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Abstract: Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations
in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This
protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart
disease is the major clinical manifestation of BTHS with a high incidence in early life. Although
the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are
well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study
aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and
TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and
incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that
TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty
acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in
pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic
lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction,
in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to
replenish the Krebs cycle.

Keywords: Barth syndrome; induced pluripotent stem cells derived cardiomyocytes iPS-CMs; cardiac
metabolism; metabolites; stable isotopes tracing

1. Introduction

Barth syndrome (BTHS) is an X-linked recessive multisystem disorder associated with
cardiomyopathy, neutropenia, exercise intolerance, sudden cardiac death, skeletal muscle weakness,
recurrent bacterial infections and growth delay [1,2]. The approximated BTHS prevalence
of 1/300,000–400,000 live births [1,3] is likely underestimated since the disorder is substantially
under-diagnosed [1,4]. BTHS is caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) [5], which
encodes for the acyltransferase tafazzin. This protein is involved in the remodeling of tetralinoleoyl (18:2)
cardiolipin, a mitochondrial membrane-associated phospholipid with a major role in mitochondrial-related
processes, especially in the heart [6]. Due to the impaired ratio of monolysocardiolipin to tetralinoleoyl
(18:2) cardiolipin ratio in Barth syndrome [7], mitochondria from various cell types in humans and
mice demonstrate morphological abnormalities [8,9]. BTHS-affected individuals present with metabolic
alterations that include lactic acidosis, 3-methylglutaconic aciduria [10], low plasma arginine [2], and a
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severe deficiency of mitochondrial tetralinoleoylcardiolipin [1,11]. The manifestation of cardiac disease
is the major clinical feature of BTHS [12], with a high incidence in early life and, subsequently, is a
leading cause of death in infants. Affected individuals can present with hypertrophic cardiomyopathy,
dilated cardiomyopathy (DCM) with endocardial fibroelastosis [13], left ventricular non-compaction,
ventricular arrhythmia [14], and prolonged QTc interval. There is no specific treatment for the cardiac
features of BTHS, and clinical management includes supportive heart failure therapies. Thus, an
understanding of the effect of TAZ mutations on heart metabolism has important implications for
BTHS treatment.

Recent developments in human induced pluripotent stem cells (iPSCs) demonstrate that it is
a promising model to study cellular metabolism in cardiac disorders with genetic etiology [15,16].
iPSCs are cells that have been genetically reprogrammed from adult cells back to an embryonic stem
cell-like state by the forced expression of a defined set of transcription factors [17]. iPSCs are capable of
generating cellullar characteristics of all three germ layers. They have the ability to proliferate and have
indefinite self-renewal cycles. Cardiomyocytes derived from iPSCs recapitulate the donor genotype,
reproducing the complex metabolic conditions of the affected individual’s heart and exhibit many of
the characteristics of in vivo cardiomyocytes [18,19] including syncytial and contractile activities, ion
channels, receptors, and transporters. These characteristics make iPS-CMs a good alternative model to
delineate cellular mechanisms underlying BTHS cardiac phenotype.

Our study aimed to investigate the metabolic consequences of a TAZ517delG mutation in an iPS-CM
model of Barth syndrome. This was achieved by experimental workflows with stable isotope-labeled
tracers, targeted metabolic profiling and targeted gene expression. We hypothesize that in the face of
an impaired mitochondrial structure, TAZ deficiency affects cardiomyocyte energy production-related
pathways and calcium homeostasis. We report our findings herein.

2. Results

2.1. Cells

The iPSCs under study exhibited typical morphology and were positive for pluripotency markers
OCT4 and SSEA4 (Figure 1A). Differentiated iPS-CMs at day 45 displayed sarcomeric organization as
indicated by α-actinin and the appearance of z lines (Figure 1B) and troponin I staining (cTnI/TNNI3,
the isoform expressed only in adult cardiac muscle [20] (Figure 1C). Expression of iroquois-class
homeodomain protein (IRX4) [20] indicates the presence of a ventricular-like cell subtype (Figure 1C).

2.2. Carbon Substrates Preferences

Healthy adult cardiomyocytes can uptake and utilize different nutrients to support their energetic
and contractile demands. The most significant portion of adenosine 5- triphosphate (ATP) synthesis
in heart is driven by fatty acids catabolism; however, in response to developing pathologies,
cardiomyocytes can shift their reliance from fatty acids to other carbon sources. To determine
the effect of TAZ 517delG on carbon source selection, control and TAZ517delG - iPS-CMs were incubated
first with 10 mM 13C6-glucose and 0.4 mM unlabeled palmitate (BSA conjugated) and then in a
separate experiment cells were incubated with 10 mM unlabeled glucose with 0.4 mM 13C16-palmitate
(BSA-conjugated). Next, we measured levels of 13C-labeled tracers in culture media at time zero
(t = 0) and after six hours (t = 6). The comparison of the 13C-labeled tracers in control iPS-CM and
TAZ517delG-iPS-CM cell media revealed that TAZ517delG-iPS-CMs uptake more glucose, produce more
lactate, and uptake less palmitic acid (Figure 2).
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Figure 1. Representative images indicate successful differentiation. iPS-CM cells express cardiac 
specific markers (TNNI3, α-actinin and IRX4). (A) Immunofluorescent analysis of human iPS 
cells:OCT 4 (red) transcription factor expressed in undifferentiated pluripotent cells during normal 
development. SSEA4 is expressed on the cellular surface (green). DNA in cells nuclei is counterstained 
with DAPI (blue), magnification 60X. (B) Control-iPS-CM 45 days post differentiation. a. Sarcomeric 
α-actinin (green) b. TNNI3 (red), c. DNA in cell nuclei is counterstained with DAPI (blue), d. Merged 
panel and zoomed area, magnification 60X. (C) Immunofluorescent analysis of TAZ517delG-iPS-CM 45 
days post differentiation (a). TNNI3 (green), iroquois homeobox 4 protein (IRX4) expressed in 
ventricular-like iPS-CM (red). DNA in cells nuclei is counterstained with DAPI (blue). (b) α-actinin 
(green), magnification 60 X. 

 
Figure 2. 13C6-glucose and 13C16-palmitate uptake and 13C3-Lactate production after six hours. *p < 0.05. 
Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show a range of results from 
three differentiation technical replicates for each genotype. All cells were differentiated by the same 
protocol initiated at the same day and the experiment was performed after 45 days in culture. 

 

Figure 1. Representative images indicate successful differentiation. iPS-CM cells express cardiac
specific markers (TNNI3, α-actinin and IRX4). (A) Immunofluorescent analysis of human iPS cells:OCT
4 (red) transcription factor expressed in undifferentiated pluripotent cells during normal development.
SSEA4 is expressed on the cellular surface (green). DNA in cells nuclei is counterstained with DAPI
(blue), magnification 60X. (B) Control-iPS-CM 45 days post differentiation. a. Sarcomeric α-actinin
(green) b. TNNI3 (red), c. DNA in cell nuclei is counterstained with DAPI (blue), d. Merged
panel and zoomed area, magnification 60X. (C) Immunofluorescent analysis of TAZ517delG-iPS-CM
45 days post differentiation (a). TNNI3 (green), iroquois homeobox 4 protein (IRX4) expressed in
ventricular-like iPS-CM (red). DNA in cells nuclei is counterstained with DAPI (blue). (b) α-actinin
(green), magnification 60X.
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Figure 2. 13C6-glucose and 13C16-palmitate uptake and 13C3-Lactate production after six hours.
*p < 0.05. Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show a range of
results from three differentiation technical replicates for each genotype. All cells were differentiated by
the same protocol initiated at the same day and the experiment was performed after 45 days in culture.
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2.3. Glucose Carbons Incorporation into Krebs Cylcle Intermediates

The Krebs cycle is primary fueled by acetyl-CoA produced from glucose and fatty acids oxidation.
In general, in comparison to the adult cardiomyocytes, iPS-CM cells are highly glycolytic due to their
non-mature phenotype [21]. To encourage iPS-CMs to use both glucose and palmitic acid as a carbon
sources, we performed all our experiments in 10 mM glucose conditions.To determine the effect of the
TAZ517delG on the production of Krebs cycle intermediates from glucose, we supplemented cell culture
media with 10 mM labeled 13C6-glucose and 0.4 mM unlabeled palmitate (conjugated to BSA) as a
carbon sources. Then, we traced 13C incorporation into Krebs cycle intermediates (Figure 3).
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Figure 3. 13C6-Glucose carbons incorporation into Krebs cycle intermediates. Acetyl CoA is
produced through pyruvate dehydrogenase (PDH) reaction (A). Fractional contribution of 13C2-labeled
isotopomers (M2). Isocitrate is under the limit of detection. Oxaloacetate (OAA) is chemically unstable.
*p < 0.05. Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n =3). Error bars show range of
results from three differentiation technical replicates for each genotype. All cells were differentiated by
the same protocol initiated at the same day and harvested at the same day after 45 days in culture.

By tracking 13C6-Glucose incorporation into Krebs cycle, we observed fractional incorporation
(enrichment) in most of the intermediates after six hours. The increased fraction of M2 citrate
originated from 13C6-glucose indicates that TAZ517delG-iPS-CM has increased glucose utilization for
citrate production and taken together with the decrease in palmitate uptake (Figure 2), suggests a shift
towards glucose as a carbon source.
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2.4. Evidence of Attenuated Pyruvate Anaplerosis

Once produced from glucose, pyruvate can follow a several metabolic fates. In this experiment,
we traced pyruvate fate through carboxylation by pyruvate carboxylase (PC) and malic enzyme (ME)
reactions. Pyruvate carboxylation is a significant anaplerotic route that maintains a sufficient pool of
Krebs cycle intermediates. 13C3-labeled malate (M3) represents pyruvate carboxylation route through
pyruvate carboxylase or malic enzyme reactions (oxaloacetate is not chemically stable) while the
fraction of the 13C2-labeled citrate (M2) and downstream 13C2-labeled (M2) Krebs cycle intermediates
represent pyruvate decarboxylation through the pyruvate dehydrogenase (PDH) reaction (Figure 4).
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carboxylation via pyruvate carboxylase (B) and malic enzyme (C).

To assess the effect of TAZ517delG mutation on pyruvate anaplerosis iPS-CMs were incubated
with 10 mM 13C6-glucose for 5 h, then fractional contributions (percent of fraction) of M3 and M2
isotopomers of Krebs cycle intermediates were analyzed (Figure 4). Under our experimental conditions,
the overall labeling patterns of malate and fumarate were similar (Figure 5), while 13C3-malate (M3)
predominates 13C2-malate (M2) malate fractional contribution (FC (M3-malate)/FC (M2-malate) > 1)
which indicates that pyruvate carboxylation favoring pyruvate decarboxylation fate in both cell lines.
The difference between the 13C3-malate (M3) malate percent fraction and the 13C3-succinate (M3)
percent fraction reflects the contribution of pyruvate anaplerosis to the Krebs cycle [22] (Table 1).

Table 1. Fractional contributions (FC) (percent fraction of total pool) and pyruvate anaplerotic
contribution. 1 Pyruvate anaplerosis, *p < 0.05.

iPSCM M2
Malate M3 Malate M3

Fumarate

FC(M3
Malate)/

FC
(M2 Malate)

M3
Succinate

(FC M3 Malate)-
(FC M3

Succinate) 1

Control-iPS-CM 12.43 ± 1.01 40.5 ± 1.4 41.8 ± 1.9 3.25 4.79 ± 0.4 35.7
TAZ517delG-iPS-CM 13.2 ± 0.52 23.4 ± 0.59* 18.4 ± 0.53* 2.68 3.2 ± 0.5 20.2
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Figure 5. 13C-labeled malate and 13C-labeled fumarate isotopomers derived from 13C6-glucose labeling.
Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from
four differentiation technical replicates for each genotype. All cells were differentiated by the same
protocol initiated at the same day and harvested at the same day after 45 days in culture.

2.5. Alteration in Levels of Krebs Cycle Intermediates

Given the essential role of the Krebs cycle for energy metabolism, we further analyzed cellular
levels of Krebs cycle intermediates and found alterations in succinate, fumarate and malate pools
(Figure 6); however, only increases in succinate and fumarate were statistically significant (p < 0.05)
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Figure 6. Relative abundances of Krebs cycle intermediates total pools. Relative levels are normalized
to the total protein amount. Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error
bars show range of results from four differentiation technical replicates for each genotype. All cells
were differentiated by the same protocol initiated at the same day and harvested at the same day after
45 days in culture.

2.6. Alteration in Amino Acids Levels

Decreased plasma arginine and increased plasma proline are consistent findings in clinical studies
among BTHS patients [11,23–25]. We measured levels of arginine in control and TAZ517delG-iPS-CMs
under our standard culture conditions (RPMI 1640, 10 mM glucose) and proline under standard
culture conditions and after 12 h of glucose deprivation. To compare phenotypic trends of iPS-CMs
amino acid levels to patient plasma amino acid levels from the earlier published studies, fold change
(FC) of arginine and proline in TAZ517delG-iPS-CMs or BTHS patient plasma was calculated and
compared against the control cohort group (Table 2). In agreement with the clinical studies published
data, TAZ517delG-iPS-CMs have decreased arginine and increased proline under glucose starvation in
(Table 2a).
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Table 2. (a) Arginine and proline concentrations (µM/mg protein) measured in TAZ517delG and
control-iPS-CMs and plasma amino acids levels published in earlier clinical studies (µmol/L).
(b) Calculated fold changes (FC) for arginine and proline in TAZ517delG-iPS-CMs vs. control-iPS-CM
and in BTHS affected individuals vs. healthy reveals the same phenotypic pattern.

a Arginine Proline

Current iPS-CM study (µmol/mg protein)

Control TAZ Control TAZ517delG

Non starved 5.02 3.05 0.46 0.44
Glucose starved NA NA 0.15 0.45

Plasma clinical studies [9,24] (µmol/L)

Control TAZ Control TAZ517delG

[24] 100 50 190 280
[11] 69.8 42.9 164.7 291.1
[23] 68 29 NA NA

b Arginine Proline

Current iPS-CM study calculated fold change (FC)

Non starved 0.6 1
Glucose starved NA 3

Plasma clinical studies calculated fold change (FC)

[24] 0.5 1.5
[11] 0.6 1.8
[23] 0.4 NA

2.7. Disturbances in Fatty Acids Metabolism

While fatty acids are the main carbon source for ATP synthesis in the healthy adult heart, their
cellular uptake is facilitated by transporters and to a lesser extent by diffusion across the cellular
membrane. Upon entrance into the cell, long chain fatty acids such as palmitate (C16) are rapidly
activated to form acyl-CoAs in the cytosol and then are converted to acylcarnitines to enter mitochondria
through the carnitine shuttle. We selectively performed a gene expression assay for a heart isoform
of fatty acid binding protein (FABP3). Due to the reported association between cardiac function and
levels of the adipocyte isoform (FABP4) of the protein [26–29], we also analyzed FABP4 mRNA and
protein expression. While no change was found in FABP3 mRNA level, the data indicate an increase in
FABP4 mRNA and the protein itself (Figure 7). Furthermore, TAZ517delG-iPS-CMs also exhibited an
accumulation of palmitic acid (Figure 8) and of long chain acyl-carnitines (Figure 9).
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Figure 7. (a) Adipocyte fatty acid binding protein (FABP3) and heart fatty acid binding protein 
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Figure 7. (a) Adipocyte fatty acid binding protein (FABP3) and heart fatty acid binding protein (FABP4)
gene expression. Relative levels are normalized to the total protein amount. Data are expressed as
the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from four differentiation
technical replicates for each genotype. All cells were differentiated by the same protocol initiated at the
same day and harvested at the same day after 45 days in culture. (b) Representative heart fatty acid
binding protein (FABP4) protein expression.



Metabolites 2019, 9, 306 8 of 22
Metabolites 2019, 9, x FOR PEER REVIEW 21 of 21 

 

 
Figure 8. Relative levels of free fatty acids in control and TAZ517delG-iPS-CM by GCMS are normalized 
to protein amount. *p < 0.05. Relative levels are normalized to the total protein amount. Data are 
expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from four 
differentiation technical replicates for each genotype. All cells were differentiated by the same 
protocol initiated at the same day and harvested at the same day after 45 days in culture. 

 
Figure 9. Cellular acylcarnitine levels. Relative levels are normalized to the total protein amount. Data 
are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from three 
differentiation technical replicates for each genotype. All cells were differentiated by the same 
protocol initiated at the same day and harvested at the same day after 45 days in culture. 

  

Figure 8. Relative levels of free fatty acids in control and TAZ517delG-iPS-CM by GCMS are normalized
to protein amount. *p < 0.05. Relative levels are normalized to the total protein amount. Data are
expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from four
differentiation technical replicates for each genotype. All cells were differentiated by the same protocol
initiated at the same day and harvested at the same day after 45 days in culture.
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Figure 9. Cellular acylcarnitine levels. Relative levels are normalized to the total protein amount. Data
are expressed as the mean ± SEM (n = 3). *p < 0.05; (n = 3). Error bars show range of results from three
differentiation technical replicates for each genotype. All cells were differentiated by the same protocol
initiated at the same day and harvested at the same day after 45 days in culture.
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2.8. Glucose Independent Glutamine Metabolism

Although fatty acids and glucose are the preferred carbon sources in the heart, glutamine is also an
important fuel as it replenishes the Krebs cycle and serves as a carbon source for purine and pyrimidine
biosynthesis. To determine the effect of TAZ517delG on glutamine metabolism, we supplemented cells
with 0.5 mM 13C5-glutamine in glucose andfatty acids depleted cell media and traced 13C incorporation
from 13C5-glutamine to the Krebs cycle intermediates. To maintain Krebs cycle function, control
and TAZ517delG-iPS-CM produced Krebs cycle intermediates from 13C5-glutamine. Both control and
TAZ517delG mutant cells produced 13C4-labeled (M4) isotopomers of citrate, fumarate and malate,
indicating that 13C5-glutamine was used as an anaplerotic (replenishing) carbon source for the Krebs
cycle through the conversion to the glutamate and further to α-ketoglutarate (Figure 10). However, we
also found a fraction of 13C5-labeled (M5) citrate (Figure 11) as evidence that glutamine is converted
to the citrate via a non-canonical reductive carboxylation (Figure 10, path B). Glutamine metabolism
through the reverse action of isocitrate dehydrogenase and reductive carboxylation has been described
previously as a non-significant source of citrate and lipogenic carbon in mammalian cells [30,31].
The reaction involves addition of the unlabeled carbon to 13C5-labeled (M5)α-ketoglutarate by isocitrate
dehydrogenase (IDH) [32] (Figure 10).
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Figure 10. 13C5-Glutamine as a carbon source for the Krebs cycle. Glutamine carbons replenish the
Krebs cycle through α-ketoglutarate and proceeds through the oxidative (pathway A) and through the
reductive carboxylation (pathway B) to form 13C5-labeled (M5) citrate.
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Figure 11. 13C5-Glutamine incorporation into Krebs cycle intermediates. Relative levels normalized to
the total protein amount. Data are expressed as the mean + SEM (n = 3). *p < 0.05; (n = 3). Error bars
show the range of results from three differentiation technical replicates for each genotype. All cells
were differentiated by the same protocol initiated at the same day and harvested at the same day after
45 days in culture.

3. Discussion

Since identification of TAZ gene mutations as the cause of Barth syndrome, several cellular
and animal disease models have been developed. Early yeast models revealed the characteristic
increase in the monolysocardiolipin to tetralinoleoylcardiolipin ratio. These cellular models facilitated
the understanding of modes of tafazzin dysfunction and provided mechanistic insights regarding
the phenotypic heterogeneity seen in BTHS [33,34]. Other studies involved cellular models such as
fibroblasts [35], lymphoblasts [36], neutrophils [37], neonatal ventricular fibroblasts [38], and cardiac
myocytes [39]. Later, mouse models were generated and revealed multiple cardiac and muscle
dysfunctions [40,41] and disruption of the interactions between the electron transport chain (ETC) and
some fatty acid oxidation enzymes [42].

Dysregulation of cardiac energy metabolism is recognized as a characteristic biochemical feature
in various heart diseases. In this study, we investigated the metabolic consequences of a TAZ517delG

mutation in an iPS-CM model of Barth syndrome.
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3.1. Lactate Production

13C3-labeled lactate (M3) is produced from the glycolytic 13C3-labeled pyruvate (M3) by lactate
dehydrogenase action, thus the 13C3-labeled lactate (M3) levels measured in media represents a
proxy of the cells’ glycolytic capacity. As expected for cells with defective oxidative phosphorylation,
TAZ517delG-iPS-CMs exhibited an increased glycolytic lactate production which is essential for recycling
NADH to NAD+ to enable continuation of glycolysis. Lactic acidosis is present in the majority of
patients affected by mitochondrial diseases; however, even in the case of the severe mitochondrial
dysfunction, individuals who are not under a metabolic crisis or in an immediate postprandial state
may not demonstrate distinct lactate elevation. In fact, studies on Barth syndrome individuals report
mildly elevated blood lactate levels, which are sometimes exercise-induced [43,44]; however, measured
circulating lactate depends not only on lactate production but also on lactate consumption, thus a
plasma lactate concentration does not reflect glycolytic flux but rather one static measurement.

3.2. Alteration in Substrate Preferences

There is emerging evidence that control of energy metabolism is a key factor in many heart
diseases. In the healthy adult heart, most of the energy in the ATP form derives from fatty acids
catabolism [45,46]. The metabolic flexibility of the heart allows it to shift reliance from one carbon
source to another in response to developing pathologies [47,48]. We hypothesized that the TAZ517delG

mutation induces a carbon source shift from fatty acids to the glucose. To test this hypothesis, we
performed experiments using 13C labeled nutrients.

First, we introduced 10 mM 13C6-glucose into cell media (depleted from unlabeled glucose) over a
period of six hours to monitor glucose consumption by iPS-CMs. TAZ517delG-iPS-CMs consumed more
glucose (101 vs. 111 µg/mg of protein respectively, Figure 2). An increase in glycolytic 13C3-lactate
production (Figure 2) suggests that the observed increase in 13C6 glucose uptake in TAZ517delG-iPSCM
is due to the higher glycolytic flux; however, based on our data we cannot verify that the main glucose
transporters in heart GLUT1 and GLUT4 [49] are equally expressed in control and TAZ517delG-iPSCM.
Mejia et al. [50] report the same expression of GLUT1 and elevated GLUT3 expression in TAZ -deficient
lymphoblasts however, only GLUT1 and GLUT4 are significantly expressed in the cardiac tissue [49].
We further analyzed 13C incorporation in the downstream Krebs cycle intermediates. One notable
finding was that the fractional contribution of 13C2-labeled citrate (M2) generated from 13C6-glucose in
TAZ517delG-iPS-CM was found to be higher than the control (22.2% vs. 26.8%), further suggesting that
TAZ517delG -iPS-CMs have increased reliance on glucose as a fuel source for the Krebs cycle. Next, we
introduced 13C16 -palmitate (conjugated to BSA) into the cell media. In six hours, TAZ517delG-iPS-CM
consumed less 13C labeled palmitate (0.55 vs. 0.79 µg/mg of protein). While a decrease in 13C16

palmitate uptake does not provide direct evidence of a decrease in β-oxidation flux, and may also
reflect a defect in fatty acids transport, the accumulation of long chain acylcarnitines (Figure 9) and
the cellular total palmitate pool (Figure 8) suggest that β-oxidation is attenuated. Moreover, FABP4
overexpression indicates that that acylcarnitines transport to the mitochondria is not compromised [51].
Further investigations are required to interrogate the role of fatty acid translocase (FAT/CD36), and
fatty acid transport protein (FATP) in TAZ517delG induced phenotype.

Our data are in agreement with the observed increased glucose uptake in TAZ deficient
lymphoblasts [50] and the most recent human study by Cade et al. who report a decrease in
exercise-induced fat oxidation rate in Barth syndrome patients [52]. Our observations are also
supported by a report that TazKD mice are not able to alter carbon substrate preferences from glucose
to fatty acids when subjected to aerobic exercise due to the disruption between fatty acid oxidation
enzymes and electron transfer chain complexes [53]. Our findings, however, are contradictory to the
studies with other cellular models. Li et al. report reduced carbon flux from glucose to Krebs cycle
intermediates in TAZ-KO mouse C2C12 myoblast cell line [54], while Chatzispyrou et al. demonstrate
that the fractional contribution of glucose to the Krebs cycle intermediates is unaffected in TAZ-deficient
skin fibroblasts [55]. The discrepancy between studies can be explained by differences in genotype
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and cellular metabolism for different types of cells. Wang et al., [56] report abnormalities in TAZ
deficient iPSCM while same defects were not observed in primary TAZ deficient patient fibroblasts
and respective iPSCs at the pluripotent stage. This fact highlights the significance of choosing a cellular
model with Barth syndrome-specificphenotype.

Taken together our data suggest a metabolic shift in substrate preferences. Further studies
examining control vs. TAZ517delG-iPS-CM responses in the presence of fatty acids oxidation
and glycolytic inhibitors such as etomoxir and deoxyglucose respectively are needed to support
these findings.

The substrate shift observed by us and reported by others can be attributed to metabolic adaptation
toward glucose utilization. Utilization of fatty acids as a carbon source requires a proper mitochondrial
function. The reliance on glucose as a carbon source improves oxygen efficiency per each generated
ATP molecule. Whereas a full oxidation of one palmitate molecule requires 50 moles of atomic oxygen,
a full oxidation of one molecule of glucose requires only 12 moles of oxygen [57] which makes ATP
production more efficient for mitochondria dysfunctional TAZ517delG-iPS-CM.

The downstream consequence of the observed metabolic shift is also reflected in the accumulation
of palmitic acid (Figure 8) and multiple acylcarnitines (Figure 9) which is further detrimental to the
oxidative phosphorylation [58].

3.3. Disturbances in Krebs Cycle Intermediates

Of particular importance to cardiac energy metabolism is Krebs cycle function. A constant pool
of Krebs cycle intermediates is required to produce adequate amounts of NADH and FADH2 under
normal physiological conditions, thus there is a balance between production and efflux of all Krebs
cycle intermediates. TAZ mutations induce mitochondrial dysfunction [59] and impair this balance,
leading to alterations in metabolic fates. Analysis of Krebs cycle intermediates in iPS-CMs indicates
a statistically significant increase in the total succinate pool in TAZ517delG-iPS-CMs (Figure 6). This
increase may be associated with cardiolipin-dependent destabilization of respiratory chain complexes.
Succinate dehydrogenase (SDH) is a component of the respiratory chain Complex II. In the presence of
monolysocardiolipin (MLCL), efficient electron transfer across respiratory complexes is compromised
due to loss of structural integrity [59]. Moreover, defective SDH could contribute to cardiac function
by preventing full oxidation of glucose and fatty acids. In fact, Dudek et al. reported a decrease in
SDH activity and protein expression levels in BTHS patient- derived iPS-CMs and cardiomyocytes
isolated from a mouse model of BTHS [60]. Loss of SDH activity or expression could explain the
buildup of succinate and decrease of fumarate and malate observed in our TAZ517delG-iPS-CM model.
The decrease in malate levels was not statistically significant for n = 3, however, can be interpreted
as a depletion of Krebs cycle intermediates due to dysregulation in the balance between anaplerotic
pathways (such as pyruvate carboxylation) and the cataplerotic Krebs cycle reactions.

3.4. Defective Pyruvate Anaplerosis

Pyruvate is converted to acetyl-CoA through decarboxylation and enters the Krebs cycle.
Alternatively pyruvate is also carboxylated to form oxaloacetate or malate via pyruvate carboxylase
and malic enzyme, respectively [61]. Our isotopomer analysis reveals that TAZ517delG-iPS-CM
have attenuated pyruvate carboxylation (Table 1); however, these data do not provide the relative
contributions of each enzymatic reaction. Hence, pyruvate carboxylase and malic enzyme expression
levels and activities still need to be explored. Pyruvate carboxylation is an important anaplerotic
pathway in the healthy heart [62], while a disruption of pyruvate anaplerosis has been shown to
cause contractile dysfunctions [63,64]. During cardiac disease pathogenesis, alterations in the balance
between fatty acids oxidation and glucose oxidation may further result in dysregulation of pyruvate
carboxylation. The decrease in pyruvate anaplerotic carboxylation reaction can further contribute to
the contractile abnormalities [65,66].
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3.5. Alteration in Proline and Arginine Level

A decrease in plasma arginine is a consistent finding across BTHS clinical studies It has been
proposed that arginine carbons can replenish the Krebs cycle through the conversion to glutamate [11].
Accordingly, arginine supplementation has been used clinically as a dietary supplement for BTHS
patients, although no studies evaluating its therapeutic effect or its role as an anaplerotic precursor
have been published to date. We measured arginine by LC-MS/MS and found that arginine levels
were decreased by 60% (fold of change 0.6, Table 2) in TAZ517delG-iPS-CMs, which is consistent
with observations in patient plasma samples. We also found a significant increase in proline levels
under glucose-free conditions (Table 2). In the absence of glucose, cells can use proline as a carbon
source to produce ATP [67,68]. The reaction is mediated by the action of proline oxidase (POX), a
mitochondrial inner membrane enzyme that interacts with respiratory complexes [68,69]. In light
of TAZ-induced respiratory complexes destabilization [70], POX action can be attenuated leading to
the proline increase. An increase in proline levels has been reported in several other diseases with
mitochondrial dysfunction [71,72] and has been related to the lactic acidosis.

3.6. Glutamine as a Carbon Source

Next, we assessed the contribution of glutamine to the Krebs cycle by using a 13C5-glutamine
tracer. In contrast to the adult cardiomyocytes that use fatty acids as a major carbon source, iPS-CMs
strongly prefer glucose as a carbon substrate; however, in the absence of glucose or fatty acids we found
that both control and TAZ517delG-iPS-CMs utilize glutamine to maintain Krebs cycle function. Although
the observed glutamine carbons contribution to Krebs cycle intermediates is low (low enrichment), the
13C-labeling patterns are very similar in both control and TAZ517delG-iPS-CMs and the conversion of
glutamine to α-ketoglutarate (through glutamate) was not significantly altered between the control and
TAZ-mutant cell lines (Figure 11). This finding does not support the notion that glutamine anaplerosis
through α-ketoglutarate is elevated in TAZ517delG-iPS-CMs. Probing cells directly with a 13C labeled
arginine tracer is thus necessary to determine if arginine flux into the Krebs cycle is increased in
TAZ517delG-iPS-CMs. The significance of the presented data on Figure 11 is that despite mitochondrial
dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can utilize glutamine as a
carbon source to replenish the Krebs cycle through oxidative or reductive carboxylation pathways to
the same extent as control-iPS-CM.

3.7. Alterations in Fatty Acids Metabolism

The cellular uptake of fatty acids is facilitated by fatty acid binding proteins (FABPs). The
lipid binding protein family consists of small (~15 kDa) soluble proteins that serve as modulators
of intracellular lipid homeostasis by regulating long chain fatty acid transport in the nuclear and
extra-nuclear cell compartments. The FABP4 isoform is predominantly expressed in adipose tissue,
but also circulates in human plasma [73,74]. It is involved in intracellular lipid trafficking and has
a role in the development of insulin resistance, atherosclerosis, and inflammatory processes. FABP4
over-expression in mouse adipocytes leads to the decreased expression of mitochondrial fatty acid
oxidation genes and reduced activities of mitochondrial complexes I and III [75]. Moreover, human
FABP4 was shown to have a detrimental effect on rat cardiomyocyte contraction [76] in vitro through
acutely depressed shortening amplitude and intracellular systolic peak Ca2+. Increased FABP4
expression in TAZ517delG-iPS-CM (Figure 7) suggests that FABP4 plays a role in TAZ-induced cardiac
dysfunction, although the exact mechanism of FABP4 in the pathophysiology of Barth syndrome is not
established yet.

Barth syndrome is manifested biochemically by low tetralinoleoyl cardiolipin content and an
impaired monolysocardiolipin/tetralinoleoyl (18:2) cardiolipin (MLCL/CL4) ratio. The uniformly
substituted (18:2) cardiolipin plays a pivotal role in the structural organization of the mitochondrial
membrane [77] and is essential to acylcarnitine translocase activity [78]. Accumulation of long chain
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acylcarnitines observed in TAZ517delG-iPS-CM is in agreement with alterations in fatty acid oxidative
metabolism in general [79] and supports report that cardiolipin deficiency leads to the disruption of fatty
acids oxidation enzymes and electron transfer chain super complexes in TAZKDmice mitochondria [53].
The increased levels of acylcarnitines are especially striking for C14, C16, and C18 species with a fold
change 1.7, 2.3, and 2.2 respectively (Figure 9) in agreement with VLCAD enzyme involvement in the
TAZ deficient phenotype. Elevated circulating acylcarnitines levels have never been reported in Barth
syndrome individuals however, we report an increase in cellular levels of acylcarnitines that may have
a detrimental effect on the electrophysiology of cardiomyocytes [80–83].

In summary, our findings reveal that the TAZ (c.517delG) mutation induces metabolic alterations
in energy production pathways and under low glucose conditions, causes a shift from fatty acids to
glucose utilization as the preferred carbon substrate. In light of TAZ deficiency-induced impaired
mitochondrial function, the increased reliance on glucose can be attributed to the improvement of
oxygen efficiency per each generated ATP molecule. Whether this is a protective or maladaptive
mechanism that contributes to the cardiac phenotype in Barth syndrome remains to be elucidated.
Nevertheless, these results suggest that Barth syndrome patients can benefit from therapies that
reduce the accumulation of toxic fatty acids catabolic intermediates. Our data also reveal that despite
mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can rely on
glutamine as a carbon source substrate to replenish the Krebs cycle through oxidative metabolism or
alternative reductive carboxylation.

Study limitations: It should be noted that more than 120 different Barth syndrome-causative TAZ
mutations have been identified, whereas our study focused only on one specific c.517delG mutation.
There are no established genotype/phenotype correlations and there is a large phenotypic variation is
present within Barth syndrome affected individuals. Further studies are needed to assess metabolic
and molecular changes in cells carrying different mutations in the TAZ gene.

4. Materials and Methods

4.1. iPS Cells

Control (PGP1-TAZWT) and TAZ (PGP1-TAZ517delG) mutant cells were kindly contributed by
William T. Pu, MD (Boston’s Children Hospital, Harvard Medical School). Control iPSCs were
reprogrammed from healthy donor fibroblasts [79]. The isogenic (PGP1-TAZ517delG)-iPSC line was
obtained by CRISPR/CAS9-mediated genome editing [56]. In our laboratory under an IRB-approved
protocol, control iPSCs and TAZ517delG -mutant iPSCs were proliferated to passage 25 and were
cultured on 1:200 matrigel-coated plates in serum-free, chemically defined Essential 8 flex medium
(Thermofisher). Prior to the differentiation, cellular pluripotency was confirmed with SSEA4 and OCT2
pluripotency markers expression.

4.2. Differentiation to Cardiomyocytes

Differentiation was carried out through modulation of the Wnt/β catenin pathway by an optimized
(Figure 12) small molecule protocol [20]
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Contracting cells (videos, Supplemental materials) were first observed around day 9–14 (dependent
upon initial iPSC confluency). For purification, iPS-CMs were maintained for 48 h in glucose-depleted,
lactate (4 mM) enriched media [84]. To ensure cardiomyocyte maturation prior to immunostaining and
metabolic studies, contracting cells were maintained in culture for 45 days. The resulting iPS-CMs are
a mixture of rod-like and multi-aged cell morphologies (Figure 1).

4.3. Glucose Uptake and Lactate Production

To facilitate palmitic acid cell entrance, prior to experiments, palmitic acid was conjugated to
bovine serum albumin (BSA) depleted from any fatty acids or lipids by charcoal purification [85].

4.3.1. Glucose Uptake

On day 45, RPMI 1640 medium was aspirated from beating iPS-CMs. Cells were washed quickly
with Dulbecco’s phosphate-buffered saline (DPBS) and medium was substituted with custom-prepared
RPMI 1640 with 10 mM 13C6-glucose and 0.4 mM palmitic acid-BSA. 150 µL aliquots were collected at
time = 0 and time = 6 h. To the 25 µL of the cell media aliquot, 10 µL of 1 mM galactose (Millipore
Sigma) was added. Glucose was extracted from media aliquots using 400 µL methanol/chloroform
(1:1), followed by 400 µL of water. Samples were rocked for 10 min, then centrifuged at 5000 rpm for
5 min. The resulting polar upper phase was separated from the bottom nonpolar phase and dried
under nitrogen. Dried media extracts were derivatized using 0.2M hydroxylamine hydrochloride
(Millipore Sigma) at 90 ◦C for 40 min, followed by derivatization with acetic anhydride at 90 ◦C
for 60 min. The derivatized samples were dried down under nitrogen and re-suspended in ethyl
acetate, transferred to a glass vial, and injected to GCMS. GCMS method details are found in [86] and
the Figure S1.

4.3.2. Lactate Production

To the 25 µL of the cell media aliquot, 10 µL of 1 mM tricarballylic acid (Millipore Sigma)
was added as internal standard. Lactate was extracted from media aliquots using 400 µL
methanol/chloroform (1:1), followed by 400 µL of water. Samples were rocked for 10 min, then
centrifuged at 5000 rpm for 5 min. The resulting polar upper phase was separated from the bottom
nonpolar phase and dried down under nitrogen. Dried media extracts were derivatized using 70 µL of
N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide (Millipore Sigma) at 70 ◦C for 40 min, transferred
to a glass vial, and injected to GCMS. GCMS method details are found in the Supplemental Materials.
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4.4. Palmitate Uptake

On day 45, RPMI 1640 medium was aspirated from beating iPS-CMs. Cells were washed quickly
with Dulbecco’s phosphate-buffered saline (DPBS) and medium was substituted with custom-prepared
RPMI 1640 with 10 mM glucose and 0.4 mM 13C16 -palmitic acid-BSA. 150 µL aliquots were collected
at time = 0 and time = 6 h.

To the 100 µL of the cell media aliquot, 10 µL of 1 mM methyl heptadecanoate (Millipore Sigma)
was added as internal standard. Palmitic acid was extracted from media aliquots using 400 µL
methanol/chloroform (1:1), followed by 400 µL of water. Samples were rocked for 10 min, then
centrifuged at 5000 rpm for 5 min. The resulting nonpolar bottom phase was separated from the upper
polar phase, adjusted to pH 10 with NaOH, and dried down under nitrogen. Hexane (250 µL) and
BF3/MeOH (Millipore Sigma, 250 µL) were added, then samples were incubated for 30 min at 80 ◦C.
After derivatization, pH of samples was adjusted to pH = 3 with 1 N HCl. Saturated NaCl (150 µL)
and hexane (100 µL) were added and then samples were centrifuged at 5000 rpm for 5 min. The top
phase was removed, dried under nitrogen to ensure samples are free of water, re-suspended in 100 µL
hexane, transferred to a glass vial, and injected to GCMS. GCMS method details are found in the
Supplemental Materials.

4.5. Metabolic Analysis

4.5.1. Krebs Cycle Intermediates

Cell media were aspirated and iPS-CMs adherent to matrigel were washed two times with
cold Dulbecco’s phosphate-buffered saline (DPBS) followed by one cold water wash. Metabolism
quenching was achieved by the addition of cold acetonitrile-water solution (2 mL:1.5 mL per
well). Cells were scraped and lysates were transferred to tubes followed by chloroform addition
(2 mL). Cell lysates were centrifuged at 5000 rpm for 15 min. The polar phase was separated and
dried under a nitrogen stream at room temperature. Dried cell extracts were derivatized with
methoxyamine (Millipore Sigma) in pyridine (20 mg/mL, 40 µL, 80 ◦C for 60 min) followed by
N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide (Millipore Sigma 60 µL, 70 ◦C for 45 min).
Target ions and retention times for Krebs cycle intermediates can be found at Table S1.

4.5.2. Acylcarnitine Analysis

Cells were harvested by the same protocol described for Krebs cycle intermediates preparation.
100 µL of internal standard (Cambridge Isotopes, NSK B, working solution) was added to the polar
phase from cell lysates. The polar phase was then dried under a nitrogen stream at room temperature.
Derivatization of acylcarnitines carried out with the addition of 60 µL of 3 N HCl/n-butanol and
incubation for 45 min. at 65 ◦C. The derivatized samples were dried and reconstituted in mobile
phase B. LCMS/MS analysis was carried out with SCIEX 5500 QTrap mass spectrometer operated in
+ESI/multiple reaction monitoring scans (MRM) coupled to a Shimadzu HPLC system. The separation
of acylcarnitines was achieved on XBridge BEH C18 XP column, (130 Å, 2.5 µm, 2.1 mm × 75 mm) at
0.6 mL/min flow rate with gradient program (Supplemental materials) and water/0.1% formic acid as
mobile phase A and acetonitrile/0.1% formic acid as mobile phase B. LCMS/MS method details can be
found in the Tables S2–S4.

4.5.3. Amino Acids Analysis

Cells were harvested as described for Krebs cycle intermediates. The polar upper phase, was dried
and derivatized at 70 ◦C for 30 min with N,O-Bis(trimethylsilyl)trifluoroacetamide (Millipore Sigma).
Proline analysis was performed by GCMS operated on scan mode. Separation was achieved by 5977
GC-MS (Agilent) operated in EI/scan mode and equipped with an HP-5ms column (Agilent) 1 mM
(10 µL) tricarballylic acid (Millipore Sigma) was used as internal standards. Proline fragmentation
patterns were confirmed by NIST library. For arginine analysis the polar upper phase, was dried
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followed addition of 60 µL 3 N HCl/n-butanol (Millipore Sigma). Samples were incubated at 65 ◦C for
30 min, dried and reconstituted in acetonitrile /formic acid (0.1%). Arginine analysis was performed by
flow injection mass spectrometry analysis (FIA-MS) with SCIEX 5500 QTrap mass spectrometer operated
in +ESI/single ion monitoring mode (m/z 231-m/z 70). (House et al. in press). -D4-13C5-Arginine
(Cambridge Isotopes, NSK A working solution) was used as internal standard (m/z 236-m/z 75).

4.5.4. Free Fatty Acids Analysis

Cells were harvested as described for Krebs cycle intermediates. The nonpolar bottom phase, was
dried and derivatized at 70 ◦C for 30 min with N,O-Bis(trimethylsilyl)trifluoroacetamide (Millipore
Sigma). Retention times and fragmentation mass spectra of all fatty acids were confirmed with
commercially available standards and the National Institute of Standards and Technology (NIST)
library. Retention time for fatty acids can be found in Table S5.

4.6. Gene Expression Analysis

RNA from cells in independent biological triplicates was extracted using RNAzol (Molecular
Research Center, Inc) according to the manufacturer’s instructions. RNA quality was assessed by
NanoDrop. cDNA was generated using GeneAmp RNA PCR (Applied Biosystems). Real-time qPCR
was carried out using TaqMan Assays-on-Demand Probe technology (Applied Biosystems). Details on
probes that used for the experiment can be found in Supplemental materials. The following probes were
used (Thermo-Fisher): FABP4 Hs01086177_m1, FABP3 Hs00997360_m1, SERCA2A Hs00544877_m1.
18s rRNA (4352930, Thermo-Fisher) was used as a reference gene. Relative expression levels were
calculated as 2−∆∆CT.

4.7. Calculations

4.7.1. Metabolites Level

Metabolites’ levels were normalized to the internal standard (tricarballylic acid for Krebs cycle
intermediates, 13C3-lactate, proline, fatty acids and corresponding stable isotope labeled standards
for arginine and acylcarnitines) and then to the total protein amount of each cell pellet as measured
by Bradford total protein assay. Mass spectra were used to calculate the ratio of peak areas of target
metabolites to the corresponding internal standard.

4.7.2. Statistical Analysis

The data were presented as the mean ± SEM from multiple samples. Significance was tested
with paired two tailed t-test using GraphPad calculator or Student t-test. A difference of p ≤ 0.05 was
considered significant, n = 3 (biological replicates) for control-iPS-CM and TAZ-iPS-CM was used in
most experiments, unless indicated otherwise.

4.7.3. Mass Isotopomer Analysis

Mass isotopomers are molecules with the same molecular structure which differ only by the
number of 13C atoms present, resulting in different molecular weights which can be resolved by mass
spectrometry. For example, M2-Citrate signifies that two out of six carbons are labeled with 13C. Peak
areas of each mass isotopomer were integrated from GCMS chromatograms and corrected for natural
abundance of all elements contained in the analyzed molecule. The percent fraction of total pool
(percent enrichment) of a given mass isotopomer (Mi) is expressed as the percent fraction of that
specific isotopomer to the sum of all isotopomers, including the unlabeled component, M0.

% f raction o f Mi f rom total pool =
Mi∑

M0, M1, M2 . . .Mn
, (1)
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Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/12/306/s1,
Figure S1: GCMS total ion chromatogram (TIC) shows glucose/galactose separation; Table S1: Target ions and
retention times for unlabeled (M0) Krebs cycle intermediates and 13C3 lactate as MTBSTFA derivatives GCMS
analysis; Table S2: LC gradient program for acyl carnitines analysis;; Table S3: Acylcarnitines mass spectrometry
analysis data; Table S4: Acylcarnitines retention times; Table S5: Retention times for free fatty acids as BSTFA
derivatives GCMS analysis Video S1: Representative video 1 of beating iPS-CM; Video S2: Representative video 2
of beating Ips-CM.
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