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Abstract

Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion
mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm
locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent
Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream
genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis
virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD50 of at
least 107 cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following
infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however,
deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene
restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD
mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate
that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the
nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective
immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.
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Introduction

Yersinia pestis is the etiological agent of plague, which has caused

millions of deaths in three world pandemics and is still a public

health issue in some regions of the world. The most prevalent form

of the disease is the bubonic plague, which develops following

transmission of the pathogen from rodent reservoirs to humans via

infected fleas [1]. Primary pneumonic plague is less abundant in

nature and results from inhalation of Y. pestis droplets or aerosols.

It is a rapidly progressing disease leading to high mortality rates in

untreated patients and can spread from person to person [1].

These characteristics led to the recognition of Y. pestis as a potential

threat agent [2].

The ability of Y. pestis to respond to the host environment and to

overcome immune systems is attributed to the combined activity of

multiple virulence mechanisms. Among these mechanisms, only

few have been found to be absolutely required for virulence in

animal model systems. The type III secretion system (TTSS) is

essential for survival of the pathogen within the mammalian host

environment. This was demonstrated by the inability of Y. pestis

strains devoid of the plasmid carrying the TTSS (pCD12) genes to

colonize host tissues and to produce systemic disease following

infection via both subcutaneous (s.c.) and airway routes [3–6]. The

TTSS, shared by the closely related enteropathogens Y. enterocolitica

and Y. pseudotuberculosis, comprises a secretion apparatus, chaper-

ones and several effectors (Yops) and leads to the modulation of

cell signaling networks necessary for an effective immune response

[7,8]. Other virulence factors were found to be indispensable for Y.

pestis pathogenesis via the s.c. route of infection. These include the

plasminogen activator factor, which is encoded on the pPCP1

plasmid [9–11]; the Yersiniabactin (Ybt) iron acquisition system,

which is encoded within the high pathogenicity island [12,13]; the

chromosomally encoded PurH involved in the synthesis of purines

[4,14]; adenylate kinase, which is involved in nucleotide

metabolism [15]; and the recently characterized YadBC [16].

In a previous study, we isolated a highly attenuated mutant

designated Kimberley53pcm (Kim53-K9) in which the pcm gene

was disrupted by a mini-Tn5 transposon insertion [4]. When

administered subcutaneously to mice, colonization and persistence

of Kim53-K9 in the spleen and liver were substantially reduced

and the median lethal dose (LD50) of the mutant was more than

seven orders of magnitude higher than the LD50 of the wild type

Kimberley53 strain [4]. The homologous E. coli pcm gene codes for

a Protein-L-isoaspartate O-methyltransferase (Pcm), which can

specifically catalyze the transfer of the methyl groups from S-

adenosylmethionine to atypical L-isoaspartyl residues in proteins

[17,18]. The protein was found to be involved in the survival of

stationary phase cells when exposed to environmental stress

conditions [18]. Immediately upstream of the E. coli pcm gene lies

the surE gene (Fig. 1), which overlaps with pcm by four nucleotides.
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In E. coli, these two genes share a bicistronic operon, but pcm can

be transcribed independently from its own promoter [19]. The

nlpD gene is located downstream of pcm and codes for an outer

membrane lipoprotein that is assumed to be involved in cell wall

formation and maintenance [20,21]. The last gene in the locus is

rpoS, which encodes an alternative RNA polymerase Sigma factor

(RpoS). The rpoS and the nlpD genes constitute an operon;

however, the major rpoS promoter is located within the nlpD gene

[22–25]. The expression of rpoS is induced during stress conditions,

such as starvation and extreme pH, and during stationary growth

phase [26,27]. This factor has been found to be involved in S.

typhimurium virulence in a mouse infection model [28].

Genes within the pcm ‘‘stress locus’’ were extensively studied in

many species of the Enterobacteriaceae family, including Yersinia

enterocolitica [29,30]. However, their importance for the pathogen-

esis of plague has not been evaluated so far. In the present study,

we have characterized the pcm genomic locus in Y. pestis. The

expression pattern of the genes was evaluated along with their

respective contributions to Y. pestis virulence using mouse models

of bubonic and pneumonic plague. Our findings indicate that

within the pcm locus, nlpD is the only essential gene for Y. pestis

virulence. In addition, a highly attenuated Y. pestis nlpD-null

mutant has been shown to induce an efficient protective immunity

against bubonic and pneumonic plague.

Results

The pcm locus of Y. pestis
In a previous screen designed to isolate attenuated Y. pestis

Kimberley53 mutants, a transposon insertion was identified at the

39 end of the pcm gene of the Kim53-K9 mutant [4]. When

administered subcutaneously to mice, the virulence of Kim53-K9

was severely attenuated [4]. Inspection of the genome sequence of

Y. pestis CO92 [31] revealed that the pcm locus shows high

conservation of the gene order with respect to the related

enteropathogens E. coli and Salmonella (Fig. 1A). However, whereas

the Y. pestis SurE, Pcm and RpoS proteins share high levels of

identity with their related E. coli/Salmonella proteins (88–97%), the

NlpD lipoproteins are more divergent (64–65%, Fig. 1B). The

most noticeable disparity between the NlpDs of Y. pestis and E.

coli/Salmonella is a protein sequence containing a unique proline

and glutamine-rich repeat region at the N-terminus that is present

in the proteins of the enteric pathogens but is completely absent

from NlpD of Y. pestis and all other Yersinia species. Examination of

Figure 1. In silico analysis of the pcm genomic locus of Y. pestis. (A) A similarity plot representing the alignment of the Y. pestis CO92 surE, pcm,
nlpD and rpoS genomic locus (gray arrows) with the corresponding orthologous regions of E. coli K12 and S. typhimurium LT2. Peaks represent regions
of sequence conservation; regions that are conserved among all three genomes are in light gray, while regions that are conserved only between E.
coli and S. typhimurium are in dark gray. (B) Similarity comparison of the amino acid sequences of the Y. pestis CO92 pcm locus-encoded proteins to
the corresponding proteins in E. coli and S. typhimurium. Y. pestis protein length is indicated in parenthesis and the similarity and E-values with
respect to the E. coli or S. typhimurium proteins are provided. In the bottom row, the similarity between the E. coli and S. typhimurium proteins is
presented.
doi:10.1371/journal.pone.0007023.g001

Y. pestis nlpD Mutant
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the NlpD sequences within the Yersinia genus revealed that the

nlpD gene products in Y. pseudotuberculosis and Y. enterocolitica have

relatively high levels of sequence similarity to the corresponding

gene product of Y. pestis (98% and 94%, respectively).

To characterize the factor/s involved in the attenuated

phenotype of Kim53-K9, we used the virulent Y. pestis Kimber-

ley53 strain to generate a series of isogenic deletion mutants within

the pcm locus genes (Table 1). First, the DNA sequence of the pcm

locus of Kimberley53 was determined (GenBank acc. no.

FJ666123) and was found to be identical to CO92. In each of

the newly constructed mutants, a defined region of a single gene

was deleted and replaced with a kanamycin resistance cassette (see

details in ‘‘Materials and Methods’’), resulting in Y. pestis

Kimberley53 derivatives that were designated Kim53DsurE,

Kim53Dpcm, Kim53DnlpD and Kim53DrpoS (Fig. 2A). PCR

analysis verified that all of the Kimberley53-derived strains carry

the pMT1, pCD1, pPCP1 plasmids and the chromosomal pgm

locus. To evaluate the expression of Pcm, NlpD and RpoS in these

strains, bacterial cultures were grown to stationary phase

(24 hours) at 37uC and 28uC in heart infusion broth (HIB) and

then subjected to Western blot analysis with highly specific

antibodies. The patterns of expression were independent of the

growth temperature (data not shown). In the Kim53DsurE mutant,

Pcm was not detected, whereas the levels of NlpD and RpoS were

comparable to the wild type strain (Fig. 2B). This result suggests

that a control element influencing pcm expression resides within

the surE gene, as has been reported for E. coli pcm [19]. In the

Kim53-K9 strain, Pcm and NlpD were not detected, whereas the

level of RpoS was comparable to the wild type strain (Fig. 2B).

This finding suggests that expression of nlpD is regulated by an

element within the pcm gene. This assumption was further

supported by the observation that the level of NlpD was reduced

in Kim53Dpcm, whereas that of RpoS was not altered. Of note, in

E. coli and Salmonella, expression of nlpD is driven by promoters

located within the intergenic region between pcm and nlpD

[21,22,25,27,32]. The genomic sequence in this region differs

considerably between Y. pestis and the enteric pathogens (Fig. 1A).

The rpoS gene resides downstream of nlpD. In bacterial

enteropathogens, the major rpoS promoter has been identified

within the nlpD gene [33 and references therein,34,35]. We

attempted to locate these known enterobacterial rpoS promoter

sequences in the corresponding Y. pestis Kimberley53 and CO92

genomic regions. Putative rpoS promoter elements within the nlpD

gene (547 bp upstream of the ATG start codon of rpoS) were

identified according to tandem presence of 235 and 210

consensus sequences (Fig. S1). We therefore constructed two

nlpD-null mutants: KimDnlpDL, in which the putative rpoS

promoter elements were deleted, and KimDnlpD, in which these

sequences were preserved (Fig. 2A). As expected, the level of RpoS

was decreased in KimDnlpDL but not in KimDnlpD (Fig. 2B). Of

note is that the Kanr phenotype does not appear to derive

expression of downstream ORFs, see for example the expression

levels of Pcm in Kim53DsurE, NlpD in Kim53Dpcm, and RpoS in

Kim53DnlpDL.

The last gene in the pcm locus that was analyzed was rpoS, which

is predicted to encode an alternative sigma factor expressed during

stress conditions [36]. The Pcm and NlpD expression levels in

Kim53DrpoS were comparable to the levels found in the wild type

strain (Fig. 2B). Likewise, in E. coli, expression of the pcm and nlpD

genes is RpoS-independent [19,37].

Identification of the sites of transcription initiation of the
pcm, nlpD and rpoS genes of Y. pestis and their relation to
the observed expression profiles

To further characterize the elements regulating the expression

of the pcm, nlpD and rpoS genes, total RNA was prepared from

cultures of Y. pestis bacteria grown to stationary phase (24 hours) at

37uC and then was used for primer extension analysis and RT-

PCR. Using a primer complementary to the 59 region of the pcm

gene, a single transcription initiation site designated Txn2 was

identified within the surE gene, 176 bp upstream of the ATG start

codon of the pcm gene (Fig. 3A left panel). Similar analysis

performed with a primer complementary to the 59 region of nlpD

allowed identification of two transcriptional initiation sites within

the surE and pcm genes located 988 bp (Txn1) and 300 bp (Txn3)

upstream of the ATG start codon of nlpD, respectively (Fig. 3A

middle panel). To corroborate these findings, RT-PCR analysis

was performed using primers complementary to regions within the

nlpD and surE genes. An 1123-bp fragment was observed

extending from the nlpD gene to the surE gene at a site between

Txn1 and Txn2 (Fig. 3B right panel, R2+F3). This result indicates

Table 1. Y. pestis strains and plasmids used in this study.

Strain or plasmid Relevant characteristic(s) Reference or source

Y. pestis strains

Kimberley53 Virulent strain [57]

EV76 pgm- (Girard’s strain) [58]

Kim53-K9 Kimberley53 strain in which the mini-Tn5 transposon was inserted into the pcm gene (nt no.
532 in the coding sequence).

[4]

Kim53DsurE Kimberley53 strain in which bp 148 to 618 (out of 765) of the surE gene were deleted; kanR This study

Kim53Dpcm Kimberley53 strain in which bp 125 to 510 (out of 624) of the pcm gene were deleted; kanR This study

Kim53DnlpDL Kimberley53 strain in which bp 112 to 866 (out of 999) of the nlpD gene deleted; kanR This study

Kim53DnlpD Kimberley53 strain in which bp 112 to 318 (out of 999) of the nlpD gene were deleted; kanR This study

Kim53DrpoS Kimberley53 strain in which bp 123 to 888 (out of 996) of the rpoS gene were deleted; kanR This study

Kim53DyopJ Kimberley53 deleted in yopJ [59]

Plasmid

pnlpD The complete nlpD coding sequence and the 442 bp region directly upstream were cloned into the pBR322
plasmid (Promega); ampR

This study

doi:10.1371/journal.pone.0007023.t001

Y. pestis nlpD Mutant
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that a bicistronic pcm-nlpD message is indeed transcribed from

Txn1. No message could be detected using primers located

upstream of Txn1 (Fig. 3B right panel, R2+F4). RT-PCR analysis

performed using primers complementary to regions within the rpoS

and pcm genes indicated that Txn3 drives transcription of an nlpD-

rpoS bicistronic message (Fig. 3B left panel, R1+F1). No RNA

message could be detected using primers located upstream of

Txn3 (Fig. 3B left panel, R1+F2). The major rpoS transcription

initiation start site (Txn4) was identified within the nlpD gene at the

exact location predicted by the in silico-analysis (Fig. S1 and Fig. 3A

right panel).

Integration of the data obtained from primer extension, RT-

PCR and Western blot analyses (Fig. 2 and Fig. 3) helped to

unravel the complex regulation controlling the expression of Y.

pestis pcm, nlpD and rpoS genes (Fig. S2). Transcription of the pcm

gene is driven by control elements within the surE gene, and a

major transcription start site was identified at Txn2 (Fig. 3C).

Consistent with this result, Pcm was not detected in the

Kim53DsurE mutant (see Fig. 2). Transcription of the nlpD gene

can start in principle from three different positions: Txn1, Txn2

and Txn3. However, in our analysis we failed to see nlpD

transcripts from Txn2. Transcription starting at position Txn1

leads to the synthesis of a pcm-nlpD bicistronic message, whereas

transcription starting from position Txn3 drives the synthesis of an

nlpD-rpoS bicistronic message (Fig. 3C). The finding that the NlpD

level was severely reduced in the Kim53Dpcm mutant in which the

genomic region containing Txn3 was deleted (Fig. 2) indicates that

this region includes a major nlpD control element/s. In agreement

with this result, deletion of the Txn1 genomic region hardly

interfered with NlpD expression (see Fig. 2, Kim53DsurE). Putative

Y. pestis rpoS promoter sequences were identified within the nlpD

gene by in-silico analysis (Fig. S1), and the rpoS transcription start

point was indeed identified at that region (Txn4, Fig. 3C). A

significant reduction in the RpoS level was observed upon deletion

of the Txn4 region, indicating that this region indeed contains

major rpoS control elements (see Fig. 2, Kim53DnlpDL). The low

RpoS level detected in Kim53DnlpDL (Fig. 2) probably represents

the basal expression level of the nlpD-rpoS bicistronic message

transcribed from Txn3 (see Fig. 3C). In accordance with these

results, a deletion generated within the nlpD gene that did not

affect Txn4 did not cause a significant reduction in the RpoS level

(see Fig. 2 Kim53DnlpD).

To characterize the expression patterns of the Y. pestis pcm, nlpD

and rpoS genes during logarithmic and stationary growth phases,

wild type Kimberley53 and the Kim53Dpcm and Kim53DnlpD

mutants were grown in HIB for 48 hours, and equal amounts of

total protein were loaded on sodium dodecyl sulfate-polyacryl-

amide gel electrophoresis (SDS-PAGE). Western blot analysis of

Kimberley53 cells indicated that Pcm and NlpD levels remained

essentially constant during the transition from logarithmic to

stationary growth phase, whereas the RpoS expression pattern was

growth phase-dependent (Fig. 4). One should note that during the

stationary growth phase an NlpD precursor starts to accumulate,

appearing as a slightly slower migrating band than NlpD. Similar

findings were reported for E. coli [21,36,38]. The Western blot

analyses with the various mutants (Fig. 4), together with the RT-

PCR results (Fig. 3B), indicate that the low expression levels of

NlpD and RpoS were governed by distal control elements (Txn1

and Txn3, respectively). We therefore evaluated the contribution

of each of the distal elements to NlpD (Txn1) and RpoS (Txn3)

expression in vitro during growth. In Kim53Dpcm, the NlpD level

was constant but was lower than that of the wild type strain (Fig. 4).

Consequently, the region in proximity to Txn3 contains the major

nlpD control element. In Kim53DnlpDL, in which the Txn4 region

was deleted, the level of RpoS was low and growth phase-

dependent (Fig.4). This finding indicates that the major control

elements regulating RpoS expression are located in close

proximity to the Txn4 genomic region.

Figure 2. Expression of pcm, nlpD and rpoS in Y. pestis derivatives. (A) Schematic description of Y. pestis mutants. A kanamycin resistance
cassette (Kanr) was inserted in place of the deleted region. In all mutants the Kanr cassette is oriented in the same direction as the pcm locus genes
and the runthrough transcription is minimal as evident from the expression analyses of Kim53DsurE, Kim53Dpcm and Kim53DnlpDL. (B) Assessment of
bacterial Pcm, NlpD and RpoS expression. Cultures of the Y. pestis strains were inoculated (initial OD660 = 0.01) and incubated for an additional
24 hours at 37uC. Western blot analysis was performed with anti-Pcm, anti-NlpD and anti-RpoS antibodies. F1 expression levels in the indicated
strains were detected with anti-F1 antibodies and are shown to indicate that comparable amounts of bacterial extracts were blotted on the
membrane.
doi:10.1371/journal.pone.0007023.g002

Y. pestis nlpD Mutant
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NlpD is an essential factor for the development of
bubonic and pneumonic plague

To test the contribution of SurE, Pcm, NlpD and RpoS to Y.

pestis pathogenesis, we evaluated the virulence of Kimberley53-

deletion mutants in mouse models of bubonic plague (s.c.

infection) and pneumonic plague (intranasal infection). In the

bubonic plague mouse model, Kim53DsurE, Kim53Dpcm and

Kim53DrpoS were found to be highly virulent as reflected by the

mortality rate, the mean time to death and the LD50 value (Fig. 5A,

Table 2). In contrast, The Kim53-K9 and Kim53DnlpD strains

were avirulent (Fig. 5A, Table 2).

The inability of Kim53-K9 and Kim53DnlpD to overcome host

defense systems was further emphasized by the finding that infecting

mice with higher doses of these mutants, up to 107 cfu of each strain,

was non-lethal (Table 2) and that infected mice did not show any

visible disease symptoms, such as ruffled hair or a hunched back.

Intranasal (i.n.) infection of mice was demonstrated recently to

serve as a model for studying the development of primary

pneumonic plague [3]. We therefore used this model system to

study the involvement of our genes of interest in development of

pneumonic plague. All mice infected intranasally with 26104 cfu

of wild type Kimberley53 succumbed to the infection by day 4

(data not shown), and the LD50 was found to be 550 cfu (Table 2).

Similar LD50 values were reported recently for other virulent Y.

pestis strains [39,40]. The Kim53Dpcm and Kim53DrpoS mutants

were able to produce disease upon i.n. infection of mice, and the

LD50 values of these mutants were 6 and 2 fold higher

(respectively), than the LD50 of the wild type strain (Table 2). In

contrast, i.n. infection of mice with up to 46107 cfu of

Kim53DnlpD was non-lethal (Table 2), and infected mice did not

show disease symptoms.

To substantiate our observation that the attenuated phenotype

of the NlpD-null mutants (Kim53DnlpD and Kim53-K9) resulted

from the loss of NlpD expression, we examined the ability of a

trans-complemented Y. pestis nlpD gene to restore the mutant’s

virulence. Due to the toxicity associated with over-expression of

NlpD ([21] and our unpublished data), we expressed the gene

using its native control element. The complete coding sequence of

the Y. pestis Kimberley53 nlpD gene preceded by the 442 bp

upstream of the nlpD ATG, a region that includes the Txn3

transcription initiation region, was cloned into pBR322. The

plasmid was introduced into Kim53DnlpD and Kim53-K9 to give

the complemented strains Kim53DnlpD(pnlpD) and Kim53-

K9(pnlpD). Western blot analysis performed using an overnight

culture of the complemented strains grown at 37uC or 28uC (not

shown) confirmed that in both strains the NlpD expression level

was comparable to expression in the wild type strain (Fig. 5B). All

mice infected subcutaneously with 100 cfu of the NlpD-

complemented strains (the bubonic infection model) succumbed

to the infection by day 8 (Fig. 5C). Moreover, Kim53DnlpD(pnlpD)

also regained virulence following i.n. infection (the pneumonic

infection model) (Table 2). These results confirmed that NlpD is a

novel virulence factor of Y. pestis and is essential for development of

both bubonic and pneumonic plague. Finally, NlpD expression on

the background of the Kim53-K9 mutant also restored virulence,

confirming that the attenuation of Kim53-K9 was not due to the

Figure 3. Identification of Y. pestis pcm, nlpD and rpoS transcription start sites. (A) Primer extension (PE) electropherogram used to analyze
the PE product generated using primers R1 [rpoS-rev (137)], R2 [nlpD-rev (151)] or R3 [pcm-rev (126)] (Table S1). PE peaks (black) corresponding to the
MapMarkerH1000 internal size standards [gray, see actual size (bp) at the bottom of the electropherogram] are marked with the related nucleotide
from the Kimberley53 genomic sequence. The size of the PE product is indicated at the top of the electropherogram. (B) RT-PCR products generated
with the reverse primers specified above and the forward primers: F1 [rpoS-for (21355)], F2 [rpoS-for (21493)], F3 [nlpD-for (2972)] and F4 [nlpD-for
(21389]. (C) Positions of R1-R3 primers used for RT-PCR and PE analyses is indicated by dashed, solid and double lines, respectively. The position of
transcription start sites determined according to the PE products length (Txn 1–4), and the position of the F1-F4 primers used for RT-PCR are
indicated.
doi:10.1371/journal.pone.0007023.g003

Y. pestis nlpD Mutant
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absence of the pcm gene product but resulted from the elimination

of nlpD expression.

Deletion of nlpD impairs Y. pestis colonization of internal
organs in mice

In an attempt to evaluate the level of attenuation of Kim53DnlpD,

we used mice to monitor the colonization of internal organs by

Kim53DnlpD and the wild type strain Kimberley53. A dramatic

disparity between the two strains was observed following infection

via both the s.c. and the airway routes. In contrast to the wild type

strain, which reached high bacterial loads in all organs within

48 hours, Kim53DnlpD could not be detected in the draining

inguinal lymph nodes (I-LN), the spleen, the lungs or the blood of

the subcutaneously infected mice at 24 hours post infection (data

not shown) and up to 10 days post infection (Fig. 6A). No visible

lesions were observed at the site of the injection.

When mice were infected intranasally with Kim53DnlpD, the

bacterial load in the lungs decreased rapidly by two orders of

magnitude within 48 hours to an average of 110 cfu (Fig. 6B), and

bacteria were cleared within 3 days post infection (data not shown).

In contrast, the bacterial load increased rapidly when the wild type

strain was used. Moreover, Kim53DnlpD was unable to colonize the

mediastinal lymph node (M-LN), the spleen or the blood, whereas

the number of colony forming units in all organs increased rapidly

to an average of 104–107 cfu within 48 hours for the wild type strain

(Fig. 6B), causing the death of all mice within 4 days.

These observations indicate that NlpD is required for Y. pestis

propagation and dissemination to target organs, and they

corroborate the non-virulent phenotype of Kim53DnlpD in both

pneumonic and bubonic infection models.

In vitro characteristics of the nlpD-null mutant
Bacterial lipoproteins are components of the cell envelope of

Gram-negative bacteria and are usually localized at the periplas-

mic space anchored to either the outer or the inner membrane

[41]. Y. pestis NlpD has a threonine residue immediately after the

fatty-acylated cysteine and is therefore predicted to reside in the

outer membrane similarly to the E. coli NlpD [41,42]. Microscope

analyses indicated that in vitro culturing of Kim53DnlpD at 28uC
leads to formation of unsegmented chains containing an average of

7.265.6 cells/chain as opposed to the more common aggregative

morphology of Kimberley53 (Figures 7B and 7A, respectively).

Elevation of the culturing temperature to 37uC (Fig. 7D), reduced

significantly the number of Kim53DnlpD cells/chain to 462.5 (T-

test P,1E-14), while the wild type morphology is temperature

independent (Fig. 7C). In spite of this change, NlpD is not essential

for Y. pestis cell growth, at least under laboratory conditions, as

Figure 4. Growth phase-dependent expression of Pcm, NlpD
and RpoS in Y. pestis. Western blot analysis of bacterial extracts
prepared from culture samples taken at the indicated time points was
performed with anti-NlpD, anti-RpoS and anti-Pcm antibodies.
doi:10.1371/journal.pone.0007023.g004

Figure 5. Virulence of Y. pestis pcm locus mutants in mice. (A)
Virulence of the Y. pestis pcm locus mutants in the mouse model of
bubonic plague. Groups of five mice were infected subcutaneously with
100 cfu/mouse of the indicated Y. pestis strains; Kimberley53 (closed
circles), Kim53-K9 (open squares), Kim53Dpcm (closed triangles),
Kim53DnlpD (stars) and Kim53DrpoS (open diamonds). (B) Episomal
expression of nlpD in attenuated Y. pestis mutants. Western blot analysis
of the indicated cultures was performed as described in the legend to
Figure 2B (C) Virulence of the nlpD-complemented Y. pestis mutants in
the mouse model of bubonic plague. Groups of five mice were infected
subcutaneously with 100 cfu/mouse of the indicated Y. pestis strains;
Kim53DnlpD (stars), Kim53-K9 (open squares), Kim53DnlpD(pnlpD)
(closed squares) and Kim53-K9(pnlpD) (closed circles).
doi:10.1371/journal.pone.0007023.g005
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shown by the normal growth rate of the nlpD mutant (Fig. 7E).

Growth rate of Kim53DnlpD was found to be similar to that of the

wild type strain under in vitro culture conditions at 37uC (Fig. 7E)

and at 28uC (data not shown) as determined by ANOVA test of

regression (P.0.15). Of note is that there is a significant difference

between the intercept of the nlpD mutant and the wild type strain

(P,0.05) due to the filamentous phenotype of the mutant (Fig. 7B

and 7D). Complementation of nlpD expression eliminated

completely the abnormal cell morphology and restored the wild

type morphology (data not shown).

It can be assumed that deletion of nlpD in Y. pestis may influence

membrane-related functions, such as TTSS activity, which is

known to be essential for Y. pestis virulence, and thus could lead to

the attenuated phenotype. However, preservation of TTSS

functionality, at least in vitro, was demonstrated by retention of

calcium-dependent growth at 37uC and expression and secretion

of Yop effectors such as YopE (Fig. 8A and 8B) and YopJ (data not

shown), into the culture medium following exposure to inducing

conditions. Moreover, the nlpD-null mutant preserves the ability to

translocate Yop effectors into host cells, like the wild type strain, as

evidenced by suppression of TNF-a secretion from infected

RAW264.7 macrophages (Fig. 8C). The genes flanking nlpD were

found in many enteropathogens to be involved in survival during

stationary phase and under other environmental stress conditions

[36]. In search of a possible explanation for the attenuation of

Kim53DnlpD, we evaluated the involvement of Y. pestis NlpD in

resistance to prolonged growth in rich (HIB) and minimal (M9)

broth, and in acidic and oxidative conditions that simulate the

intra-phagosomal milieu. Exposure of Kim53DnlpD and Kimber-

ley53 to prolonged in vitro growth (up to 96 h), and to oxidative

stress (10–50 mM H2O2) indicated that NlpD is not essential for

resistance to these conditions (data not shown). In contrast,

Kim53DnlpD was slightly more susceptible than wild type

Table 2. Virulence of Y. pestis strains in mouse models of
bubonic and pneumonic plague.

Y. pestis strain LD50 valuea,b (cfu)

s.c. route i.n. route

Kimberley53 1–3 550

Kim53-K9 .16107 ND

Kim53DsurE ,16102 ND

Kim53Dpcm 3 3300

Kim53DnlpD .26107 .46107

Kim53DnlpD(pnlpD) ,16102 ,1500

Kim53-K9(pnlpD) ,16102 ND

Kim53DrpoS 3 1100

ND = not determined.
aThe ‘‘,’’ symbol indicates that the calculated LD50 value is the minimal
infection dose tested, under which more than 50 percent of the animals died.

bThe ‘‘.’’ symbol indicates that the calculated LD50 value is the maximal
infection dose tested under which less than 50 percent of the animals died.

doi:10.1371/journal.pone.0007023.t002

Figure 6. Colonization of mouse organs by Y. pestis strains. (A) Bacterial colonization of mouse organs after s.c. infection. Mice were injected
subcutaneously with either 16104 cfu of Kimberley53 (closed symbols) or 16105 cfu of Kim53DnlpD (open symbols). Animals were sacrificed at 48 h
post infection. Blood was collected and the draining inguinal lymph nodes (I-LN), the spleen and the lungs were harvested from each mouse,
homogenized in 1 ml PBS and cultured on BHIA plates at 28uC for 48 hours. Values represent total bacteria in the organs (cfu/organ), or the bacterial
concentration in blood (cfu/ml). The dashed line indicates the limit of detection. Horizontal bars represent the average value of the bacterial load in
each case. (B) Bacterial colonization of mouse organs after i.n. infection. Dissemination of Y. pestis strains into the blood and to the internal organs
following i.n. inoculation with 16105 cfu of either Kimberley53 (closed symbols) or Kim53DnlpD (closed symbols). Mice were sacrificed at the
indicated time points, and the bacterial load in the indicated organs was determined as described above.
doi:10.1371/journal.pone.0007023.g006
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Kimberley53 to acidic pH (Fig. 8D). Moreover, the

Kim53DnlpD(pnlpD) strain, in which NlpD expression was

restored, regained resistance to these conditions (Fig. 8D). The

possible linkage between acidic susceptibility and attenuation of

Kim53DnlpD awaits further study.

Evaluation of the immunization potential of the
Kim53DnlpD strain

The high level of attenuation of Kim53DnlpD motivated us to

evaluate the potential of this defined mutant to serve as a vaccine.

In a model of bubonic plague, mice were injected subcutaneously

with 16105 cfu of either Kim53DnlpD or the Y. pestis EV76

prototype vaccine strain. Fifty days later, mice were challenged

subcutaneously with 16105 LD50 of the fully virulent Kimberley53

strain. As shown in Table 3, the geometric mean ELISA titers of

aF1 and aV antibodies measured in sera from the mice at 30 days

post immunization with Kim53DnlpD were 17,100 and 26,

respectively. Similar aF1 and aV titers were measured following

immunization with Kim53-K9. In contrast, mice vaccinated with

the EV76 strain demonstrated anti-F1 geometric mean titers of less

than 30 and anti-V antibody ELISA titers below the limit of

detection (Table 3). These results suggest that although

Kim53DnlpD was highly impaired in colonization of host internal

organs, its persistence within the host lasted long enough for the

host to mount an effective immune response. Consistent with these

results, all mice vaccinated with Kim53DnlpD survived s.c.

challenge with 16105 LD50 of Kimberley53 without showing

signs of illness whereas a similar dose of EV76 failed to elicit

significant protective immunity (Table 3). The EV76 strain

appears to be effective only when applied at a high vaccination

dose (107 cfu, Flashner et al 2004).

In the mouse model of pneumonic plague, a single s.c.

immunization with 16105–16107 cfu of Kim53DnlpD or EV76

was followed 50 days later by i.n. challenge of virulent Y. pestis

Kimberley53 (Table 4). The challenge dose was 5,500 cfu, which is

equivalent to 10 LD50. While all control mice died within 4 days, a

protection level of 33% was obtained following immunization with

105 cfu of Kim53DnlpD. Higher protection levels of 66% and 82%

were obtained by immunization with increasing doses of

Kim53DnlpD (106 cfu and 107 cfu, respectively). In contrast,

EV76 was unable to elicit protection following immunization with

105 cfu, and a protection level of 33% was attained only after the

immunization dose was increased to 107 cfu (Table 4). Comparing

total survival in the nlpD-vaccinated mice to EV76-vaccinated

mice by Chi-square analysis revealed highly significant difference

(P = 0.0013). These findings strongly accentuate the potency of

Kim53DnlpD in establishing effective protective immunity and

suggest that it may be a suitable platform for a live vaccine.

Discussion

Studies performed in the last decade with several Gram negative

bacteria have demonstrated that the genomic region including the

surE, pcm, nlpD and rpoS genes is important for survival under

environmental stress conditions [18,36,43,44]. In the present

study, we have further characterized the Y. pestis pcm locus genes

and analyzed their expression and involvement in the pathogenesis

of Y. pestis using mouse models of bubonic and pneumonic plague.

Systematic deletion mutagenesis of the surE, pcm, nlpD and rpoS

genes and complementation studies allowed us to identify the

NlpD lipoprotein as the only essential factor for Y. pestis

pathogenesis in this locus.

Subcutaneous and intranasal administration of a Y. pestis nlpD-

null strain to mice demonstrated that this strain is severely

attenuated (LD50.107cfu, Table 2), and is impaired in its ability to

colonize internal organs (Fig. 6). In addition, the nlpD-null mutant

was unable to produce a systemic disease following intravenous

inoculation with 106 cfu and infected mice lacked any visible

disease symptoms (data not shown).

Trans-complementation experiments verified that NlpD is an

essential Y. pestis virulence factor (Fig. 5C, Table 2). Using a similar

strategy, virulence was also restored to the original transposon

insertion mutant (Kim53-K9), confirming that its attenuation

resulted from elimination of nlpD expression and not from

disruption of pcm expression (Fig. 5C, Table 2; note also that the

Kim53Dpcm is as virulent as the wild type strain). To the best of

our knowledge, this is the first demonstration of a single

chromosomal Y. pestis factor that is essential for development of

both bubonic and pneumonic plague.

Yersinia enterocolitica NlpD was also suggested to be involved in

pathogenesis [45]. In the latter study, transposon insertion within

Figure 7. Growth curves and microscope analyses of Y. pestis
strains following in vitro growth. Y. pestis strains were grown for
24 hours at 28uC (A and B) or at 37uC (C and D) in HIB. Gram staining of
Kimberley53 (A and C) and Kim53DnlpD (B and D) was performed and
bacilli were observed by light microscopy at a magnification of 61000.
Scale bar = 10 mm. (E) Growth curves of Kimberley53 (closed squares)
and Kim53DnlpD (open squares). Bacteria were inoculated (initial
OD660 = 0.05) and grown at 37uC in HIB for 48 hours. Cultures were
sampled at the indicated time points after inoculation and cfu values
were determined by plating on BHI agar.
doi:10.1371/journal.pone.0007023.g007
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the Y. enterocolitica nlpD gene led to attenuation of virulence in a

mouse infection model. Interestingly, as opposed to the dramatic

attenuation of the Y. pestis nlpD mutant shown in the present study,

the Y. enterocolitica nlpD mutant displayed only a limited impairment

of virulence [45]. This finding might imply that Y. pestis nlpD is

required for an activity specific to the development of plague

disease.

Recently, an additional Y. pestis lipoprotein, Braun’s lipoprotein

(Lpp), was found to be important for virulence [40]. It should be

noted, however, that in contrast to NlpD, Lpp contributes only to

the production of bubonic plague but not to that of the pneumonic

plague [40]. Lipoproteins have been implicated in the pathogen-

esis of other bacterial pathogens as well. For example, disruption

of the lsp and lgt genes, which are involved in lipoproteins

Figure 8. Analysis of TTSS activity and resistance to acidic pH of Y. pestis strains. To assay the functionality of the TTSS, wild type
Kimberley53 and avirulent Kim53DnlpD strains were grown for 4 hours at inducing and non–inducing conditions (37uC6calcium). Western blot
analyses of bacterial extracts (A) and culture supernatants (B) were performed with anti-YopE antibodies. (C) Suppression of TNF-a secretion from
infected macrophages. RAW264.7 cells were infected by impaction with 100 MOI of Kimberley53, 50 MOI of Kim53DnlpD or 100 MOI of Kim53DyopJ.
Secretion of TNF-a into the culture medium was monitored 2 h after initiation of infection by ELISA. (D) Resistance to acidic pH. Overnight cultures of
Kimberley53 (black columns), Kim53DnlpD (dark gray columns) and Kim53DnlpD(pnlpD) (light gray columns) were used to inoculate HIB (initial
OD660 = 0.1). These cultures were incubated at 37uC for 4 hours, washed with phosphate buffered saline and then exposed to acidic stress (pH 4.2) for
the indicated time. Viable cell counts were determined by plating dilutions on BHI agar and incubating at 28uC for 48 hours.
doi:10.1371/journal.pone.0007023.g008

Table 3. Vaccine potential of the Y. pestis Kim53DnlpD strain against bubonic plague.

Immunizationa Antibody responseb GMT (GeoStDv) Percent survivalc (alive/total)

aF1 aV

Kim53-K9 9,250 (2.0) 93 (7.7) 90 (9/10)

Kim53DnlpD 17,100 (3.4) 26 (29.3) 100 (11/11)

EV76 29 (4.2) ,10 - 10 (1/10)

Control ,10 - ,10 - 0 (0/10)

aMice were immunized subcutaneously with 105 cfu of the indicated Y. pestis strains.
bAnti-F1 and anti-V titers were determined by ELISA.
cFifty days post immunization, mice were challenged subcutaneously with 105 LD50 of the virulent Y. pestis Kimberley53 strain (1 LD50 = 1–3 cfu).
doi:10.1371/journal.pone.0007023.t003
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metabolism, caused attenuation of virulence in M. tuberculosis, S.

aureus and S. pneumoniae [46–48].

The dramatic loss of virulence of the Y. pestis nlpD-null strain is

reminiscent of the non-virulent phenotype of Y. pestis strains

lacking the pCD1 plasmid that carries the genes encoding the type

III secretion system. However, our results indicate that the nlpD

mutant is able to properly express and secrete Yop effectors during

in vitro inducing conditions (Fig. 8A and 8B) and is able to

translocate effectors into host cells, as reflected by its ability to

suppress TNFa secretion from infected macrophages (Fig. 8C).

Moreover, the V-antigen multifunctional virulence factor impor-

tant for type III secretion system activity is expressed by the nlpD

mutant during infection as reflected by development of aV

antibodies following immunization of mice (Table 3 and 4). Taken

together, these observations suggest that the type III secretion

system is functional in the nlpD mutant.

The finding that the Y. pestis nlpD gene is expressed from control

elements shared with either pcm or rpoS raised the possibility that

NlpD might also be important for survival under environmental

stress conditions. However, the nlpD-null mutant did not differ

significantly from the wild type strain in the ability to survive

during prolonged growth in rich and minimal broth and during

exposure to oxidative conditions. Yet, we found a slight increase in

the mutant’s sensitivity to in vitro acidic conditions (Fig. 8), similar

to the conditions present in the intra-phagosomal milieu. While

the latter does not seem to account for the dramatic loss of

virulence, further studies are needed to understand the importance

of the sensitivity of the mutant to acidic conditions.

The aberrant shape of the Y. pestis DnlpD bacilli (Fig. 7B and 7D)

suggests that NlpD is important for cell separation. Consistent with

this assumption is the structure of NlpD (Fig. 9), which contains an

N-terminal LysM domain found in a variety of enzymes involved

in bacterial cell wall degradation [49–51]. NlpD also contains a C-

terminal M23 metallopeptidase region (Fig. 9). The M23 family of

endopeptidases includes proteins that are involved in bacterial cell

separation [52], however, no proteolytic activity has been

demonstrated for bacterial lipoproteins of this family (see the

MEROPS peptidase database, http://merops.sanger.ac.uk [53]).

Of note is that in vitro cell growth of the nlpD mutant was not

affected (Fig. 7E). The observed phenotype of the nlpD-null mutant

(Fig. 7B and 7D) suggests a linkage between impairment of cell

separation and attenuation of virulence. Interestingly, similar links

have already been described for other bacterial pathogens [54,55].

Furthermore Kajimura and colleagues [54] hypothesized that

cluster formation of the attenuated S. aureus Sle1 mutant, which

lacks the lysM-containing N-acetylmuramyl-L-alanine amidase,

inhibits the dissemination of daughter cells and thus could affect

the spread of the bacteria during infection. Indeed, the Y. pestis

nlpD mutant is totally impaired in its ability to disseminate from

the site of infection to the internal organs (Fig. 6).

Interestingly, the highly attenuated phenotype of the nlpD

mutant and its inability to colonize host organs did not seem to

prevent the development of immunity against plague following s.c.

infection. Rather, this strain seemed to effectively stimulate a long-

term adaptive immune response as demonstrated by the

generation of high F1 antibody titers. Accordingly, immunization

of mice with low doses of Kim53DnlpD resulted in remarkably

higher humoral response and protection levels against bubonic

and pneumonic plague than did immunization with the Y. pestis

EV76 vaccine strain (Tables 3 and 4). The differential behavior of

the two vaccine strains may result from the complete absence of

the chromosomal pgm locus (102 kb including the pathogenicity

island), from EV76. The contribution of the pgm locus to Y. pestis

survival in host cells is well documented [56]. The observed

development of protective immunity could have practical

implications in the design of future Y. pestis vaccines or therapies

against both bubonic and pneumonic plague.

Materials and Methods

Bacterial strains, plasmids, mutant construction and
routine growth conditions

The Y. pestis strains and the plasmids used in this study are listed

in Table 1. The primers used for construction of the Y. pestis

derivatives are listed in Table S1. Construction of the Kimber-

ley53 deletion mutants was performed by replacing part of the

gene coding sequence with a linear fragment containing the Kanr

GeneBlockTM resistance cassette (pUC4K plasmid, Pharmacia) by

homologous recombination, using previously established method-

ologies [60]. In all constructs the Kanr resistance cassette is

oriented in the same direction as the pcm locus genes (Fig. 2A). To

preserve expression of downstream genes, the resistance cassette

does not include transcription terminator sequences.

Genotype verification of all obtained phenotypes was done by

PCR and Western blot analysis. All of the Kimberley53-derived

strains carry the pMT1, pCD1, pPCP1 plasmids and the pgm locus.

Bacteria were isolated from stocks on selective BIN medium

[61]. Routine propagation was performed on brain heart infusion

Table 4. Vaccine potential of the Y. pestis Kim53DnlpD strain against pneumonic plague.

Immunizationa Antibody responseb GMT (GeoStDv) Percent survival (alive/total)c

Y. pestis strain Dose (cfu) d aF1 aV

105 4,500 (10.5) 10 (3.6) 33 (2/6)

Kim53DnlpD 106 31,800 (4.8) 32 (36) 66 (4/6)

107 7,200 (4.6) 12 (28) 82 (9/11)

105 20 (4.9) ,10 - 0 (0/6)

EV76 106 100 (15.3) ,10 - 17 (1/6)

107 635 (4.2) 18 (21) 33 (2/6)

Control - ,10 - ,10 - 0 (0/6)

aMice were immunized subcutaneously with the indicated dose of each strain.
bAnti-F1 and anti-V titers were determined by ELISA.
cFifty days post immunization, mice were challenged intranasally with 10 LD50 of the virulent Y. pestis Kimberley53 strain (1 LD50 = 550 cfu).
dUnder the specific experimental conditions, one colony forming unit of Kim53DnlpD is estimated to be 1-6 bacilli.
doi:10.1371/journal.pone.0007023.t004
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agar (BHIA) (Difco) or HIB (Difco). For generation of nlpD-

complemented strains, a 1444 kb fragment extending from the 39

end of the nlpD gene up to 442 nt upstream of the ATG start

codon of nlpD was amplified from the DNA of the virulent Y. pestis

Kimberley53 strain. The resulting PCR product was cloned into

pBR322 between the NheI and PstI sites and its sequence was

verified. Plasmids were introduced into the Kim53DnlpD and

Kim53-K9 strains by electroporation to give the

Kim53DnlpD(pnlpD) and Kim53-K9(pnlpD) strains. These strains

were routinely grown in media supplemented with 100 mg/ml

ampicillin (Sigma, Israel).

DNA sequence determination of the Y. pestis
Kimberley53 pcm locus and in-silico analysis

The Y. pestis CO92 sequence corresponding to the pcm locus (nt

3744222 to 3747841) was compared to the Kimberley53 sequence

at the equivalent region and was found to be identical) GenBank

acc. no. FJ666123). All sequencing reactions were performed with

an ABI310 genetic analyzer (Applied Biosystems) using the ABI

PRISM BigDye terminator reaction kit. The genome alignment of

the orthologous regions comprising the surE, pcm, nlpD and rpoS

genes was generated by the multiple genome alignment software

Mauve [62]. The sequences were extracted from the following

GenBank (NCBI) entries: NC_003143 (Y. pestis CO92),

NC_003197 (S. typhimurium LT2), NC_000913 (E. coli K12).

Growth curves
Y. pestis strains were grown by shaking (100 rpm) at 28uC in HIB

supplemented with 0.2% (+)xylose (Sigma) and 2.5 mM CaCl2
(Sigma). The resulting cultures were diluted in fresh broth to an

OD660 of 0.01 and allowed to grow for 48 hours at either 28uC or

37uC while shaking at 180 rpm. At the indicated time points,

aliquots were removed for determination of the OD660 and the

number of colony forming units (cfu) after plating on BHI agar

plates and incubation at 28uC for 48 hours. Experiments were

repeated for three times. The growth of Y. pestis strains under

nutrient-limiting conditions was assessed in M9 medium at pH 8.0

[0.05% NaCl (Merck), 0.1% NH4Cl (Merck), 0.3% KH2PO4

(Merck), 0.7% Na2HPO4 (Merck) 1024 M CaCl2 (Merck), 1023 M

MgSO4 (Merck), 0.4% D-(+)-glucose (Sigma), 5 mg/ml thiamine

(Sigma), 50 mg/ml L-arginine (Sigma), 50 mg/ml L-cysteine

(Sigma), 50 mg/ml glycine (Sigma), 50 mg/ml L-methionine

(Sigma), 50 mg/ml L-phenylalanine (Sigma)]. Aliquots of the liquid

cultures were taken at different time points for cfu enumeration and

Western blot analysis. Comparison of the Y. pestit strain’s growth

rates was performed by log-log transformation. The slop of the

curves was compared using an ANOVA test of regression.

Western blot analysis
Bacteria (OD660 = 0.1) were lysed with Laemmli Sample buffer

(Bio-Rad) and protein concentrations were determined using

Figure 9. Alignment of amino acid sequences of the Y. pestis and E. coli NlpDs. Amino acid sequence identities/homologies between the NlpDs
of Y. pestis Kimberley53 and E. coli K12. The NlpD signal peptide region and the LysM and M23 domains are boxed; the P/Q rich region is underlined.
doi:10.1371/journal.pone.0007023.g009
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bicinchoninic acid (BCA Protein Assay Reagent, Pierce) according

to the manufacturer’s instructions. Equal amounts of protein were

loaded and separated by 12% SDS-PAGE. After transfer to

nitrocellulose membranes, duplicate membranes were developed

with rabbit polyclonal anti-peptide Pcm and NlpD antibodies,

with rabbit polyclonal S. typhimurium RpoS antibodies (a generous

gift from François Norel, Institute Pasteur), or with goat anti-YopE

antibodies (bL-20, Santa Cruz Biotechnology) and with rabbit

polyclonal anti-peptide YopJ [60]. Probing with the primary

antibody was followed by incubation of the membranes with HRP-

conjugated second antibody, and then the reactive protein bands

were visualized by ECL. The Pcm and NlpD anti-peptide

antibodies were raised by immunizing rabbits with maleimide-

activated KLH (Pierce) conjugated to the synthetic peptides

CERLLQAIEAVPRER (amino acids 21–34 of Pcm) and

CVGGDRSGTMLSKANT (amino acids 39–53 of NlpD).

Antibodies were affinity purified using a Sulfolink-peptide coupling

gel column (Pierce) according to manufacturer’s instructions.

Total RNA isolation, primer extension and RT-PCR
analyses

HIB supplemented with 0.2% (+)xylose and 2.5 mM CaCl2 was

inoculated with Y. pestis bacteria (initial OD660 = 0.01), and

incubated for 24 hours at 28uC or 37uC with shaking at

100 rpm. Total RNA was isolated using a RiboPureTM-bacteria

Kit (Ambion) and was then treated with DNase I (Ambion)

according to the manufacturer’s instructions.

Primer extension (PE) reactions were carried out according to

Lloyd and colleagues [63]. Briefly, for each reaction, FAM-labeled

primer (Table S1, final concentration 5–10 nM) was added to

20 mg of total RNA, and first strand cDNA synthesis was

performed using the AMV RT enzyme (Promega). FAM-labeled

cDNAs were cleaned using a PreformaH DTR Gel Filtration

Cartridge (Edge BioSystems) according to the manufacturer’s

instructions and then air-dried with a heated SpeedVac centrifuge

and resuspended in 25 ml of UltraPureTM Formamide (Invitrogen)

with 1.5 ml MapMarkerH1000 (BioVentures, Inc.). The mixture

was heated to 90uC for 2 minutes, chilled on ice for 5 minutes and

then used for electrophoresis, using an ABI310 genetic analyzer

(Applied Biosystems). The DNA fragments were sized using the

GeneScanR Analysis Software version 3.1 (Applied Biosystems).

For reverse transcriptase-PCR analyses (RT-PCR), primers were

added to 1 mg of total RNA and synthesis was carried out with

AMV RT (Promega) at 42uC for 1 hour according to the

manufacturer’s instructions. After first strand synthesis the cDNA

was diluted 1:2 and an aliquot (3 ml) was taken for PCR

amplification. Positive and negative control reactions were

performed with 200 ng of DNA or with total RNA, respectively.

Infection of mice
All experiments were performed in accordance with the Israeli

law and were approved by the Ethics Committee for animal

experiments at the Israel Institute for Biological Research. Female

OF1 mice, 5–6 weeks old (IFFA CREDO S.A., France), were used

in all infection studies. For s.c. infections of mice, the Y. pestis

strains were grown on BHIA for 48 hours at 28uC. Bacterial

colonies were harvested from the BHIA plates at the end of the

incubation period, suspended in 5 ml of saline solution (0.9%

NaCl) and diluted in saline solution to the required infection dose.

Bacteria were quantified by counting colony forming units after

plating and incubating on BHI agar plates. In s.c. infections,

samples of 100 ml were administered into the lower back of the

mice. Under these conditions, the LD50 of the Kimberley53 strain

is 1–3 cfu [4]. For i.n. infections, the Y. pestis strains were grown on

BHIA for 48 hours at 28uC. Bacterial colonies were suspended in

HIB supplemented with 0.2% (+)xylose and 2.5 mM CaCl2 to give

an initial OD660 of 0.01, and the cultures were incubated for

additional 22 hours at 28uC or 37uC with shaking at 100 rpm. At

the end of the incubation period, the cultures were washed, diluted

in saline solution to the required infection dose and quantified by

cfu counting as described above. Prior to infection, mice were

anaesthetized with a mixture of 0.5% ketamine HCl and 0.1%

xylazine injected intraperitoneally and were then infected

intranasally with 35 ml of the bacterial suspension. The LD50

experiments were performed with groups of 8 mice (i.n.) or 5 mice

(s.c.). The LD50 values were calculated according to the method

described by Reed and Muench [64], protection analyses were

performed by Chi-square test.

Monitoring disease progression
Mortality rates were expressed in accordance with the required

information by either the proportion of dead animals at the end of

the monitoring period (14 days unless otherwise indicated), by

MTTD, or by the 50% lethal dose (LD50). Monitoring of disease

progression was performed by tracking bacterial dissemination to

the internal organs and blood. In s.c. infection experiments, organs

were aseptically removed 48 hours after infection with 16104 cfu

of the wild type Kimberley53 strain (a terminal stage of disease) or

with 16105 of Kim53DnlpD. Groups of four mice were

anaesthetized, tail vein blood was collected and spleens, lungs

and draining inguinal lymph nodes (I-LN) were harvested. Tissue

homogenates were prepared in 1 ml PBS/organ. Bacterial

enumeration in tissue homogenates or in blood samples was done

by plating serial dilutions in PBS on BHI agar and calculating the

cfu/organ or cfu/1 ml blood. In i.n. infection experiments, groups

of four mice were anesthetized, and tail vein blood was collected

one hour and 48 hours post infection with 16105 cfu. The lungs,

spleens and the mediastinal lymph nodes (M-LN) were harvested

and prepared as described above for bacterial enumeration.

Morphology analysis
Y. pestis bacilli were observed by light microscopy using a Nikon

Eclipse E200 microscope at a magnification of 61000. Gram

staining was performed using a HT90A kit (Sigma-Aldrich)

according to the manufacturer’s instructions. Y. pestis cells in at

least 20 random non-overlapping microscopic fields were counted.

TTSS functionality analyses and stress survival assays.
For secretion of TTSS proteins, bacteria were grown at 28uC in

HIB for 18 hours with shaking at 150 rpm. The bacteria were

then diluted to an OD660 of 0.05 in HIB medium supplemented

with either 20 mM sodium oxalate (Sigma) and 20 mM MgCl2
(Sigma) (inducing conditions) or 2.5 mM CaCl2 (non-inducing

conditions) and were grown for additional 4.5 hours at 37uC with

shaking at 100 rpm. Cultures were centrifuged at 4500 g for

10 min, the supernatants were collected and the proteins were

precipitated with 10% TCA overnight at 4uC and the subjected to

SDS-PAGE. Analysis of the suppression of TNF-a secretion from

macrophages was preformed as described in Zauberman et al. [60].

Briefly, RAW264.7 macrophages (26105) were seeded in 24-well

plates and infected at the indicated MOI (determined by the cfu

count) for 2 hours. The concentration of TNF-a in the culture

medium was determined by ELISA using the DuoSet mouse TNF-

a immunoassay system (R&D systems). The susceptibility of the Y.

pestis strains to acidic pH was determined by plating stationary-

phase bacteria on BHI agar after incubation for 10–60 minutes in

16PBS adjusted to pH 4.2 with citric acid. The susceptibility of

the Y. pestis strains to hydrogen peroxide was determined by
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plating stationary-phase bacteria on BHI agar after exposure to

hydrogen peroxide (10–50 mM in 16PBS, pH = 7) for up to 60

minutes.

Antisera and serological tests
Mouse anti-F1 and anti-V antigen IgG antibody titer determi-

nations were performed by ELISA as previously described by

Flashner and colleagues. [4]. Briefly, microtiter plates were coated

with purified recombinant F1 antigen [65] or with 500 ng of

purified Glutathione-S-Transferase -V- antigen fusion protein

prepared according to Leary et al. [66]. The tested sera were

serially diluted by 2-fold dilutions in a final volume of 50 ml and

were incubated in the wells for 1 hour at 37uC. Alkaline

phosphatase–labeled rabbit anti-mouse IgG (1/2500 dilution,

Sigma) was used as the secondary antibody. Titers were defined as

the reciprocal values of the endpoint serum dilutions, which had

OD405 values two fold higher than the normal serum controls.

Supporting Information

Figure S1 Putative Y. pestis rpoS promoter sequences identified in

silico. (A) Sequences of rpoS promoters in different bacteria; the

consensus 235 sequences is indicated by ambiguity code. (B) The

DNA region upstream of the Kimberley53 and CO92 rpoS coding

sequences, containing the putative 210 and/or 235 promoter

sequences.

Found at: doi:10.1371/journal.pone.0007023.s001 (0.73 MB TIF)

Figure S2 Organization and expression of Y. pestis pcm locus

genes in wild-type and mutant strains. Transcription start sites

(TS) within Y. pestis pcm locus are depicted. Deleted region are

represented by dashed line and replaced by a kanamycin

resistance cassette. The expression level of each gene is indicated

by the intensity of its color: dark gray - comparable to the wild type

strain, light gray - lower than the wild-type strain, colorless - no

expression. The mini-Tn5 transposon inserted within Kim53-K9

is indicated by a black arrow (the arrow points to the direction of

transcription of the kanamycin resistance cassette). The (*) symbol

indicates a putative transcription start site (see also in Results).

Found at: doi:10.1371/journal.pone.0007023.s002 (0.60 MB TIF)

Table S1 Sequences of primers used in this study. a. Numbers in

parenthesis indicate the position of the primer relative to the first

nucleotide in the ORF. b. Underlined bases indicate restriction

sites for cloning of the amplified sequence. c. FAM (6-carboxy-

fluorescein) labeled primers for primer extension. These primers

where also used for first strand synthesis in the RT-PCRs.

Found at: doi:10.1371/journal.pone.0007023.s003 (0.05 MB

DOC)
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