by simulation and we present alternative tests for the analysis which 
improve inference.

1.1 | The CMH-test

The most widely used statistical method to compare allele frequen-
cies is the Cochran-Mantel-Haenszel test (Cochran, 1954; Mantel 
& Haenszel, 1959), an extension of Chi-squared tests for multiple 
biological replicates. The CMH-test considers 2 × 2 × k contingency 
tables. In the context of population genomics the rows and columns 
of each 2 × 2 table represent counts of different alleles (X) in different 

treatment lines or strata (Y) while k represents the number of biologi-
cal replicates (e.g. different studies, populations, Z) (Agresti, 1996). In 
the CMH-test the null hypothesis is that ‘X and Y are conditionally 
independent given Z’ (Agresti, 1996). A 2 × 2 table can be summarized 
by the conditional odds (OXYk) which measures the magnitude of the 
association between the factors X and Y at level k.

If

then the odds ratios are homogeneous, the association between X and 
Y is the same at each level (k) of Z, and we are justified in describing the 
association with a single common odds ratio which can be tested for 
differences to 1 (Agresti, 1996). However, if the association between 
X and Y for the 2 × 2 tables is different across the k tables the test can 
give misleading results (Agresti, 1996; Landis, Heyman, & Koch, 1978; 
see also below). This assumption of homogeneity can be tested by, for 
example, the Woolf-test (Woolf, 1955). Another assumption of the 
CMH-test is that data contributing to each count within a cell of the 
contingency table are independent. The first assumption is frequently 
violated in real data. In fact, it is the pattern of consistency that is 
of interest. The second assumption is violated automatically in the 
design of pool-seq experiments because allele counts obtained from 
reads directly are not independent draws from the treatment line or 
study population. Note also that this test assumes a pairing between 
the two treatment lines nested within replicates. Such a pairing may 
sometimes be biologically meaningful (e.g. if any two treatment and 
control lines were set up from the same source population). However, 
artificially pairing samples where no biological rationale exists is not 
ideal.

The CMH-test as applied to genome-wide marker data is imple-
mented in the popular package PoPoolation2 (Kofler, Pandey, & 
Schlötterer, 2011), which aims to identify differences in allele fre-
quencies that are consistent across biological replicates (Kofler et al., 
2011). However, this package does not account for heterogeneity 
between replicates and thereby confuses this heterogeneity for a main 
effect. For example, Table 1 shows a hypothetical contingency table 
with an inconsistent allele frequency difference by any reasonable 

OXY1=OXY2=⋯=OXYk,

TABLE  1 A hypothetical set of contingency tables. The ‘A’ allele 
frequency difference between treatment lines ‘TL1’ and ‘TL2’ are not 
consistent across the three replicates. A CMH-test gives the 
following significant results: Chi-squared = 55.66, df = 1, p < .0001, 
common odds ratio = 6.98

Replicate Treatment line

Allele

A a

1 TL1 66 5

TL2 90 3

2 TL1 72 3

TL2 60 5

3 TL1 69 21

TL2 6 72
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definition, for which the CMH-test reports a significant result. This 
is surprising, because much of the rationale for using replicate lines 
in artificial evolution experiments is to distinguish genes that can be 
confidently identified as diverging due to selection rather than drift. 
Only the former should be consistent across lines. The genetic analysis 
tool PLINK (Purcell et al., 2007) also implements the CMH-test and 
while the documentation recommends testing for heterogeneity, this 
is not routinely done in published studies. At the time of writing, the 
PoPoolation2 package had been cited 21 times with respect to the 
CMH-test and PLINK’s implementation of the CMH-test 170 times in 
‘Google Scholar’. While the PoPoolation2 package is never cited along 
with a test for heterogeneity, several of the studies citing PLINK also 
report tests for heterogeneity (e.g. Mero et al., 2010).

1.2 | Examples of the CMH-test in the literature

Recently the CMH-test has become highly popular in evolve and 
resequence (E&R) studies. Several such studies have considered 
data from a base population and three replicate treatment lines of 
Drosophila melanogaster sampled at various generations of experi-
mental evolution under altered temperature regimes (Franssen, Nolte, 
Tobler, & Schlotterer, 2014; Kapun, Van Schalkwyk, McAllister, Flatt, 
& Schlötterer, 2014; Orozco-terWengel et al., 2012a,2012b). Each 
generation, 500 females were sequenced by pool-seq, and a CMH-
test was used to test if the differences in allele frequencies between 
treatments were consistent across replicates (Franssen et al., 2014; 
Orozco-terWengel et al., 2012a,2012b). These studies identified 
regions indicative of haplotype blocks under selection by finding con-
sistent, large average changes in allele frequencies across replicate 
treatment lines in response altered temperature regimes (Franssen 
et al., 2014). Another study based on the same experimental evolu-
tion dataset used three replicates of two selection regimes (Kapun 
et al., 2014). Single nucleotide polymorphism frequencies within 
inversions were used to infer changes in frequencies between the 
selection regimes. Consistency of inversion frequency differences 
across replicates was tested with the CMH-test (Kapun et al., 2014). 
The study found significant, consistent changes between treatments 
across replicates, and the authors quantified the variation in changes 
of inversion frequencies. These studies do not report any attempts to 
test whether odds ratios across replicates are equal nor do they report 
how much allele frequency differences vary between replicates and 
they do not account for frequency variation that arises from cover-
age greatly exceeding the number of independent chromosomes in 
each pool, which is essentially pseudoreplication (Kolaczkowski, Kern, 
Holloway, & Begun, 2011).

Another E&R study considered adaptation to viral infection rates 
of the Drosophila C virus (DCV). Four replicates of three regimes were 
compared; ancestral, sham-control and infected, where flies were 
either not pricked, pricked with a sterile needle, or pricked with DCV 
respectively (Martins, Faria, Nolte, Schlötterer, & Teixeira, 2014). Allele 
frequencies were compared using a CMH-test and also using a bino-
mial Generalised Linear Model (GLM). This study does not report levels 
of variation in allele changes between replicates but found that results 

were the same for the two statistical tests used (Martins et al., 2014). 
Other examples of E&R studies that use the CMH-test to infer consis-
tent allele frequency differences across replicates include response to 
novel laboratory environments (e.g. Huang, Wright, & Agrawal, 2014).

In all these cases, changes in allele frequency are taking place from 
a common base population in response to particular or directed selec-
tion. Studies also use these statistical methods to find SNPs associ-
ated with naturally divergent traits such as coat colour in domestic 
horse breeds (McCue et al., 2012), pigmentation variation in wild pop-
ulations of D. melanogaster (Bastide et al., 2013), as well as loci influ-
encing economically important traits (Ayllon et al., 2015). The same 
approach can also be used in case–control studies to find disease risk 
loci, which is conceptually identical to finding consistent allele fre-
quency differences between two or more groups (e.g. Cichon et al., 
2011; Mero et al., 2010).

While the above studies have yielded many promising results there 
is nevertheless an issue with the application of the CMH-test which 
may result in numerous false positives. There is seldom any attempt 
reported at assessing whether candidate SNPs found conform to the 
assumptions of the CMH-test, in particular the homogeneity of odds 
ratios. Such violations are likely to be common in many datasets and 
will produce false positives, which may be more frequent than true 
hits even after applying corrections for multiple testing. In fact, in a 
recent simulation study the CMH-test was found to have very low 
precision in identifying SNPs under selection (Topa, Jónás, Kofler, 
Kosiol, & Honkela, 2015). Guides to E&R studies say that the CMH-
test performs better than some methods in other simulations (Kofler & 
Schlötterer, 2014) though these, and other, simulations do not seem to 
consider the special cases of pool-seq designs (Baldwin-Brown, Long, 
& Thornton, 2014; Kofler & Schlötterer, 2014). Meanwhile, other sim-
ulation studies have not considered a range of statistical approaches 
(Baldwin-Brown et al., 2014; Kessner & Novembre, 2015) and con-
sensus over best practices is lacking (Kessner & Novembre, 2015). 
Additionally, usually no attempt is made in studies to correct for the 
violations of independent counts although such corrections have been 
suggested in other contexts (e.g. Bergland, Behrman, O’Brien, Schmidt, 
& Petrov, 2014; Kolaczkowski et al., 2011; Machado et al., 2016).

1.3 | Binomial GLMs, quasibinomial GLMs and linear 
models (LMs)

Another approach is to model allele frequencies in a GLM with bino-
mial error distributions (binomial GLMs). This approach estimates the 
effects of a trait of interest, population of origin as well as their inter-
action on the allele or read count. This is similar to approaches that 
identify differential expression in RNA-sequencing (RNA-seq) experi-
ments (Lund, Nettleton, McCarthy, & Smyth, 2012; McCarthy, Chen, 
& Smyth, 2012). Examples of binomial GLMs are less common in the 
literature to infer consistent allele associations with a stratum across 
population, although Martins et al. (2014) report using binomial GLMs 
to compare results with the CMH-test. Binomial GLMs have been 
used to analyse allele frequencies in other contexts (e.g. Bergland 
et al., 2014; Jha et al., 2016; Kapun, Fabian, Goudet, & Flatt, 2016; 
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Machado et al., 2016). A related statistical framework is the GLM with 
quasibinomial error distribution (quasibinomial GLM) that includes an 
extra parameter, φ, which can account for variation over and above 
that assumed by a binomial distribution (Crawley, 2013). This distribu-
tion has been useful in dealing with overdispersion in situations where 
frequency data are not well described by a binomial distribution. 
Finally, a General Linear Model (LM) is also possible where the allele 
frequencies are modelled as frequencies with the treatment group as 
a dependent variable. These approaches have the added benefit that 
they need not assume a specific pairing of an experimental treatment 
line with a ‘control’ or other line but a pairing can be added if there are 
good biological reasons to do so.

1.4 | The G-test

The G-test is not commonly used in population genomics and is also 
based on the analysis of multi-way contingency tables. The G-test is 
similar to the Chi-squared test but with more general application. The 
G-test is based on the log-likelihood ratio test, which is approximated 
at large sample sizes by the common Chi-squared test (Sokal & Rohlf, 
1969). The G-test is less reliable when cell counts in the tables are 0 
(Sokal & Rohlf, 1969, 1981) though continuity corrections where cell 
frequencies are low can make the test more robust (Sokal & Rohlf, 
1969, 1981). The G-test has not been applied to population genomic 
data.

The aim of this study is to assess, by simulation, the performance 
of different methods to identify consistent differences in allele fre-
quencies between two treatment groups across biological replicates.

2  | MATERIALS AND METHODS

2.1 | Description of simulation protocol and 
parameter value choice

The behaviour of the G-test, CMH-test binomial and quasibinomial 
GLMs are explored using simulated datasets (see the supplementary 
material for the algorithm). 1,000,000 (of which 1% [10,000] were 
designated ‘true positives’, see below) independent SNP datasets are 
generated across k replicates of two treatment lines assuming a simple 
but realistic population genetic model that reflects a standard experi-
mental evolution design. The neutral or ‘null’ case of an experimental 
evolution scenario can be described as an instantaneous fission model 
where k replicate subpopulations originate from a common ances-
tral population. Replicates are then split into two ‘treatment lines’ 
which evolve by drift for t generations leading to some differentiation 
(FST > 0) from the ancestral population. We assume that the ancestral 
population is not under selection and is at mutation-drift equilibrium. 
Thus, the ‘A’ allele frequency in the ancestral population (pA) is drawn 
from a beta distribution B(α, β) where:

and,

where u is the forward mutation rate and v is the backward mutation 
rate between the two states of a biallelic SNP respectively and Ne is 
the effective population size (Charlesworth & Charlesworth, 2008). 
The ‘A’ allele frequency within each ‘treatment line’ (fA) is generated 
as a sample from a truncated normal distribution bounded between 
0 and 1 (Balding, 2003; Nicholson et al., 2002) with mean μ = pA 
and variance σ2 = FSTpA(1 − pA), where FST represents the amount of 
neutral divergence from the ancestral population (FST) after t genera-
tions (Balding, 2003; Nicholson et al., 2002). No SNPs are allowed to 
become fixed for the same allele across all lines.

Because the entire population is rarely analysed in experiments a 
sample allele frequency at each locus of size 2N = n alleles is drawn from 
each treatment line using the binomial distribution B(n, fA) so as to obtain 
the count (x) of the ‘A’ alleles in the sample. The count of ‘a’ alleles in the 
pool is then n−x and the frequency of ‘A’ in the pool (fApool) is x/n. Finally, 
the counts among all the sequenced reads is given by another round of 
binomial sampling using fApool and total coverage (CT) by B(CT, fApool). CT 
is either sampled or fixed and the allele counts (CA and Ca) reflect two 
rounds of binomial sampling (sampling from the treatment line and sam-
pling from among the chromosomes with replacement). Data are thus 
generated by progressively filling the cells of contingency tables (shown 
algorithmically in the supplementary information). Each partial table rep-
resents a separate replicated pair of experimental evolution lines.

In pool-seq data allele counts are commonly derived from raw read 
counts at each locus. This can lead to substantial variation in CT across 
genomic regions, and treatment lines due to differences in sequencing 
efficiency or random variation in coverage. Because a pool contains a 
fixed number of chromosomes (n) and CT can often exceed n, CA and Ca 
are not independent draws, some chromosomes will be sampled more 
than once. This should be considered pseudoreplication (Feder, Petrov, & 
Bergland, 2012; Kolaczkowski et al., 2011). The double sampling nature 
of pool-seq has been recognised and ways to deal with it have been pro-
posed (e.g. Lynch, Bost, Wilson, Maruki, & Harrison, 2014). One way to 
ameliorate effects of this is to rescale counts to correspond to frequen-
cies out of the known number of chromosomes in the sample or to a com-
puted effective sample size (neff) (Bergland et al., 2014; Feder et al., 2012; 
Kolaczkowski et al., 2011). Reviews of pool-seq methods have offered 
‘rule-of-thumb’ recommendations for sequencing coverage. Some rec-
ommend at least 50× but suggest up to 200× for reliable detection of low 
frequency alleles (Futschik & Shlötterer, 2010; Kofler & Schlötterer, 2014; 
Schlötterer et al., 2014). Others suggest between 1.4× and 4.1× per indi-
vidual (Fracasetti, Griffin, & Willi, 2015). Here, simulations are run where 
CT is drawn from a negative binomial distribution with mean coverage 
200 and a dispersion parameter of 2. After removing coverage values <10 
this gives a realistic range of coverages from 18× to 859×. Alternatively, 
CT is fixed at 100, 200 or scaled using neff. For the purposes of the neff 
correction, read depth is CT and sampled as above, the number of chro-
mosomes/alleles in the pool (n) is 2N and neff is given by:

according to Kolaczkowski et al. (2011) and Feder et al. (2012).

α = 4Neu

β = 4Nev,

nef f=

((

n∗CT
)

−1
)

(

n+CT
)
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To parameterise the distributions in these simulations, it is nec-
essary to take realistic values for the various population param-
eters. For mutation rate (u and v) values between 2 × 10−9 and 
1 × 10−8 are common in e.g. Heliconius melpomene (Keightley et al., 
2015) or D. melanogaster (Haag-Liautard et al., 2007; Keightley, 
Ness, Halligan, & Haddrill, 2014) and estimates of Ne reported are 
on the order of 1,000,000–4,000,000 in these and other species 
(Charlesworth & Charlesworth, 2008; Jensen & Bachtrog, 2011; 
Keightley et al., 2014, 2015). Thus, the parameters of the beta dis-
tribution describing the allele frequencies in the base population 
are taken to be 4Neu = 4Nev = 0.2. Several experimental evolution 
studies have recently been published (see Introduction). Many of 
these studies represent evolution over relatively few generations and 
few of them report standard population genetic divergence statis-
tics. Nevertheless, when these data are available, fairly substantial 
FST estimates are typically reported. Kang, Aggarwal, Rashkovetsky, 
Korol, and Michalak (2016) report estimates of FST between 0.08 and 
0.2 after ~50 generations of experimental evolution. Even after only 
three generations of evolution by drift, Santos et al. (2013) report 
differentiation of between 0.002 and 0.012. Some experimental evo-
lution studies have been run for many more generations (~100 gener-
ations: Immonen, Snook, & Ritchie, 2014), in which case even higher 
estimates of FST are expected (~0.3–0.5). Neutral differentiation (FST) 
will also depend on the population size. Here, we simulate data using 
values of 0.1, 0.2, or 0.3 for FST, which is probably conservative. Only 
results for FST = 0.2 are given below, results for FST = 0.1 and 0.3 are 
shown in the supplementary material. We assume a pool size (N) of 
100 throughout which is on the same order of magnitude as other 
experimental evolution studies (e.g. Martins et al., 2014; Orozco-
terWengel et al., 2012a,2012b) and of recommended sample sizes 
(Schlötterer et al., 2014).

The primary aim of this study is to assess the False Positive Rates 
(FPRs) of different statistical tests. Under a null hypothesis a well-
behaved statistical test should produce a uniform distribution of p-
values ranging from 0 to 1 (Storey, 2002; Storey & Tibshirani, 2003). 
Thus, for a given cut-off threshold α, the proportion of tests with a 
p-value ≤ α should be α. This can be represented as a straight 1–1 line 
of the FPRs at different values of α against α on a log-log plot. To eval-
uate the statistical tests in this study, the FPRs for α = 0.0001, 0.0005, 
0.001, 0.005, 0.01, 0.05, 0.1, and 0.5 is calculated for each test. The 
simulations are run to consider k = 2, 3, 4, and 10 replicates. The CMH-
test, CMH-test+Woolf-test, binomial GLMs, quasibinomial GLMs, the 
G-test, as described in Sokal and Rohlf (1969, 1981), and a LM are 
then applied to each simulated SNP. Because the allele frequencies 
produced in these simulations are random draws and the population 
genetic model applied is a neutral one, the simulations represent a null 
or ‘neutral’ scenario and most simulated SNPs are expected to show 
no consistent difference across the k samples.

While the main aim of this study is to evaluate the FPRs of these 
statistical tests, the ability of tests to identify true positives is also 
of interest. Thus, 1% of the 1 million SNPs (10,000 SNPs) are desig-
nated ‘true positives’. For each true positive the SNP frequencies are 
simulated as above with the exception that one treatment is given a 

consistent allele frequency increase in 0.2 on top of whatever change 
is generated by drift. The ‘True Positive Rate’ (TPR) can then be roughly 
assessed by estimating the proportion of all true positives recovered 
among the bottom 1% SNPs of the p-value distribution.

2.2 | Implementation of the CMH-test

CMH-tests are performed using the R function mantelhaen.test() from 
the ‘stats’ package. This same function is used in the popular software 
package PoPoolation2 (Kofler et al., 2011). Heterogeneity was tested 
using a Woolf-test (Woolf, 1955) from the same r package. Counts of 
zero are tolerated by the CMH-test but not by the Woolf-test where 
a common procedure is to add one to each zero count cell. Here, one 
is added to all cells if there are any empty cells for both the Woolf-test 
and the CMH-test. In the CMH-test framework, a consistent result 
should be one that shows a common odds ratio significantly greater 
than one as well as a non-significant test of heterogeneity in odds 
ratios.

2.3 | Implementation of binomial GLMs, 
quasibinomial GLMs and LMs

GLMs are run in the standard R glm() function, from the ‘stats’ pack-
age. Two model structures are tested for binomial GLMs:

and,

where y gives the counts of ‘A’ and ‘a’ alleles, treatment, replicate, 
and treatment:replicate are the treatment, replicate, and interaction 
effects respectively. e is a binomially distributed error term. A con-
sistently associated SNP is one where there is both no evidence for 
a two-way interaction between treatment line and replicate on allele 
frequency (L × R interaction) and an overall significant effect of treat-
ment line (L) on allele frequency, this is tested by model structure (1). 
Model structure (2) simply tests whether there is an overall effect of 
treatment. Inconsistent allele frequency differences should increase 
variance in one treatment and give non-significant treatment effects. 
Under model structure (1) p-values for the treatment and interaction 
effects are obtained from likelihood ratio tests. For model structure 
(2) p-values are from t-tests. Counts of zero are tolerated by the GLM 
but can lead to other problems due to fitted values from the link func-
tion being undefined. To counter this, a common procedure is to add a 
count of one to each allele count if any zero counts are encountered, 
which we adopt here. Quasibinomial GLMs are also fitted with the 
glm() function (family = ‘quasibinomial’). Only the model structure (2), 
see above, is tested because there are not enough residual degrees 
of freedom to test for interaction effects. Interaction effects are 
estimated for binomial GLMs because dispersion is assumed to be 1. 
However, these estimates should be treated with a degree of cau-
tion. For quasibinomial GLMs, e is a quasibinomially distributed error 
term and p-values for the treatment effects are obtained from t-tests. 

(1)y = treatment + replicate + treatment:replicate + e

(2)y = treatment + e
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Finally, a general Linear Model (LM) is implemented with model struc-
ture (2) in the function lm(). In the LM, e is the Gaussian error term. 
p-values for the treatment effects are obtained by t tests.

2.4 | Implementation of the G-test

G-tests are performed as described in (Sokal & Rohlf, 1969) using a cus-
tom written R function. Here, a SNP allele that occurs at consistently 
different frequencies between lines across populations is one which 
shows an overall association between allele and line (L x A) as well as a 
non-significant line by population by allele count interaction (L × A × P 
interaction). Again, one is added to all cells if any cells are empty.

All simulations and analyses were performed in the r programming 
language (R Development Core Team, 2014). All code, including custom 
written functions are available at: https://github.com/RAWWiberg/
ER_PoolSeq_Simulations. Data presented below are archived in the 
Dryad repository: http://dx.doi.org/10.5061/dryad.mn0tv.

2.5 | Re-analysis of a dataset

Data from the E&R study on adaptation to novel temperature envi-
ronments in D. melanogaster is re-analysed (Orozco-terWengel et al., 
2012a,2012b). Raw data files, as generated by the PoPoolation2 
package, are available from Dryad (Orozco-terWengel et al., 2012a, 
2012b; http://dx.doi.org/10.5061/dryad.60k68.2). These data are re-
analysed using quasibinomial GLMs as above. The original data analy-
sis is described in Orozco-terWengel et al. (2012a,2012b), and also 
re-analysed in Topa et al. (2015) and Iranmehr, Akbari, Shlötterer, and 
Bafna (2016). Here, we compare the results from the original study 
and re-analyse the raw data with some modifications. The full data-
set contains 1,547,837 SNPs from six pools of 500 individuals each. 
We consider only truly biallelic SNPs, as in Topa et al. (2015). The 
minimum and maximum coverage thresholds remain as in Orozco-
terWengel et al. (2012a,2012b) (min-count = 10, min-cov = 10, max-
cov = 500). Analyses are performed on the raw allele counts and 
counts re-scaled to be out of either 1,000 (to match the number of 
independent chromosomes in the pool), 100 or neff. In total, 1,370,371 
SNPs are analysed. The base (B) and 37th generation (F37) from the 
experiment are compared across three replicated experimental evolu-
tion lines in order to identify consistent allele frequency differences 
across the three replicates.

3  | RESULTS

3.1 | Simulated dataset

The distributions of the mean allele frequency difference between the 
lines and the standard deviation (SD) of these differences are shown 
in Figures S1-S3. The SD can be viewed as a measure of how consist-
ent the difference between the two treatment groups is. The SD is 
inexact since its calculation requires a pairing of treatment lines while 
some statistical tests do not assume a pairing and in many experi-
mental designs no meaningful pairing exists. There is no systematic 

relationship between the mean allele frequency difference and the SD 
of allele frequency differences indicating that these are varying freely 
in the simulations.

3.2 | False positive rates

There is substantial variation in the FPRs of each of these tests 
(Figure 1). It is clear that the FPRs for the CMH-test are seriously 
overinflated even at very stringent values of α. FPRs are greater 
where allele frequencies are given by the raw allele counts which are 
allowed to vary (Figure 1). Although Figure 1 suggests that the differ-
ences among the panels are small, on the log-log scale they are in fact 
substantial. Nevertheless, FPRs are high in all cases. This is also seen 
in the histograms of the p-values (Figure S4). The FPRs are also highly 
inflated even when the Woolf-test is used in an attempt to identify 
SNPs where the odds ratios are not homogenous across the partial 
tables (Figure 1). Similarly, the FPRs are high for the G-test, as well as 
binomial GLMs. In contrast, GLMs with a quasibinomial error distribu-
tion and the regular LM show FPRs that are more appropriate. Both 
approaches (the LM and quasibinomial GLMs) produce FPR lines that 
lie very close to the expected 1–1 line (Figure 1). This is also clear from 
the histograms of the p-values (Figure S5). The largest inflations of 
FPRs are again seen in simulations where the allele counts are allowed 
to vary and are very low in the simulations where allele counts are 
fixed at 100, 200 or scaled to the effective sample size (neff) (Figure 1). 
In terms of the FPRs it is clear that the quasibinomial GLMs and the 
LMs perform best. Patterns of FPRs are not affected by assuming dif-
ferent values of FST (Figures S6 and S7).

3.3 | True positive rates

These simulations also implemented a simple method for assessing the 
power of the different tests. The TPR is calculated as the proportion 
of all true positives that were seeded in the simulations that are recov-
ered among the SNPs below the 1st percentile of the p-value distribu-
tions (hereafter the ‘top 1% of SNPs’). In general the CMH-test seems 
to perform quite well recovering between ~15% and 29% of true posi-
tives. However, quasibinomial GLMs and LMs perform better, recover-
ing ~30% of true positives among the top 1% of SNPs (Figure 2). The 
remaining statistical tests (binomial GLMs and G-tests) perform rather 
poorly recovering less than 5% of true positives. While there are some 
differences in the TPRs as the allele counts are allowed to vary or 
kept fixed, the TPR is primarily influenced by the number of replicates 
(Figure 2). Precise TPRs will vary with how large the average difference 
between treatment lines due to selection is in comparison to neutral 
differentiation among the treatment lines. In this simulation the value 
added consistently to one treatment as a difference due to selection was 
0.2. Thus, these values should be taken as a guide, though the distribu-
tion of TPRs from multiple simulations with the same parameters is nar-
row, especially for simulations of 1,000,000 SNPs (Figure S8). Patterns 
of TPRs are affected by assuming different values of FST while keeping 
the difference between treatments at true positives the same, but the 
relative performance of the tests remains the same (Figures S9 and S10).

https://github.com/RAWWiberg/ER_PoolSeq_Simulations
https://github.com/RAWWiberg/ER_PoolSeq_Simulations
http://dx.doi.org/10.5061/dryad.mn0tv
http://dx.doi.org/10.5061/dryad.60k68.2
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3.4 | Re-analysis of dataset

The analysis of allele frequencies from raw counts produces some-
what similar results to the original analysis (Orozco-terWengel et al., 
2012a,2012b) (Figure 3). Spurious false positives due to excessive cov-
erage near chorion gene clusters on chromosome 3L (Orozco-terWengel 

et al., 2012a,2012b) are no longer apparent (Figure 3b,c). However, 
scaling counts to match the large number of chromosomes in the pools 
(to be counts out of either 100 or 1,000) produces unusual looking 
Manhattan plots (Figure S11), likely because it creates artificially high 
confidence in the measurements within the quasibinomial GLM result-
ing in inflated −log10 (p-values). A random sample of 100 of the SNPs 

F IGURE  1 The False Positive Rates (FPRs) at different levels of α for each simulation. Simulations are run for k = 2, 3, 4, and 10 replicated 
treatment lines with a neutral FST of 0.2. Allele counts are allowed to vary freely (CT = var.), are fixed at 100 or 200 (CT = 100, CT = 200), 
or are scaled to neff (CT = neff). Binomial GLMs are run with model structure (1) or (2) (see Methods). The diagonal lines labelled ‘2’, ‘5’, and 
‘10’ represent 2, 5, and 10-fold inflations of p-values respectively. Pool size (N) is 100 diploid individuals, thus the number of independent 
chromosomes is 2N = 200
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that are significant after Bonferroni correction suggest that these 
high scoring SNPs still show patterns that researchers would want to 
identify, i.e. they show a consistent difference between the two time 
points across replicates (Figures S12 and S13). Using raw allele counts 
or scaling counts to correspond to neff does not produce this inflation 
(Figure 3b,c).

Because quasibinomial GLMs produce the expected uniform dis-
tribution of p-values under the null hypothesis (Figure 1), it is possible 
to apply standard corrections for multiple testing. The number of SNPs 
that achieve genome-wide significance using q-values (Storey, Bass, 
Dabney, & Robinson, 2015; Storey & Tibshirani, 2003), Benjamini–
Hochberg (B–H) (Benjamini and Hochberg 1995), or Bonferroni cor-
rection are shown in Table 2. It is apparent that raw counts and counts 
scaled to neff are more conservative estimates at least for the Bonferroni 
correction. Methods that control the FDR (Q-values and B–H correc-
tion) are far more liberal and produce more ‘significant’ SNPs (Table 2).

4  | DISCUSSION

With the increasing popularity of pooled-sequencing methods to study 
population genomics and E&R studies, the importance of determining 
best practice statistical methods for allele frequency estimation and 

the identification of consistent allele frequency differences is crucial. 
User-friendly software packages remove the need for complicated 
scripting but make statistical tests less transparent. This study high-
lights problems with the way in which the popular CMH-test is applied 
and proposes some alternatives.

The CMH-test produces a large number of significant test results 
under the null hypothesis and as such has very high FPRs even at rela-
tively high α thresholds. This seems to be because it confounds hetero-
geneity and a main effect. Indeed, the potential for this is noted in much 
of the original literature describing this test (Agresti, 1996; Landis et al., 
1978). Similarly, many other statistical tests assessed here have FPRs 
that are unacceptably high (G-tests and binomial GLMs). However, LMs 
and quasibinomial GLMs perform well under the null hypothesis, pro-
ducing uniform p-value distributions and the characteristic 1–1 relation-
ship, on the log-log scale, between the FPR and different thresholds of α.

True Positive Rates, the ability to identify SNPs that are in fact 
under selection (true positives), varies across the tests and simula-
tions. Quasibinomial GLMs and LMs perform best, recovering more 
true positives than other statistical tests. As expected, keeping the 
difference applied at true positives the same while reducing the neu-
tral differentiation (FST) increases the TPR. In addition, as in other 
simulation studies (Baldwin-Brown et al., 2014; Kessner & Novembre, 
2015; Kofler & Schlötterer, 2014), there is a strong relationship with 

F IGURE  2 The True Positive Rates 
(TPRs). The TPR is calculated as the 
proportion of 10,000 true positives that 
are recovered among the top 1% of SNPs. 
Simulations are run for k = 2, 3, 4, and 10 
replicated treatment lines with a neutral 
FST of 0.2. Allele counts are allowed to vary 
freely (CT = var.), are fixed at 100 or 200 
(CT = 100, CT = 200), or are scaled to neff 
(CT = neff). Binomial GLMs are run with 
model structure (1) or (2) (see Methods). 
Pool size (N) is 100 diploid individuals, thus 
the number of independent chromosomes 
is 2N = 200. Points have been “jittered” 
horizontally to avoid overlap
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the number of replicated treatment lines in the experiment regardless 
of the statistical test (and our simulations suggest that most current 
studies are underpowered here).

In addition to low FPRs and high TPRs, quasibinomial GLMs have 
other attractive features. First, properly behaved p-values allow con-
trolling FDRs e.g. by q-values, Bonferroni or Benjamini-Hochberg 
correction (Storey & Tibshirani, 2003). This is preferable to relying 
on arbitrary cut-offs of e.g. ‘the top 1%’ or the ‘top 1,000’ SNPs. 
Another attractive feature of quasibinomial GLMs is that there is no 
need to arbitrarily pair experimental treatments but the option exists 
if it makes biological sense and if the data allow it. GLMs also allow 
for more complicated nested experimental designs and interactions. 
Mixed models could also incorporate random effects.

The simulations in this study highlight an additional problem. When 
pools of individuals are sequenced, the coverage can vary substantially 
between pools or between genomic regions. This translates to differ-
ences in the total count for a SNP position. Our results indicate that 
variation in these counts between loci affects the performance of 
some statistical tests. A simple solution is to rescale all allele counts to 
represent either a proportion out of a fixed number that reflects how 
many alleles are in the pool (i.e. how many chromosomes are being 
sequenced) or to the effective sample size neff (Feder et al., 2012; 

Kolaczkowski et al., 2011). Results from the re-analysis of the Orozco-
terWengel et al. (2012a,2012b) dataset suggest that neff is preferable.

Re-analysis of the Orozco-terWengel et al. (2012a,2012b) dataset 
also showed improvements in the consistency of the allele frequency 
difference between treatment lines across replicates in the top SNPs 
identified. The results were qualitatively similar to previously pub-
lished analyses with peaks and troughs in the same genomic regions 
(Figure 3) although very few SNPs pass Bonferroni correction for mul-
tiple testing (Table 2). Furthermore, the large peak on chromosome 3 
that is attributed to artefacts of higher coverage in Orozco-terWengel 
et al. (2012a,2012b) is no longer visible (Figure 3).

In summary, the results presented here indicate that reliable iden-
tification of SNP alleles that occur at consistently different frequen-
cies in different treatment lines across biological replicates of natural 
populations or experimental evolution lines requires two things. First, 
an appropriate statistical test needs to be chosen that does not con-
fuse heterogeneity for a main effect. Two such tests, quasibinomial 
GLMs and linear models, are available and produce appropriate FPRs 
and TPRs, and also have other attractive properties. Second, variation 
in coverage across SNPs and replicates affects results in some circum-
stances. However, standardising coverage should be done with care 
because if the counts are too high this will create an artificially high 
level of confidence in overall effects, resulting in very low (effectively 
zero) p-values. The effective sample size procedure seems useful and 
is well grounded in theory (Feder et al., 2012; Kolaczkowski et al., 
2011). Finally, power (TPRs) seems to be related primarily to the num-
ber of replicates per treatment within the experiment although the 
strength of selection in comparison to the neutral divergence (FST) also 
plays a role. It is important to appreciate that several studies have used 
the CMH-test and successfully uncovered biologically meaningful loci 
confirmed by additional functional analyses (e.g. Martins et al., 2014), 
Thus it is clear that conclusions drawn in such studies are still valid 
despite these potential issues with the CMH-test.

Throughout this study we have followed the convention that the 
more important loci to identify are those which diverge consistently 

F IGURE  3  (a) Manhattan plot of the original CMH-test results 
from Orozco-terWengel et al. (2012a,2012b). Blue points are the top 
2,000 SNPs identified by the CMH-test. Also shown are manhattan 
plots of the re-analysis of the Orozco-terWengel et al. (2012a,2012b) 
data using Quasibinomial GLMs on (b) the raw counts as well as (c) 
scaling counts to neff. Shown are the −log10 (p-values) from the 
main treatment line (L) effect. Blue points are the top 2,000 SNPs. 
Red points in (b) and (c) are SNPs that pass genome-wide Bonferroni 
correction. Note the differences in scale on the y-axis across the panels

TABLE  2 The number of SNPs (single nucleotide polymorphisms) 
that pass multiple test correction in the re-analysed datasets. For 
Bonferroni correction the α threshhold 0.05 was divided by the total 
number of tests (SNPs tested) to get the genome-wide multiple test 
correction threshold. For Q-values and Benjamini–Hochberg (B–H) 
correction, a False Discovery Rate (FDR) threshhold of 0.05 was used. 
Bonferroni corrections carried out manually, B–H corrections followed 
the procedure in Benjamini and Hochberg (1995), and q-values were 
calculated using the “qvalues” package in r (Storey et al., 2015)

Re-analysis Bonferroni Q-values B–H

Raw counts 2 67,702 3,961

Counts scaled to 
neff

3 67,505 4,571

Counts scaled to 
100

456 61,022 15,053

Counts scaled to 
1,000

33 13,013 2,532
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across replicate treatment lines. It is commonly argued that such loci 
are those most likely to represent responses to divergent selection, 
because inconsistent divergence may be due to drift. However, it 
is probably worth noting that evolutionary responses can often be 
opportunistic. Different SNPs segregating within genes or regulatory 
regions may provide alternate responses to similar selection pressures 
or some forms of selection (e.g. parasite–host co-evolution or sexual 
selection) may be particularly likely to cause inconsistent responses. 
Hence, not all loci showing inconsistent responses in real datasets will 
be false positives.
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