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Abstract
1.	 With	 increasing	 application	 of	 pooled-sequencing	 approaches	 to	 population	
genomics	robust	methods	are	needed	to	accurately	quantify	allele	frequency	dif-
ferences	between	populations.	Identifying	consistent	differences	across	stratified	
populations	can	allow	us	to	detect	genomic	regions	under	selection	and	that	differ	
between	populations	with	different	histories	or	attributes.	Current	popular	statisti-
cal	 tests	 are	 easily	 implemented	 in	widely	 available	 software	 tools	which	make	
them	simple	for	researchers	to	apply.	However,	there	are	potential	problems	with	
the	way	such	tests	are	used,	which	means	that	underlying	assumptions	about	the	
data	are	frequently	violated.

2.	 These	problems	are	highlighted	by	simulation	of	simple	but	realistic	population	ge-
netic	models	of	neutral	evolution	and	the	performance	of	different	 tests	are	as-
sessed.	We	present	alternative	tests	(including	Generalised	Linear	Models	[GLMs]	
with	quasibinomial	error	structure)	with	attractive	properties	for	the	analysis	of	al-
lele	frequency	differences	and	re-analyse	a	published	dataset.

3.	 The	simulations	show	that	common	statistical	tests	for	consistent	allele	frequency	
differences	perform	poorly,	with	high	false	positive	rates.	Applying	tests	that	do	
not	 confound	 heterogeneity	 and	 main	 effects	 significantly	 improves	 inference.	
Variation	in	sequencing	coverage	likely	produces	many	false	positives	and	re-scal-
ing	allele	frequencies	to	counts	out	of	a	common	value	or	an	effective	sample	size	
reduces	this	effect.

4.	 Many	researchers	are	interested	in	identifying	allele	frequencies	that	vary	consist-
ently	across	replicates	to	identify	loci	underlying	phenotypic	responses	to	selection	
or	natural	variation	in	phenotypes.	Popular	methods	that	have	been	suggested	for	
this	task	perform	poorly	in	simulations.	Overall,	quasibinomial	GLMs	perform	better	
and	also	have	the	attractive	feature	of	allowing	correction	for	multiple	testing	by	
standard	procedures	and	are	easily	extended	to	other	designs.
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1  | INTRODUCTION

With	the	increasing	application	of	pooled	genome	sequencing	(pool-	
seq)	approaches	to	population	genomics	(Boitard,	Schlo,	Nolte,	Pandey,	
&	 Futschik,	 2012;	 Ferretti,	 Ramos-	Onsins,	 &	 Pérez-	Enciso,	 2013;	
Schlötterer,	 Kofler,	 Versace,	 Tobler,	 &	 Franssen,	 2015;	 Schlötterer,	
Tobler,	Kofler,	&	Nolte,	2014)	researchers	are	interested	in	accurately	
quantifying	 allele	 frequency	 differences	 between	 populations	 and	
using	these	to	infer	the	action	of	selection.	Such	data	can	provide	us	
with	insights	into	the	evolutionary	and	demographic	history	of	popu-
lations	and	to	identify	regions	under	selection	and	alleles	that	consis-
tently	differ	in	frequency	between	population	substrata	with	different	
characteristics,	across	populations.

In	particular,	several	tests	of	frequency	differences	have	been	used	
to	compare	allele	frequencies	at	markers	throughout	the	genome.	The	
aim	 is	 usually	 to	 determine	whether	 the	 frequencies	 of	 an	 allele	 at	
a	particular	marker	(typically	single	nucleotide	polymorphisms;	SNPs)	
consistently	differ	between	subsets	of	a	population	or	whether	such	
differences	 are	 consistent	 across	 replicated	 experimental	 evolution	
lines.	This	consistency	is	important	because	it	provides	a	criterion	to	
identify	alleles	that	underlie	the	same	trait	 in	many	populations	and	
to	 distinguish	 consistent	 responses	 to	 selection	 from	 idiosyncratic	
responses	or	effects	of	drift	in	experimental	evolution	studies.	A	hypo-
thetical	example	is	where	three	replicate	lines	of	a	large	mass	selection	
treatment	are	set	up	from	three	separate	but	identical	base	line	pop-
ulations	and	allowed	to	evolve	for	several	generations.	Pooled	whole	
genome	 sequencing	 (Pool-	seq;	 Schlötterer	 et	al.,	 2014)	 can	 then	be	
applied	to	determine	the	allele	frequencies	at	different	SNP	markers	
throughout	 the	 genome.	Markers	 that	 show	a	 consistent	 difference	
across	replicates	are	more	 likely	to	be	functionally	 important	 in	pro-
ducing	the	phenotype	under	study.

Many	 of	 the	 statistical	 tests	 applicable	 to	 this	 kind	 of	 scenario	
are	 implemented	 in	popular	population	genomic	software	 tools	 (e.g.	
PoPoolation2)	which	make	them	routine	to	apply.	However,	here	we	
find	 serious	 consequences	 of	 the	misapplication	of	 these	 tests	 that	
arise	from	two	main	sources.	First,	heterogeneity	in	allele	frequency	
differences	 (e.g.	arising	from	genetic	drift)	 is	often	confused	for	sig-
nificant	main	 effects.	 Second,	very	 little	 attention	 has	 been	 paid	 to	
pseudoreplication	of	allele	counts	that	is	inherent	in	pool-	seq	exper-
imental	 designs	 (where	 single	 chromosomes	 are	 “counted”	 multiple	
times).	We	show	that	these	violations	of	statistical	assumptions	pro-
duce	high	false	discovery	rates	(FDRs).	These	problems	are	highlighted	
by	simulation	and	we	present	alternative	tests	for	the	analysis	which	
improve	inference.

1.1 | The CMH- test

The	most	widely	used	statistical	method	to	compare	allele	frequen-
cies	 is	 the	 Cochran-	Mantel-	Haenszel	 test	 (Cochran,	 1954;	 Mantel	
&	 Haenszel,	 1959),	 an	 extension	 of	 Chi-	squared	 tests	 for	 multiple	
biological	 replicates.	 The	CMH-	test	 considers	2	×	2	×	k	 contingency	
tables.	In	the	context	of	population	genomics	the	rows	and	columns	
of	each	2	×	2	table	represent	counts	of	different	alleles	(X)	in	different	

treatment	lines	or	strata	(Y)	while	k	represents	the	number	of	biologi-
cal	replicates	(e.g.	different	studies,	populations,	Z)	(Agresti,	1996).	In	
the	CMH-	test	 the	null	 hypothesis	 is	 that	 ‘X and Y	 are	 conditionally	
independent	given	Z’	(Agresti,	1996).	A	2	×	2	table	can	be	summarized	
by	the	conditional	odds	(OXYk)	which	measures	the	magnitude	of	the	
association	between	the	factors	X and Y	at	level	k.

If

then	the	odds	ratios	are	homogeneous,	the	association	between	X and 
Y	is	the	same	at	each	level	(k)	of	Z,	and	we	are	justified	in	describing	the	
association	with	a	single	common	odds	ratio	which	can	be	tested	for	
differences	to	1	(Agresti,	1996).	However,	if	the	association	between	
X and Y	for	the	2	×	2	tables	is	different	across	the	k	tables	the	test	can	
give	misleading	results	(Agresti,	1996;	Landis,	Heyman,	&	Koch,	1978;	
see	also	below).	This	assumption	of	homogeneity	can	be	tested	by,	for	
example,	 the	Woolf-	test	 (Woolf,	 1955).	Another	 assumption	 of	 the	
CMH-	test	is	that	data	contributing	to	each	count	within	a	cell	of	the	
contingency	table	are	independent.	The	first	assumption	is	frequently	
violated	 in	 real	 data.	 In	 fact,	 it	 is	 the	pattern	of	 consistency	 that	 is	
of	 interest.	The	 second	 assumption	 is	 violated	 automatically	 in	 the	
design	of	pool-	seq	experiments	because	allele	counts	obtained	from	
reads	directly	are	not	independent	draws	from	the	treatment	line	or	
study	population.	Note	also	that	this	test	assumes	a	pairing	between	
the	two	treatment	lines	nested	within	replicates.	Such	a	pairing	may	
sometimes	be	biologically	meaningful	 (e.g.	 if	any	two	treatment	and	
control	lines	were	set	up	from	the	same	source	population).	However,	
artificially	pairing	samples	where	no	biological	rationale	exists	is	not	
ideal.

The	CMH-	test	as	applied	to	genome-	wide	marker	data	 is	 imple-
mented	 in	 the	 popular	 package	 PoPoolation2	 (Kofler,	 Pandey,	 &	
Schlötterer,	 2011),	 which	 aims	 to	 identify	 differences	 in	 allele	 fre-
quencies	that	are	consistent	across	biological	replicates	(Kofler	et	al.,	
2011).	 However,	 this	 package	 does	 not	 account	 for	 heterogeneity	
between	replicates	and	thereby	confuses	this	heterogeneity	for	a	main	
effect.	For	example,	Table	1	shows	a	hypothetical	contingency	 table	
with	 an	 inconsistent	 allele	 frequency	 difference	 by	 any	 reasonable	

OXY1=OXY2=⋯=OXYk,

TABLE  1 A	hypothetical	set	of	contingency	tables.	The	‘A’	allele	
frequency	difference	between	treatment	lines	‘TL1’	and	‘TL2’	are	not	
consistent	across	the	three	replicates.	A	CMH-	test	gives	the	
following	significant	results:	Chi-	squared	=	55.66,	df	=	1,	p	<	.0001,	
common	odds	ratio	=	6.98

Replicate Treatment line

Allele

A a

1 TL1 66 5

TL2 90 3

2 TL1 72 3

TL2 60 5

3 TL1 69 21

TL2 6 72
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definition,	 for	which	 the	CMH-	test	 reports	 a	 significant	 result.	This	
is	 surprising,	because	much	of	 the	 rationale	 for	using	 replicate	 lines	
in	artificial	evolution	experiments	is	to	distinguish	genes	that	can	be	
confidently	 identified	as	diverging	due	to	selection	rather	than	drift.	
Only	the	former	should	be	consistent	across	lines.	The	genetic	analysis	
tool	PLINK	 (Purcell	 et	al.,	2007)	also	 implements	 the	CMH-	test	and	
while	the	documentation	recommends	testing	for	heterogeneity,	this	
is	not	routinely	done	in	published	studies.	At	the	time	of	writing,	the	
PoPoolation2	package	had	been	cited	21	 times	with	 respect	 to	 the	
CMH-	test	and	PLINK’s	implementation	of	the	CMH-	test	170	times	in	
‘Google	Scholar’.	While	the	PoPoolation2	package	is	never	cited	along	
with	a	test	for	heterogeneity,	several	of	the	studies	citing	PLINK	also	
report	tests	for	heterogeneity	(e.g.	Mero	et	al.,	2010).

1.2 | Examples of the CMH- test in the literature

Recently	 the	 CMH-	test	 has	 become	 highly	 popular	 in	 evolve	 and	
resequence	 (E&R)	 studies.	 Several	 such	 studies	 have	 considered	
data	 from	 a	 base	 population	 and	 three	 replicate	 treatment	 lines	 of	
Drosophila melanogaster	 sampled	 at	 various	 generations	 of	 experi-
mental	evolution	under	altered	temperature	regimes	(Franssen,	Nolte,	
Tobler,	&	Schlotterer,	2014;	Kapun,	Van	Schalkwyk,	McAllister,	Flatt,	
&	 Schlötterer,	 2014;	 Orozco-	terWengel	 et	al.,	 2012a,2012b).	 Each	
generation,	500	 females	were	sequenced	by	pool-	seq,	and	a	CMH-	
test	was	used	to	test	if	the	differences	in	allele	frequencies	between	
treatments	were	 consistent	 across	 replicates	 (Franssen	et	al.,	 2014;	
Orozco-	terWengel	 et	al.,	 2012a,2012b).	 These	 studies	 identified	
regions	indicative	of	haplotype	blocks	under	selection	by	finding	con-
sistent,	 large	 average	 changes	 in	 allele	 frequencies	 across	 replicate	
treatment	 lines	 in	 response	 altered	 temperature	 regimes	 (Franssen	
et	al.,	2014).	Another	study	based	on	the	same	experimental	evolu-
tion	 dataset	 used	 three	 replicates	 of	 two	 selection	 regimes	 (Kapun	
et	al.,	 2014).	 Single	 nucleotide	 polymorphism	 frequencies	 within	
inversions	 were	 used	 to	 infer	 changes	 in	 frequencies	 between	 the	
selection	 regimes.	 Consistency	 of	 inversion	 frequency	 differences	
across	replicates	was	tested	with	the	CMH-	test	(Kapun	et	al.,	2014).	
The	study	found	significant,	consistent	changes	between	treatments	
across	replicates,	and	the	authors	quantified	the	variation	in	changes	
of	inversion	frequencies.	These	studies	do	not	report	any	attempts	to	
test	whether	odds	ratios	across	replicates	are	equal	nor	do	they	report	
how	much	allele	frequency	differences	vary	between	replicates	and	
they	do	not	account	for	frequency	variation	that	arises	from	cover-
age	 greatly	 exceeding	 the	number	of	 independent	 chromosomes	 in	
each	pool,	which	is	essentially	pseudoreplication	(Kolaczkowski,	Kern,	
Holloway,	&	Begun,	2011).

Another	E&R	study	considered	adaptation	to	viral	infection	rates	
of	the	Drosophila	C	virus	(DCV).	Four	replicates	of	three	regimes	were	
compared;	 ancestral,	 sham-	control	 and	 infected,	 where	 flies	 were	
either	not	pricked,	pricked	with	a	sterile	needle,	or	pricked	with	DCV	
respectively	(Martins,	Faria,	Nolte,	Schlötterer,	&	Teixeira,	2014).	Allele	
frequencies	were	compared	using	a	CMH-	test	and	also	using	a	bino-
mial	Generalised	Linear	Model	(GLM).	This	study	does	not	report	levels	
of	variation	in	allele	changes	between	replicates	but	found	that	results	

were	the	same	for	the	two	statistical	tests	used	(Martins	et	al.,	2014).	
Other	examples	of	E&R	studies	that	use	the	CMH-	test	to	infer	consis-
tent	allele	frequency	differences	across	replicates	include	response	to	
novel	laboratory	environments	(e.g.	Huang,	Wright,	&	Agrawal,	2014).

In	all	these	cases,	changes	in	allele	frequency	are	taking	place	from	
a	common	base	population	in	response	to	particular	or	directed	selec-
tion.	Studies	also	use	these	statistical	methods	to	 find	SNPs	associ-
ated	with	 naturally	 divergent	 traits	 such	 as	 coat	 colour	 in	 domestic	
horse	breeds	(McCue	et	al.,	2012),	pigmentation	variation	in	wild	pop-
ulations	of	D. melanogaster	(Bastide	et	al.,	2013),	as	well	as	loci	influ-
encing	 economically	 important	 traits	 (Ayllon	 et	al.,	 2015).	The	 same	
approach	can	also	be	used	in	case–control	studies	to	find	disease	risk	
loci,	which	 is	 conceptually	 identical	 to	 finding	 consistent	 allele	 fre-
quency	differences	between	 two	or	more	groups	 (e.g.	Cichon	et	al.,	
2011;	Mero	et	al.,	2010).

While	the	above	studies	have	yielded	many	promising	results	there	
is	nevertheless	an	issue	with	the	application	of	the	CMH-	test	which	
may	result	 in	numerous	false	positives.	There	 is	seldom	any	attempt	
reported	at	assessing	whether	candidate	SNPs	found	conform	to	the	
assumptions	of	the	CMH-	test,	in	particular	the	homogeneity	of	odds	
ratios.	Such	violations	are	likely	to	be	common	in	many	datasets	and	
will	 produce	 false	positives,	which	may	be	more	 frequent	 than	 true	
hits	even	after	applying	corrections	 for	multiple	 testing.	 In	 fact,	 in	a	
recent	 simulation	 study	 the	 CMH-	test	was	 found	 to	 have	very	 low	
precision	 in	 identifying	 SNPs	 under	 selection	 (Topa,	 Jónás,	 Kofler,	
Kosiol,	&	Honkela,	2015).	Guides	to	E&R	studies	say	that	the	CMH-	
test	performs	better	than	some	methods	in	other	simulations	(Kofler	&	
Schlötterer,	2014)	though	these,	and	other,	simulations	do	not	seem	to	
consider	the	special	cases	of	pool-	seq	designs	(Baldwin-	Brown,	Long,	
&	Thornton,	2014;	Kofler	&	Schlötterer,	2014).	Meanwhile,	other	sim-
ulation	studies	have	not	considered	a	range	of	statistical	approaches	
(Baldwin-	Brown	 et	al.,	 2014;	 Kessner	&	Novembre,	 2015)	 and	 con-
sensus	 over	 best	 practices	 is	 lacking	 (Kessner	 &	 Novembre,	 2015).	
Additionally,	usually	no	attempt	is	made	in	studies	to	correct	for	the	
violations	of	independent	counts	although	such	corrections	have	been	
suggested	in	other	contexts	(e.g.	Bergland,	Behrman,	O’Brien,	Schmidt,	
&	Petrov,	2014;	Kolaczkowski	et	al.,	2011;	Machado	et	al.,	2016).

1.3 | Binomial GLMs, quasibinomial GLMs and linear 
models (LMs)

Another	approach	is	to	model	allele	frequencies	in	a	GLM	with	bino-
mial	error	distributions	(binomial	GLMs).	This	approach	estimates	the	
effects	of	a	trait	of	interest,	population	of	origin	as	well	as	their	inter-
action	on	the	allele	or	read	count.	This	 is	similar	to	approaches	that	
identify	differential	expression	in	RNA-	sequencing	(RNA-	seq)	experi-
ments	(Lund,	Nettleton,	McCarthy,	&	Smyth,	2012;	McCarthy,	Chen,	
&	Smyth,	2012).	Examples	of	binomial	GLMs	are	less	common	in	the	
literature	to	infer	consistent	allele	associations	with	a	stratum	across	
population,	although	Martins	et	al.	(2014)	report	using	binomial	GLMs	
to	 compare	 results	 with	 the	 CMH-	test.	 Binomial	 GLMs	 have	 been	
used	 to	 analyse	 allele	 frequencies	 in	 other	 contexts	 (e.g.	 Bergland	
et	al.,	2014;	 Jha	et	al.,	2016;	Kapun,	Fabian,	Goudet,	&	Flatt,	2016;	



1902  |    Methods in Ecology and Evoluon WIBERG Et al.

Machado	et	al.,	2016).	A	related	statistical	framework	is	the	GLM	with	
quasibinomial	error	distribution	(quasibinomial	GLM)	that	includes	an	
extra	parameter,	φ,	which	can	account	for	variation	over	and	above	
that	assumed	by	a	binomial	distribution	(Crawley,	2013).	This	distribu-
tion	has	been	useful	in	dealing	with	overdispersion	in	situations	where	
frequency	 data	 are	 not	 well	 described	 by	 a	 binomial	 distribution.	
Finally,	a	General	Linear	Model	(LM)	is	also	possible	where	the	allele	
frequencies	are	modelled	as	frequencies	with	the	treatment	group	as	
a	dependent	variable.	These	approaches	have	the	added	benefit	that	
they	need	not	assume	a	specific	pairing	of	an	experimental	treatment	
line	with	a	‘control’	or	other	line	but	a	pairing	can	be	added	if	there	are	
good	biological	reasons	to	do	so.

1.4 | The G- test

The	G-	test	is	not	commonly	used	in	population	genomics	and	is	also	
based	on	the	analysis	of	multi-	way	contingency	tables.	The	G-	test	is	
similar	to	the	Chi-	squared	test	but	with	more	general	application.	The	
G-	test	is	based	on	the	log-	likelihood	ratio	test,	which	is	approximated	
at	large	sample	sizes	by	the	common	Chi-	squared	test	(Sokal	&	Rohlf,	
1969).	The	G-	test	is	less	reliable	when	cell	counts	in	the	tables	are	0	
(Sokal	&	Rohlf,	1969,	1981)	though	continuity	corrections	where	cell	
frequencies	 are	 low	 can	make	 the	 test	more	 robust	 (Sokal	&	Rohlf,	
1969,	1981).	The	G-	test	has	not	been	applied	to	population	genomic	
data.

The	aim	of	this	study	is	to	assess,	by	simulation,	the	performance	
of	 different	methods	 to	 identify	 consistent	 differences	 in	 allele	 fre-
quencies	between	two	treatment	groups	across	biological	replicates.

2  | MATERIALS AND METHODS

2.1 | Description of simulation protocol and 
parameter value choice

The	 behaviour	 of	 the	G-	test,	 CMH-	test	 binomial	 and	 quasibinomial	
GLMs	are	explored	using	simulated	datasets	(see	the	supplementary	
material	 for	 the	 algorithm).	 1,000,000	 (of	which	 1%	 [10,000]	were	
designated	‘true	positives’,	see	below)	independent	SNP	datasets	are	
generated	across	k	replicates	of	two	treatment	lines	assuming	a	simple	
but	realistic	population	genetic	model	that	reflects	a	standard	experi-
mental	evolution	design.	The	neutral	or	‘null’	case	of	an	experimental	
evolution	scenario	can	be	described	as	an	instantaneous	fission	model	
where	 k	 replicate	 subpopulations	 originate	 from	 a	 common	 ances-
tral	 population.	 Replicates	 are	 then	 split	 into	 two	 ‘treatment	 lines’	
which	evolve	by	drift	for	t	generations	leading	to	some	differentiation	
(FST > 0)	from	the	ancestral	population.	We	assume	that	the	ancestral	
population	is	not	under	selection	and	is	at	mutation-	drift	equilibrium.	
Thus,	the	‘A’	allele	frequency	in	the	ancestral	population	(pA)	is	drawn	
from	a	beta	distribution	B(α, β)	where:

and,

where	u	is	the	forward	mutation	rate	and	v	is	the	backward	mutation	
rate	between	the	two	states	of	a	biallelic	SNP	respectively	and	Ne	is	
the	 effective	 population	 size	 (Charlesworth	&	Charlesworth,	 2008).	
The	‘A’	allele	frequency	within	each	‘treatment	line’	(fA)	is	generated	
as	a	sample	from	a	truncated	normal	distribution	bounded	between	
0	 and	 1	 (Balding,	 2003;	 Nicholson	 et	al.,	 2002)	 with	 mean	 μ	=	pA 
and variance σ2 = FSTpA(1	−	pA),	where	FST	represents	the	amount	of	
neutral	divergence	from	the	ancestral	population	(FST)	after	t	genera-
tions	(Balding,	2003;	Nicholson	et	al.,	2002).	No	SNPs	are	allowed	to	
become	fixed	for	the	same	allele	across	all	lines.

Because	 the	entire	population	 is	 rarely	analysed	 in	experiments	a	
sample	allele	frequency	at	each	locus	of	size	2N	=	n	alleles	is	drawn	from	
each	treatment	line	using	the	binomial	distribution	B(n,	fA)	so	as	to	obtain	
the	count	(x)	of	the	‘A’	alleles	in	the	sample.	The	count	of	‘a’	alleles	in	the	
pool	is	then	n−x	and	the	frequency	of	‘A’	in	the	pool	(fApool)	is	x/n.	Finally,	
the	counts	among	all	the	sequenced	reads	is	given	by	another	round	of	
binomial	sampling	using	fApool	and	total	coverage	(CT)	by	B(CT,	fApool).	CT 
is	either	sampled	or	fixed	and	the	allele	counts	(CA and Ca)	reflect	two	
rounds	of	binomial	sampling	(sampling	from	the	treatment	line	and	sam-
pling	from	among	the	chromosomes	with	replacement).	Data	are	thus	
generated	by	progressively	filling	the	cells	of	contingency	tables	(shown	
algorithmically	in	the	supplementary	information).	Each	partial	table	rep-
resents	a	separate	replicated	pair	of	experimental	evolution	lines.

In	pool-	seq	data	allele	counts	are	commonly	derived	from	raw	read	
counts	at	each	locus.	This	can	lead	to	substantial	variation	in	CT	across	
genomic	regions,	and	treatment	 lines	due	to	differences	 in	sequencing	
efficiency	or	 random	variation	 in	 coverage.	Because	 a	pool	 contains	 a	
fixed	number	of	chromosomes	(n)	and	CT	can	often	exceed	n,	CA and Ca 
are	not	 independent	draws,	some	chromosomes	will	be	sampled	more	
than	once.	This	should	be	considered	pseudoreplication	(Feder,	Petrov,	&	
Bergland,	2012;	Kolaczkowski	et	al.,	2011).	The	double	sampling	nature	
of	pool-	seq	has	been	recognised	and	ways	to	deal	with	it	have	been	pro-
posed	(e.g.	Lynch,	Bost,	Wilson,	Maruki,	&	Harrison,	2014).	One	way	to	
ameliorate	effects	of	this	is	to	rescale	counts	to	correspond	to	frequen-
cies	out	of	the	known	number	of	chromosomes	in	the	sample	or	to	a	com-
puted	effective	sample	size	(neff)	(Bergland	et	al.,	2014;	Feder	et	al.,	2012;	
Kolaczkowski	et	al.,	2011).	Reviews	of	pool-	seq	methods	have	offered	
‘rule-	of-	thumb’	 recommendations	 for	 sequencing	 coverage.	 Some	 rec-
ommend	at	least	50×	but	suggest	up	to	200×	for	reliable	detection	of	low	
frequency	alleles	(Futschik	&	Shlötterer,	2010;	Kofler	&	Schlötterer,	2014;	
Schlötterer	et	al.,	2014).	Others	suggest	between	1.4×	and	4.1×	per	indi-
vidual	(Fracasetti,	Griffin,	&	Willi,	2015).	Here,	simulations	are	run	where	
CT	 is	drawn	from	a	negative	binomial	distribution	with	mean	coverage	
200	and	a	dispersion	parameter	of	2.	After	removing	coverage	values	<10	
this	gives	a	realistic	range	of	coverages	from	18×	to	859×.	Alternatively,	
CT	is	fixed	at	100,	200	or	scaled	using	neff.	For	the	purposes	of	the	neff 
correction,	read	depth	is	CT	and	sampled	as	above,	the	number	of	chro-
mosomes/alleles	in	the	pool	(n)	is	2N and neff	is	given	by:

according	to	Kolaczkowski	et	al.	(2011)	and	Feder	et	al.	(2012).

α = 4Neu

β = 4Nev,

nef f=

((

n∗CT
)

−1
)

(

n+CT
)
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To	parameterise	the	distributions	 in	these	simulations,	 it	 is	nec-
essary	 to	 take	 realistic	 values	 for	 the	 various	 population	 param-
eters.	 For	 mutation	 rate	 (u and v)	 values	 between	 2	×	10−9 and 
1	×	10−8	 are	 common	 in	 e.g.	Heliconius melpomene	 (Keightley	 et	al.,	
2015)	 or	 D. melanogaster	 (Haag-	Liautard	 et	al.,	 2007;	 Keightley,	
Ness,	Halligan,	&	Haddrill,	 2014)	 and	 estimates	 of	Ne	 reported	 are	
on	 the	 order	 of	 1,000,000–4,000,000	 in	 these	 and	 other	 species	
(Charlesworth	 &	 Charlesworth,	 2008;	 Jensen	 &	 Bachtrog,	 2011;	
Keightley	et	al.,	2014,	2015).	Thus,	 the	parameters	of	 the	beta	dis-
tribution	 describing	 the	 allele	 frequencies	 in	 the	 base	 population	
are	 taken	 to	 be	 4Neu = 4Nev	=	0.2.	 Several	 experimental	 evolution	
studies	 have	 recently	 been	 published	 (see	 Introduction).	 Many	 of	
these	studies	represent	evolution	over	relatively	few	generations	and	
few	 of	 them	 report	 standard	 population	 genetic	 divergence	 statis-
tics.	 Nevertheless,	when	 these	 data	 are	 available,	 fairly	 substantial	
FST	estimates	are	 typically	 reported.	Kang,	Aggarwal,	Rashkovetsky,	
Korol,	and	Michalak	(2016)	report	estimates	of	FST	between	0.08	and	
0.2	after	~50	generations	of	experimental	evolution.	Even	after	only	
three	 generations	 of	 evolution	 by	 drift,	 Santos	 et	al.	 (2013)	 report	
differentiation	of	between	0.002	and	0.012.	Some	experimental	evo-
lution	studies	have	been	run	for	many	more	generations	(~100	gener-
ations:	Immonen,	Snook,	&	Ritchie,	2014),	in	which	case	even	higher	
estimates	of	FST	are	expected	(~0.3–0.5).	Neutral	differentiation	(FST)	
will	also	depend	on	the	population	size.	Here,	we	simulate	data	using	
values	of	0.1,	0.2,	or	0.3	for	FST,	which	is	probably	conservative.	Only	
results	for	FST	=	0.2	are	given	below,	results	for	FST	=	0.1	and	0.3	are	
shown	in	the	supplementary	material.	We	assume	a	pool	size	(N)	of	
100	 throughout	which	 is	on	 the	same	order	of	magnitude	as	other	
experimental	 evolution	 studies	 (e.g.	 Martins	 et	al.,	 2014;	 Orozco-	
terWengel	 et	al.,	 2012a,2012b)	 and	 of	 recommended	 sample	 sizes	
(Schlötterer	et	al.,	2014).

The	primary	aim	of	this	study	is	to	assess	the	False	Positive	Rates	
(FPRs)	 of	 different	 statistical	 tests.	 Under	 a	 null	 hypothesis	 a	well-	
behaved	 statistical	 test	 should	 produce	 a	 uniform	distribution	 of	p- 
values	ranging	from	0	to	1	(Storey,	2002;	Storey	&	Tibshirani,	2003).	
Thus,	 for	a	given	cut-	off	 threshold	α,	 the	proportion	of	 tests	with	a	
p-	value	≤	α	should	be	α.	This	can	be	represented	as	a	straight	1–1	line	
of	the	FPRs	at	different	values	of	α	against	α	on	a	log-	log	plot.	To	eval-
uate	the	statistical	tests	in	this	study,	the	FPRs	for	α	= 0.0001,	0.0005,	
0.001,	0.005,	0.01,	0.05,	0.1,	and	0.5	is	calculated	for	each	test.	The	
simulations	are	run	to	consider	k = 2,	3,	4,	and	10	replicates.	The	CMH-	
test,	CMH-	test+Woolf-	test,	binomial	GLMs,	quasibinomial	GLMs,	the	
G-	test,	 as	described	 in	Sokal	 and	Rohlf	 (1969,	1981),	 and	a	LM	are	
then	applied	 to	each	 simulated	SNP.	Because	 the	allele	 frequencies	
produced	in	these	simulations	are	random	draws	and	the	population	
genetic	model	applied	is	a	neutral	one,	the	simulations	represent	a	null	
or	‘neutral’	scenario	and	most	simulated	SNPs	are	expected	to	show	
no	consistent	difference	across	the	k	samples.

While	the	main	aim	of	this	study	is	to	evaluate	the	FPRs	of	these	
statistical	 tests,	 the	 ability	 of	 tests	 to	 identify	 true	 positives	 is	 also	
of	interest.	Thus,	1%	of	the	1	million	SNPs	(10,000	SNPs)	are	desig-
nated	‘true	positives’.	For	each	true	positive	the	SNP	frequencies	are	
simulated	as	above	with	the	exception	that	one	treatment	is	given	a	

consistent	allele	frequency	increase	in	0.2	on	top	of	whatever	change	
is	generated	by	drift.	The	‘True	Positive	Rate’	(TPR)	can	then	be	roughly	
assessed	by	estimating	the	proportion	of	all	true	positives	recovered	
among	the	bottom	1%	SNPs	of	the	p-	value	distribution.

2.2 | Implementation of the CMH- test

CMH-	tests	are	performed	using	the	R	function	mantelhaen.test()	from	
the	‘stats’	package.	This	same	function	is	used	in	the	popular	software	
package	PoPoolation2	(Kofler	et	al.,	2011).	Heterogeneity	was	tested	
using	a	Woolf-	test	(Woolf,	1955)	from	the	same	r	package.	Counts	of	
zero	are	tolerated	by	the	CMH-	test	but	not	by	the	Woolf-	test	where	
a	common	procedure	is	to	add	one	to	each	zero	count	cell.	Here,	one	
is	added	to	all	cells	if	there	are	any	empty	cells	for	both	the	Woolf-	test	
and	 the	CMH-	test.	 In	 the	CMH-	test	 framework,	 a	 consistent	 result	
should	be	one	that	shows	a	common	odds	ratio	significantly	greater	
than	 one	 as	well	 as	 a	 non-	significant	 test	 of	 heterogeneity	 in	 odds	
ratios.

2.3 | Implementation of binomial GLMs, 
quasibinomial GLMs and LMs

GLMs	are	run	in	the	standard	R	glm()	function,	from	the	‘stats’	pack-
age.	Two	model	structures	are	tested	for	binomial	GLMs:

and,

where	 y	 gives	 the	 counts	 of	 ‘A’	 and	 ‘a’	 alleles,	 treatment,	 replicate,	
and	treatment:replicate	are	the	treatment,	 replicate,	and	 interaction	
effects	 respectively.	e	 is	 a	binomially	distributed	error	 term.	A	con-
sistently	associated	SNP	is	one	where	there	is	both	no	evidence	for	
a	two-	way	interaction	between	treatment	line	and	replicate	on	allele	
frequency	(L	×	R	interaction)	and	an	overall	significant	effect	of	treat-
ment	line	(L)	on	allele	frequency,	this	is	tested	by	model	structure	(1).	
Model	structure	(2)	simply	tests	whether	there	is	an	overall	effect	of	
treatment.	 Inconsistent	allele	 frequency	differences	 should	 increase	
variance	in	one	treatment	and	give	non-	significant	treatment	effects.	
Under	model	structure	(1)	p-	values	for	the	treatment	and	interaction	
effects	are	obtained	from	likelihood	ratio	tests.	For	model	structure	
(2)	p-	values	are	from	t-	tests.	Counts	of	zero	are	tolerated	by	the	GLM	
but	can	lead	to	other	problems	due	to	fitted	values	from	the	link	func-
tion	being	undefined.	To	counter	this,	a	common	procedure	is	to	add	a	
count	of	one	to	each	allele	count	if	any	zero	counts	are	encountered,	
which	we	 adopt	 here.	Quasibinomial	GLMs	 are	 also	 fitted	with	 the	
glm()	function	(family	=	‘quasibinomial’).	Only	the	model	structure	(2),	
see	above,	 is	 tested	because	there	are	not	enough	residual	degrees	
of	 freedom	 to	 test	 for	 interaction	 effects.	 Interaction	 effects	 are	
estimated	for	binomial	GLMs	because	dispersion	is	assumed	to	be	1.	
However,	 these	 estimates	 should	 be	 treated	with	 a	 degree	 of	 cau-
tion.	For	quasibinomial	GLMs,	e	is	a	quasibinomially	distributed	error	
term	and	p-	values	for	the	treatment	effects	are	obtained	from	t-	tests.	

(1)y = treatment + replicate + treatment:replicate + e

(2)y = treatment + e
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Finally,	a	general	Linear	Model	(LM)	is	implemented	with	model	struc-
ture	(2)	in	the	function	lm().	In	the	LM,	e	 is	the	Gaussian	error	term.	
p-	values	for	the	treatment	effects	are	obtained	by	t	tests.

2.4 | Implementation of the G- test

G-	tests	are	performed	as	described	in	(Sokal	&	Rohlf,	1969)	using	a	cus-
tom	written	R	function.	Here,	a	SNP	allele	that	occurs	at	consistently	
different	 frequencies	 between	 lines	 across	 populations	 is	 one	which	
shows	an	overall	association	between	allele	and	line	(L	x	A)	as	well	as	a	
non-	significant	line	by	population	by	allele	count	interaction	(L	×	A	×	P	
interaction).	Again,	one	is	added	to	all	cells	if	any	cells	are	empty.

All	simulations	and	analyses	were	performed	in	the	r	programming	
language	(R	Development	Core	Team,	2014).	All	code,	including	custom	
written	 functions	 are	 available	 at:	 https://github.com/RAWWiberg/
ER_PoolSeq_Simulations.	 Data	 presented	 below	 are	 archived	 in	 the	
Dryad	repository:	http://dx.doi.org/10.5061/dryad.mn0tv.

2.5 | Re- analysis of a dataset

Data	 from	the	E&R	study	on	adaptation	 to	novel	 temperature	envi-
ronments	 in	D. melanogaster	 is	re-	analysed	(Orozco-	terWengel	et	al.,	
2012a,2012b).	 Raw	 data	 files,	 as	 generated	 by	 the	 PoPoolation2 
package,	 are	 available	 from	Dryad	 (Orozco-	terWengel	 et	al.,	 2012a,	
2012b;	http://dx.doi.org/10.5061/dryad.60k68.2).	These	data	are	re-	
analysed	using	quasibinomial	GLMs	as	above.	The	original	data	analy-
sis	 is	 described	 in	Orozco-	terWengel	 et	al.	 (2012a,2012b),	 and	 also	
re-	analysed	in	Topa	et	al.	(2015)	and	Iranmehr,	Akbari,	Shlötterer,	and	
Bafna	 (2016).	Here,	we	compare	 the	 results	 from	 the	original	 study	
and	re-	analyse	the	raw	data	with	some	modifications.	The	full	data-
set	contains	1,547,837	SNPs	from	six	pools	of	500	individuals	each.	
We	 consider	 only	 truly	 biallelic	 SNPs,	 as	 in	 Topa	 et	al.	 (2015).	 The	
minimum	 and	 maximum	 coverage	 thresholds	 remain	 as	 in	 Orozco-	
terWengel	et	al.	 (2012a,2012b)	 (min-	count	=	10,	min-	cov	=	10,	max-	
cov	=	500).	 Analyses	 are	 performed	 on	 the	 raw	 allele	 counts	 and	
counts	 re-	scaled	to	be	out	of	either	1,000	 (to	match	the	number	of	
independent	chromosomes	in	the	pool),	100	or	neff.	In	total,	1,370,371	
SNPs	are	analysed.	The	base	 (B)	and	37th	generation	 (F37)	from	the	
experiment	are	compared	across	three	replicated	experimental	evolu-
tion	 lines	 in	order	to	 identify	consistent	allele	 frequency	differences	
across	the	three	replicates.

3  | RESULTS

3.1 | Simulated dataset

The	distributions	of	the	mean	allele	frequency	difference	between	the	
lines	and	the	standard	deviation	(SD)	of	these	differences	are	shown	
in	Figures	S1-S3.	The	SD	can	be	viewed	as	a	measure	of	how	consist-
ent	 the	difference	between	 the	 two	 treatment	groups	 is.	The	SD	 is	
inexact	since	its	calculation	requires	a	pairing	of	treatment	lines	while	
some	 statistical	 tests	 do	 not	 assume	 a	 pairing	 and	 in	many	 experi-
mental	designs	no	meaningful	pairing	exists.	There	 is	no	systematic	

relationship	between	the	mean	allele	frequency	difference	and	the	SD 
of	allele	frequency	differences	indicating	that	these	are	varying	freely	
in	the	simulations.

3.2 | False positive rates

There	 is	 substantial	 variation	 in	 the	 FPRs	 of	 each	 of	 these	 tests	
(Figure	1).	 It	 is	 clear	 that	 the	 FPRs	 for	 the	 CMH-	test	 are	 seriously	
overinflated	 even	 at	 very	 stringent	 values	 of	 α.	 FPRs	 are	 greater	
where	allele	frequencies	are	given	by	the	raw	allele	counts	which	are	
allowed	to	vary	(Figure	1).	Although	Figure	1	suggests	that	the	differ-
ences	among	the	panels	are	small,	on	the	log-	log	scale	they	are	in	fact	
substantial.	Nevertheless,	FPRs	are	high	in	all	cases.	This	is	also	seen	
in	the	histograms	of	the	p-	values	(Figure	S4).	The	FPRs	are	also	highly	
inflated	even	when	the	Woolf-	test	 is	used	 in	an	attempt	to	 identify	
SNPs	where	 the	odds	 ratios	are	not	homogenous	across	 the	partial	
tables	(Figure	1).	Similarly,	the	FPRs	are	high	for	the	G-	test,	as	well	as	
binomial	GLMs.	In	contrast,	GLMs	with	a	quasibinomial	error	distribu-
tion	and	the	regular	LM	show	FPRs	that	are	more	appropriate.	Both	
approaches	(the	LM	and	quasibinomial	GLMs)	produce	FPR	lines	that	
lie	very	close	to	the	expected	1–1	line	(Figure	1).	This	is	also	clear	from	
the	histograms	of	 the	p-	values	 (Figure	S5).	The	 largest	 inflations	of	
FPRs	are	again	seen	in	simulations	where	the	allele	counts	are	allowed	
to	vary	and	are	very	 low	 in	 the	simulations	where	allele	counts	are	
fixed	at	100,	200	or	scaled	to	the	effective	sample	size	(neff)	(Figure	1).	
In	terms	of	the	FPRs	it	is	clear	that	the	quasibinomial	GLMs	and	the	
LMs	perform	best.	Patterns	of	FPRs	are	not	affected	by	assuming	dif-
ferent	values	of	FST	(Figures	S6	and	S7).

3.3 | True positive rates

These	simulations	also	implemented	a	simple	method	for	assessing	the	
power	of	 the	different	 tests.	The	TPR	 is	 calculated	as	 the	proportion	
of	all	true	positives	that	were	seeded	in	the	simulations	that	are	recov-
ered	among	the	SNPs	below	the	1st	percentile	of	the	p-	value	distribu-
tions	(hereafter	the	‘top	1%	of	SNPs’).	In	general	the	CMH-	test	seems	
to	perform	quite	well	recovering	between	~15%	and	29%	of	true	posi-
tives.	However,	quasibinomial	GLMs	and	LMs	perform	better,	recover-
ing	~30%	of	true	positives	among	the	top	1%	of	SNPs	(Figure	2).	The	
remaining	statistical	tests	 (binomial	GLMs	and	G-	tests)	perform	rather	
poorly	recovering	less	than	5%	of	true	positives.	While	there	are	some	
differences	 in	 the	 TPRs	 as	 the	 allele	 counts	 are	 allowed	 to	 vary	 or	
kept	fixed,	the	TPR	is	primarily	influenced	by	the	number	of	replicates	
(Figure	2).	Precise	TPRs	will	vary	with	how	large	the	average	difference	
between	 treatment	 lines	due	 to	 selection	 is	 in	 comparison	 to	neutral	
differentiation	among	the	treatment	 lines.	 In	 this	simulation	the	value	
added	consistently	to	one	treatment	as	a	difference	due	to	selection	was	
0.2.	Thus,	these	values	should	be	taken	as	a	guide,	though	the	distribu-
tion	of	TPRs	from	multiple	simulations	with	the	same	parameters	is	nar-
row,	especially	for	simulations	of	1,000,000	SNPs	(Figure	S8).	Patterns	
of	TPRs	are	affected	by	assuming	different	values	of	FST	while	keeping	
the	difference	between	treatments	at	true	positives	the	same,	but	the	
relative	performance	of	the	tests	remains	the	same	(Figures	S9	and	S10).

https://github.com/RAWWiberg/ER_PoolSeq_Simulations
https://github.com/RAWWiberg/ER_PoolSeq_Simulations
http://dx.doi.org/10.5061/dryad.mn0tv
http://dx.doi.org/10.5061/dryad.60k68.2
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3.4 | Re- analysis of dataset

The	 analysis	 of	 allele	 frequencies	 from	 raw	 counts	 produces	 some-
what	 similar	 results	 to	 the	 original	 analysis	 (Orozco-	terWengel	 et	al.,	
2012a,2012b)	(Figure	3).	Spurious	false	positives	due	to	excessive	cov-
erage	near	chorion	gene	clusters	on	chromosome	3L	(Orozco-	terWengel	

et	al.,	 2012a,2012b)	 are	 no	 longer	 apparent	 (Figure	3b,c).	 However,	
scaling	counts	to	match	the	large	number	of	chromosomes	in	the	pools	
(to	 be	 counts	 out	 of	 either	 100	 or	 1,000)	 produces	 unusual	 looking	
Manhattan	plots	 (Figure	S11),	 likely	because	 it	creates	artificially	high	
confidence	in	the	measurements	within	the	quasibinomial	GLM	result-
ing	in	inflated	−log10	(p-	values).	A	random	sample	of	100	of	the	SNPs	

F IGURE  1 The	False	Positive	Rates	(FPRs)	at	different	levels	of	α	for	each	simulation.	Simulations	are	run	for	k	=	2,	3,	4,	and	10	replicated	
treatment	lines	with	a	neutral	FST	of	0.2.	Allele	counts	are	allowed	to	vary	freely	(CT	=	var.),	are	fixed	at	100	or	200	(CT	=	100,	CT	=	200),	
or	are	scaled	to	neff	(CT	=	neff).	Binomial	GLMs	are	run	with	model	structure	(1)	or	(2)	(see	Methods).	The	diagonal	lines	labelled	‘2’,	‘5’,	and	
‘10’	represent	2,	5,	and	10-	fold	inflations	of	p-	values	respectively.	Pool	size	(N)	is	100	diploid	individuals,	thus	the	number	of	independent	
chromosomes	is	2N	=	200
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that	 are	 significant	 after	 Bonferroni	 correction	 suggest	 that	 these	
high	scoring	SNPs	still	show	patterns	that	researchers	would	want	to	
identify,	 i.e.	they	show	a	consistent	difference	between	the	two	time	
points	across	replicates	(Figures	S12	and	S13).	Using	raw	allele	counts	
or	scaling	counts	to	correspond	to	neff	does	not	produce	this	inflation	
(Figure	3b,c).

Because	quasibinomial	GLMs	produce	 the	expected	uniform	dis-
tribution	of	p-	values	under	the	null	hypothesis	(Figure	1),	it	is	possible	
to	apply	standard	corrections	for	multiple	testing.	The	number	of	SNPs	
that	 achieve	 genome-	wide	 significance	 using	 q-	values	 (Storey,	 Bass,	
Dabney,	 &	 Robinson,	 2015;	 Storey	 &	 Tibshirani,	 2003),	 Benjamini–
Hochberg	 (B–H)	 (Benjamini	 and	Hochberg	1995),	 or	Bonferroni	 cor-
rection	are	shown	in	Table	2.	It	is	apparent	that	raw	counts	and	counts	
scaled	to	neff	are	more	conservative	estimates	at	least	for	the	Bonferroni	
correction.	Methods	that	control	the	FDR	(Q-	values	and	B–H	correc-
tion)	are	far	more	liberal	and	produce	more	‘significant’	SNPs	(Table	2).

4  | DISCUSSION

With	the	increasing	popularity	of	pooled-	sequencing	methods	to	study	
population	genomics	and	E&R	studies,	the	importance	of	determining	
best	practice	statistical	methods	for	allele	frequency	estimation	and	

the	identification	of	consistent	allele	frequency	differences	is	crucial.	
User-	friendly	 software	 packages	 remove	 the	 need	 for	 complicated	
scripting	but	make	statistical	tests	 less	transparent.	This	study	high-
lights	problems	with	the	way	in	which	the	popular	CMH-	test	is	applied	
and	proposes	some	alternatives.

The	CMH-	test	produces	a	 large	number	of	 significant	 test	 results	
under	the	null	hypothesis	and	as	such	has	very	high	FPRs	even	at	rela-
tively	high	α	thresholds.	This	seems	to	be	because	it	confounds	hetero-
geneity	and	a	main	effect.	Indeed,	the	potential	for	this	is	noted	in	much	
of	the	original	literature	describing	this	test	(Agresti,	1996;	Landis	et	al.,	
1978).	Similarly,	many	other	 statistical	 tests	assessed	here	have	FPRs	
that	are	unacceptably	high	(G-	tests	and	binomial	GLMs).	However,	LMs	
and	quasibinomial	GLMs	perform	well	under	the	null	hypothesis,	pro-
ducing	uniform	p-	value	distributions	and	the	characteristic	1–1	relation-
ship,	on	the	log-	log	scale,	between	the	FPR	and	different	thresholds	of	α.

True	 Positive	 Rates,	 the	 ability	 to	 identify	 SNPs	 that	 are	 in	 fact	
under	 selection	 (true	 positives),	 varies	 across	 the	 tests	 and	 simula-
tions.	Quasibinomial	GLMs	 and	 LMs	perform	best,	 recovering	more	
true	 positives	 than	 other	 statistical	 tests.	As	 expected,	 keeping	 the	
difference	applied	at	true	positives	the	same	while	reducing	the	neu-
tral	 differentiation	 (FST)	 increases	 the	 TPR.	 In	 addition,	 as	 in	 other	
simulation	studies	(Baldwin-	Brown	et	al.,	2014;	Kessner	&	Novembre,	
2015;	Kofler	&	Schlötterer,	2014),	there	is	a	strong	relationship	with	

F IGURE  2 The	True	Positive	Rates	
(TPRs).	The	TPR	is	calculated	as	the	
proportion	of	10,000	true	positives	that	
are	recovered	among	the	top	1%	of	SNPs.	
Simulations	are	run	for	k	=	2,	3,	4,	and	10	
replicated	treatment	lines	with	a	neutral	
FST	of	0.2.	Allele	counts	are	allowed	to	vary	
freely	(CT	=	var.),	are	fixed	at	100	or	200	
(CT	=	100,	CT	=	200),	or	are	scaled	to	neff	
(CT	=	neff).	Binomial	GLMs	are	run	with	
model	structure	(1)	or	(2)	(see	Methods).	
Pool	size	(N)	is	100	diploid	individuals,	thus	
the	number	of	independent	chromosomes	
is	2N	=	200.	Points	have	been	“jittered”	
horizontally	to	avoid	overlap
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the	number	of	replicated	treatment	lines	in	the	experiment	regardless	
of	the	statistical	test	 (and	our	simulations	suggest	that	most	current	
studies	are	underpowered	here).

In	addition	to	low	FPRs	and	high	TPRs,	quasibinomial	GLMs	have	
other	attractive	features.	First,	properly	behaved	p-	values	allow	con-
trolling	 FDRs	 e.g.	 by	 q-	values,	 Bonferroni	 or	 Benjamini-	Hochberg	
correction	 (Storey	 &	 Tibshirani,	 2003).	 This	 is	 preferable	 to	 relying	
on	 arbitrary	 cut-	offs	 of	 e.g.	 ‘the	 top	 1%’	 or	 the	 ‘top	 1,000’	 SNPs.	
Another	attractive	feature	of	quasibinomial	GLMs	is	that	there	is	no	
need	to	arbitrarily	pair	experimental	treatments	but	the	option	exists	
if	 it	makes	biological	sense	and	if	the	data	allow	it.	GLMs	also	allow	
for	more	complicated	nested	experimental	designs	and	 interactions.	
Mixed	models	could	also	incorporate	random	effects.

The	simulations	in	this	study	highlight	an	additional	problem.	When	
pools	of	individuals	are	sequenced,	the	coverage	can	vary	substantially	
between	pools	or	between	genomic	regions.	This	translates	to	differ-
ences	in	the	total	count	for	a	SNP	position.	Our	results	 indicate	that	
variation	 in	 these	 counts	 between	 loci	 affects	 the	 performance	 of	
some	statistical	tests.	A	simple	solution	is	to	rescale	all	allele	counts	to	
represent	either	a	proportion	out	of	a	fixed	number	that	reflects	how	
many	 alleles	 are	 in	 the	pool	 (i.e.	 how	many	 chromosomes	 are	being	
sequenced)	 or	 to	 the	 effective	 sample	 size	 neff	 (Feder	 et	al.,	 2012;	

Kolaczkowski	et	al.,	2011).	Results	from	the	re-	analysis	of	the	Orozco-	
terWengel	et	al.	(2012a,2012b)	dataset	suggest	that	neff	is	preferable.

Re-	analysis	of	the	Orozco-	terWengel	et	al.	(2012a,2012b)	dataset	
also	showed	improvements	in	the	consistency	of	the	allele	frequency	
difference	between	treatment	lines	across	replicates	in	the	top	SNPs	
identified.	 The	 results	 were	 qualitatively	 similar	 to	 previously	 pub-
lished	analyses	with	peaks	and	troughs	in	the	same	genomic	regions	
(Figure	3)	although	very	few	SNPs	pass	Bonferroni	correction	for	mul-
tiple	testing	(Table	2).	Furthermore,	the	large	peak	on	chromosome	3	
that	is	attributed	to	artefacts	of	higher	coverage	in	Orozco-	terWengel	
et	al.	(2012a,2012b)	is	no	longer	visible	(Figure	3).

In	summary,	the	results	presented	here	indicate	that	reliable	iden-
tification	of	SNP	alleles	that	occur	at	consistently	different	frequen-
cies	in	different	treatment	lines	across	biological	replicates	of	natural	
populations	or	experimental	evolution	lines	requires	two	things.	First,	
an	appropriate	statistical	test	needs	to	be	chosen	that	does	not	con-
fuse	 heterogeneity	 for	 a	main	 effect.	Two	 such	 tests,	 quasibinomial	
GLMs	and	linear	models,	are	available	and	produce	appropriate	FPRs	
and	TPRs,	and	also	have	other	attractive	properties.	Second,	variation	
in	coverage	across	SNPs	and	replicates	affects	results	in	some	circum-
stances.	However,	 standardising	coverage	should	be	done	with	care	
because	if	the	counts	are	too	high	this	will	create	an	artificially	high	
level	of	confidence	in	overall	effects,	resulting	in	very	low	(effectively	
zero)	p-	values.	The	effective	sample	size	procedure	seems	useful	and	
is	 well	 grounded	 in	 theory	 (Feder	 et	al.,	 2012;	 Kolaczkowski	 et	al.,	
2011).	Finally,	power	(TPRs)	seems	to	be	related	primarily	to	the	num-
ber	 of	 replicates	 per	 treatment	within	 the	 experiment	 although	 the	
strength	of	selection	in	comparison	to	the	neutral	divergence	(FST)	also	
plays	a	role.	It	is	important	to	appreciate	that	several	studies	have	used	
the	CMH-	test	and	successfully	uncovered	biologically	meaningful	loci	
confirmed	by	additional	functional	analyses	(e.g.	Martins	et	al.,	2014),	
Thus	 it	 is	clear	 that	conclusions	drawn	 in	such	studies	are	still	valid	
despite	these	potential	issues	with	the	CMH-	test.

Throughout	this	study	we	have	followed	the	convention	that	the	
more	 important	 loci	to	 identify	are	those	which	diverge	consistently	

F IGURE  3  (a)	Manhattan	plot	of	the	original	CMH-	test	results	
from	Orozco-	terWengel	et	al.	(2012a,2012b).	Blue	points	are	the	top	
2,000	SNPs	identified	by	the	CMH-	test.	Also	shown	are	manhattan	
plots	of	the	re-	analysis	of	the	Orozco-	terWengel	et	al.	(2012a,2012b)	
data	using	Quasibinomial	GLMs	on	(b)	the	raw	counts	as	well	as	(c)	
scaling	counts	to	neff.	Shown	are	the	−log10	(p-	values)	from	the	
main	treatment	line	(L)	effect.	Blue	points	are	the	top	2,000	SNPs.	
Red	points	in	(b)	and	(c)	are	SNPs	that	pass	genome-	wide	Bonferroni	
correction.	Note	the	differences	in	scale	on	the	y-	axis	across	the	panels

TABLE  2 The	number	of	SNPs	(single	nucleotide	polymorphisms)	
that	pass	multiple	test	correction	in	the	re-	analysed	datasets.	For	
Bonferroni	correction	the	α	threshhold	0.05	was	divided	by	the	total	
number	of	tests	(SNPs	tested)	to	get	the	genome-	wide	multiple	test	
correction	threshold.	For	Q-	values	and	Benjamini–Hochberg	(B–H)	
correction,	a	False	Discovery	Rate	(FDR)	threshhold	of	0.05	was	used.	
Bonferroni	corrections	carried	out	manually,	B–H	corrections	followed	
the	procedure	in	Benjamini	and	Hochberg	(1995),	and	q-	values	were	
calculated	using	the	“qvalues”	package	in	r	(Storey	et	al.,	2015)

Re- analysis Bonferroni Q- values B–H

Raw	counts 2 67,702 3,961

Counts	scaled	to	
neff

3 67,505 4,571

Counts	scaled	to	
100

456 61,022 15,053

Counts	scaled	to	
1,000

33 13,013 2,532
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across	replicate	treatment	lines.	It	is	commonly	argued	that	such	loci	
are	 those	most	 likely	 to	 represent	 responses	 to	 divergent	selection,	
because	 inconsistent	 divergence	 may	 be	 due	 to	 drift.	 However,	 it	
is	 probably	 worth	 noting	 that	 evolutionary	responses	can	 often	 be	
opportunistic.	Different	SNPs	segregating	within	genes	or	regulatory	
regions	may	provide	alternate	responses	to	similar	selection	pressures	
or	some	forms	of	selection	(e.g.	parasite–host	co-	evolution	or	sexual	
selection)	may	be	particularly	 likely	 to	cause	 inconsistent	responses.	
Hence,	not	all	loci	showing	inconsistent	responses	in	real	datasets	will	
be	false	positives.
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