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Abstract

Motivation: RNA 5-methylcytosine (m5C) is a type of post-transcriptional modification that may be involved in nu-
merous biological processes and tumorigenesis. RNA m5C can be profiled at single-nucleotide resolution by high-
throughput sequencing of RNA treated with bisulfite (RNA-BisSeq). However, the exploration of transcriptome-wide
profile and potential function of m5C in splicing remains to be elucidated due to lack of isoform level m5C quantifica-
tion tool.

Results: We developed a computational package to quantify Epitranscriptomal RNA m5C at the transcript isoform
level (named Episo). Episo consists of three tools: mapper, quant and Bisulfitefq, for mapping, quantifying and simu-
lating RNA-BisSeq data, respectively. The high accuracy of Episo was validated using an improved m5C-specific
methylated RNA immunoprecipitation (meRIP) protocol, as well as a set of in silico experiments. By applying Episo
to public human and mouse RNA-BisSeq data, we found that the RNA m5C is not evenly distributed among the tran-
script isoforms, implying the m5C may subject to be regulated at isoform level.

Availability and implementation: Episo is released under the GNU GPLv3þ license. The resource code Episo is free-
ly accessible from https://github.com/liujunfengtop/Episo (with Tophat/cufflink) and https://github.com/liujunfeng
top/Episo/tree/master/Episo_Kallisto (with Kallisto).

Contact: liff@big.ac.cn or zhangzhihua@big.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-transcriptional modifications in RNAs have drawn much atten-
tion in recent literature (Chi, 2017), as rapidly growing evidence has
suggested that reversible RNA modifications may be a new layer of
epigenetic regulation in gene expression (Zhao et al., 2017), and its
disruption may lead to life-threatening disease like cancer (Frye
et al., 2016; Popis et al., 2016). 5-Methylcytosine is a type of chem-
ical modification on the nucleotides that can be found in both DNA
and RNA. To identify transcriptome-wide m5C, several advanced
techniques have been employed, including high-throughput sequenc-
ing of RNA treated with bisulfite (RNA-BisSeq) (Schaefer et al.,
2010; Squires et al., 2012), RNA m5C-RNA immunoprecipitation
(RIP) (Jayaseelan et al., 2011), 5-azacytidine-mediated
RNA immunoprecipitation (Aza-IP) (Khoddami and Cairns, 2013)
and methylation individual-nucleotide-resolution crosslinking and

immunoprecipitation (miCLIP) (Hussain et al., 2013a, b). Among
these, RNA-BisSeq is considered the gold standard for RNA m5C
(Amort et al., 2017; Hussain et al., 2013a,b; Squires et al., 2012;
Yang et al., 2017). Hereinafter in this article, m5C only refers to
RNA m5C, unless otherwise indicated.

The transcriptome-wide function of m5C is just starting to be
investigated (Edelheit et al., 2013; Hussain et al., 2013a, b; Shelton
et al., 2016). It is clear that m5C is distributed widely over protein
coding and non-coding RNAs in human (Squires et al., 2012) and
mouse (Amort et al., 2017), as well as enriched in CG-rich regions
and the initiation site of coding regions (Yang et al., 2017). RNA
m5C is conserved from bacteria to mammals and plants, and its
functions have been suggested to include structural and metabolic
stabilization and translational regulation (Blanco et al., 2014;
Burgess et al., 2015; Chen et al., 2019; Gabriel Torres et al., 2014;
Popis et al., 2016; Schaefer et al., 2010; Schwartz et al., 2013;

VC The Author(s) 2019. Published by Oxford University Press. 2033

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(7), 2020, 2033–2039

doi: 10.1093/bioinformatics/btz900

Advance Access Publication Date: 3 December 2019

Original Paper

https://github.com/liujunfengtop/Episo
https://github.com/liujunfengtop/Episo/tree/master/Episo_Kallisto
https://github.com/liujunfengtop/Episo/tree/master/Episo_Kallisto
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz900#supplementary-data
https://academic.oup.com/


Squires et al., 2012; Yang et al., 2019). At the transcription level, al-
ternative splicing is a predominant contributor to the diversity of
protein types in higher eukaryotic cells (Black, 2003). Any changes
in this regulated process could result in severe phenotypes (Pan
et al., 2008). However, both the distribution of m5C among the
transcript isoforms and its functional relevance to the splicing pro-
gramme have been barely investigated.

In order to study the relationship between m5C and splicing, a
tool that is able to quantify m5C at isoform level is necessary.
However, to the best of our knowledge, such method has yet been
found in literature. There are several tools for RNA-BisSeq or Aza-
IP data analysis (Bormann et al., 2018; Legrand et al., 2017; Liang
et al., 2016; Rieder et al., 2016). meRanTK is a toolkit composed of
tools for RNA-BisSeq read mapping, methylation calling and differ-
entially methylation identification (Rieder et al., 2016). BS-RNA
maps and annotates RNA-BisSeq data with more attention on the
‘dovetailing’ reads (Liang et al., 2016). BisRNA considers the pos-
sible artifact that may be stochastically introduced by the experi-
ment (Legrand et al., 2017). BisAMP is more specific to targeted
RNA m5C analysis (Bormann et al., 2018). However, none of above
tools supports the analysis of RNA-BisSeq data at isoform level.

To address this issue, we developed a probabilistic model to quan-
tify Epitranscriptomal RNA m5C at the transcript isoform level (named
Episo), which utilizes single-nucleotide resolution m5C data from RNA-
BisSeq. Episo consists of three tools: mapper, quant and Bisulfitefq, for
mapping, quantifying and simulating RNA-BisSeq data, respectively.
Both in silico and wet experiments showed that the prediction of Episo
is highly accurate. By applying Episo to recently published m5C data
(Yang et al., 2017), we generated the first transcript isoform level m5C
profiles for HeLa cells and four mouse tissues. We found that the distri-
bution of m5C in the transcript isoforms was remarkably dissimilar to
random shuffled data, suggesting that there may exist a latent regula-
tory layer for m5C at isoform level.

2 Materials and methods

Reference genome and transcriptome for human and mouse, version
GRCh37 and GRCm38, respectively, were downloaded from the
Ensembl database (Yates et al., 2016). The RNA-BisSeq data were
downloaded from the BIG Data Center under accession number
PRJCA000315 (Members, 2017).

Episo consists of three tools: mapper, quant and Bisulfitefq, for
mapping, quantifying and simulating RNA-BisSeq data, respectively
(Fig. 1). Before reads mapping, Episo has all low-quality bases and
adaptor sequences removed by Cutadapt (Martin, 2011).

The mapper maps RNA-BisSeq reads to the reference genome
and reference transcriptome. We adopted the mapping strategy used
in Bismark to map RNA-BisSeq reads with modifications (Krueger
and Andrews, 2011). First, all RNA-BisSeq reads were C-to-T and
G-to-A transformed, and the resultant data were denoted as BSC-T
and BSG-A, respectively. Second, the reference transcriptrome was
also C-to-T and G-to-A transformed, and the transformed references
were denoted as RefC-T and RefG-A, respectively. Last, the four
types of mapping (BSC-T versus RefC-T, BSC-T versus RefG-A,
BSG-A versus RefC-T and BSG-A versus RefG-A) were performed
by Bowtie (version 1.1.2, see Fig. 1). The uniquely mapped reads,
i.e. those that were uniquely mapped to a genome locus in at least
one of four above mappings, but not necessarily mapped to a unique
transcript, were used in subsequent processes.

The quant quantifies m5C level at transcription isoform level
from RNA-BisSeq data. The quant consists of two steps. The first
step estimates transcription level from RNA-BisSeq data. To accom-
plish this, quant constructs a virtual RNA-seq dataset, i.e. for all
RNA-BisSeq reads that contain unmethylated cytosines, quant trans-
forms them back to their native cytosine states. With such virtual
RNA-seq data, quant estimates gene transcription level using third
party tools, which has two choice in current implement, i.e. Tophat
(version 2.1.0)/Cufflink(version 2.2.1) (Trapnell et al., 2009, 2010)
and Kallisto (version 0.44.0) (Bray et al., 2016). The users can also
replace them with any favorite tools easily by making input data for-
mat acceptable for Episo. For example, Episo takes fragments per

kilobase of transcript per million mapped reads (FPKM) as the de-
fault input format, while the output of Kalliato is estimated tran-
scripts per million (TPM). So, we need to convert TPM to FPKM
using the following formula.

TPMi ¼
FPKMiP
j FPKMj

 !
� 106 (1)

We present the performance and data analysis using the results
from Tophat/Cufflink in this article; however, the results are essen-
tially similar when using Kalliato.

The second step of quant estimates the RNA m5C level at each
putative methylation site in the isoforms. We define the methylation
rate at global, isoform and single-nucleotide levels as follows. The
global methylation rate is the proportion of cytosine sites that have
been methylated in all examined RNAs. This rate is estimated by
directly counting the unconverted cytosines in RNA-BisSeq data.
The methylation rate at isoform level is defined as Rm,iso/Riso, Rm,iso

� Riso, where Rm,iso denotes the RNAs that carry at least one methy-
lated cytosine site, and Riso denotes all RNAs of the given isoform
iso. The methylation rate of a single-nucleotide at the level of a given
set of isoform(s) is defined as Rm,c/Rc, Rm,c � Rc, where Rm,c denotes
the RNAs of the given isoform(s) from the methylated cytosine sites,
and Rc denotes all RNAs of the given isoform(s) that carry this cyto-
sine site.

To estimate the RNA m5C rate at isoform level, one needs to es-
timate the probability that a read r 2 R was generated from a given
isoform t 2 T, where R denote a set of RNA-BisSeq reads and T de-
note a set of isoform(s). Let’s denote this probability as P(r, t). One
way to calculate this probability was showed by Trapnell et al.
(2009),

A

B

Fig. 1. The Episo pipeline. (A) The mapping procedure. Incoming RNA-BisSeq reads

are mapped to reference genome and transcriptome. The output methylation file

contains two columns that represent mapped fragments and methylation pattern.

The symbols Z, X and H represent cytosines in CpG, CHG and CHH, respectively,

whereas H can be A, C or T. The upper- and lowercase letters represent methylated

and unmethylated cytosines, respectively. (B) The quantification procedure. For any

given cytosine site, the total reads that cover the site and the reads that carry methy-

lated cytosine at the given cytosine site are denoted as R and R0, respectively
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P r; tð Þ ¼
qt

~l tð ÞP
u2Tqu

~l uð Þ
F lt rð Þ
� �

l tð Þ � lt rð Þ þ 1

 !
(2)

where qt denotes the proportion of reads that were generated from
isoform t, l tð Þ denotes the length of an isoform, ~l uð Þ denotes the ef-
fective length of an isoform, lt rð Þ denotes the implied length of r,
assuming it originated from isoform t and F denotes the distribution
function of read length. The first term in the above formula (2) is
the probability that a read selected at random originates from iso-
form t (denoted as Pr (trans¼t)), and the second term is the condi-
tional probability that read r was observed when it originated from
isoform t. The effective length of an isoform is defined as

~l tð Þ ¼
XlðtÞ
i¼1

F ið Þ l tð Þ � iþ 1ð Þ (3)

Therefore, the likelihood function, the maximum likelihood esti-
mate and the 95% confidence interval of qt can be easily derived
from formula (2). It is the qt and the 95% confidence interval needed
for Episo; however, users can take these two values from any third
party tools. In the current release of Episo, the users can either
choose Kallisto (version 0.44.0) (Bray et al., 2016) or Tophat (ver-
sion 2.1.0)/Cufflink(version 2.2.1) (Trapnell et al., 2010) for these
two inputs.

Now, we estimate the RNA m5C level for a given isoform t
(denoted as Mt). Let R0 denotes the reads that carry at least one
methylated cytosine, i.e. unconverted cytosines after bisulfite treat-
ment. We define the relative transcription level of methylated iso-
form, i.e. the proportion of reads from isoform t in R0 is denoted as
�qt. Following logic identical to that in formula (2), we can calculate
the maximum likelihood estimation and 95% confidence interval of
�q 0t. To simplify the derivation, we assumed the independence be-
tween transcription and post-transcriptional modification, i.e.
�qt?�q 0t . Mt can be estimated according to the delta method, as

Mt¼
m

n

� �
�q 0t
�qt

þ �q 0tr2
t

�qtð Þ3

 !
(4)

where m and n denote the number of reads in R0 and R, respectively,
�qt and �q 0t denote the estimated qt and q

0

t, respectively, and r2
t is

the variance of �qt. Moreover, quant can estimate the m5C level for
a subset of isoforms of a given gene. Let B be a subset containing k
isoforms from gene A; then, the RNA m5C level in B can be esti-
mated, as

m

n

� � Pk
t¼1 �q 0tPk
t¼1 �qt

þ
Pk

t¼1 �q 0t
� � Pk

t¼1 r2
t

� �
Pk

t¼1 �qt

� �3

0
B@

1
CA (5)

Finally, we estimate the RNA m5C level for a given cytosine site.
Let �R denote the reads that cover the given cytosine site, and let �R 0

denote the reads that carry methylated cytosine at the given site.
Following logic identical to that in formulas (2)–(5), the RNA m5C
of a given cytosine site on an isoform or a subset of isoforms can be
estimated.

The Bisulfitefq simulates bisulfite treatments, and the sequencing
process were simulated by the FluxSimulator with default parame-
ters (Montgomery et al., 2010). Bisulfitefq consists of Bisulfitefq-
reads, Bisulfitefq-fragment and Bisulfitefq-fragment-multirate. The
Bisulfitefq-reads component generates RNA-BisSeq data with a
given global m5C level, i.e. it randomly transforms a given propor-
tion of cytosines to thymines in the input reads. The Bisulfitefq-
fragment component transforms all cytosines in a given proportion
of randomly selected reads into thymines. The Bisulfitefq-fragment–
multirate component can then simulate an epitranscriptome with
multiple m5C levels between isoforms. It can take up to three m5C
levels as input parameters. For each m5C level, it transforms all cyto-
sines in the given proportion of randomly selected reads from one
assigned isoform into thymines. For example, let a gene A have three
isoforms, namely A1, A2 and A3, while P1, P2 and P3 are three
m5C levels we want to simulate for the isoforms, respectively. The

Bisulfitefq-fragment–multirate transforms all cytosines with 1-P1, 1-
P2 and 1-P3 of randomly selected reads from isoform A1, A2 and
A3, respectively, into thymines.

Gene ontology (GO) analysis of RNA m5C-containing genes was
performed using DAVID (Dennis et al., 2003), and the sequence
motifs of the RNA m5C sites were discovered using MEME (Bailey
et al., 2009).

The human cervical carcinoma cell line HeLa are cultured in
DMEM high glucose medium (Hyclone, SH30243.01) with 10%
FBS (Biowest, S1580-500) and 1% Penicillin–Streptomycin
(Corning, 30002283). Cell identity was verified by STR analysis
(DNA fingerprinting), and mycoplasma contamination was regular-
ly tested for cell cultures.

The regions spanning nt 914–1465 of E.coli 16S rRNA sequence
was amplified by PCR with a forward primer harboring a T7 pro-
moter sequence . 0.5 mg production was used as template for in vitro
transcription with MEGAScript Kit (Promega, P1440) according to
the protocol. The transcribed RNA was treated 15 min at 37�C with
1 ml RQ1 RNase-free DNase and purified using RNA clean kit
(ZYMO REASEARCH R1015) following the protocol. The spike-in
RNA was subpackaged and stored in RNase-free water at -80�C.

Following the manufacturer’s recommendations, about 3 � 107

HeLa cells were treated with 6 ml TRIzol Reagent (Invitrogen,
15596026) for total RNA isolation. Isolated RNA was then sub-
jected to two rounds of poly(A) RNA enrichment using fresh
Dynabeads (Ambion, 61006) and treated with 1U of DNase I
(Thermo Scientific, 00383793) for 15 min at 37�C. The mRNA was
cleaned using RNA clean kit (ZYMO REASEARCH R1015) and
concentration was determined in nanodrop (Thermo Scientific,
Nanodrop 1000) by measuring absorbance at 260 and 280 nm.

Thirty microgram purified mRNA was mixed with 50 ng spike-
in RNA. The mixture was divided equally into three portions. Four
microgram anti-m5C antibody (1.36 mg/ml, Diagenode,
C15200081), 2 mg random 25nt oligonucleotides and 50 ml
Dynabeads Protein G (Novex, 10007D) was incubated in 300 ml IP
buffer [10 mM Tris–HCl pH 7.5, 150 mM NaCl, 0.05%Triton-X(v/
v)] at 4�C for 2 h on a rotating wheel. The same procedure was per-
formed using Mouse IgG (1 mg/ml, Diagenode, C15400001) as con-
trol. We used 250 ml IP buffer to wash bead–antibody complexes
three times, then added RNA mixture and finally brought to 250 ml
with IP buffer. The mixtures were incubated at 4�C overnight
(>12 h) with 1 ml RNasin (Invitrogen, N8080119) on a rotating
wheel. The RNA–antibody–beads complexes were gentle washed
three times using IP buffer and incubated in 300 ml elution buffer
(5 mM Tris–HCl pH 7.5, 1 mM EDTA, 0.05%SDS, 80 mg
Proteinase K) for 1 h at 50�C. After removing beads complexes, the
eluted production was cleaned with RNA clean kit (ZYMO
REASEARCH R1015). We repeated the beads–antibody incubation,
RNA-complexes incubation and RNA–antibody–beads complexes
elution processes for five times. The supernatant was collected in a
new tube and cleaned with RNA clean kit (ZYMO REASEARCH
R1015). The supernatant concentration was determined in nano-
drop by measuring absorbance at 260 and 280 nm.

Five tubes of cleaned eluted MeRIP production and 300 ng
supernatant RNA were reverse transcribed using SuperScript III re-
verse transcriptase (Invitrogen 18080-093). Each tube contains 11 ml
RNA solution, 1 ml dNTPs and 1 ml random 6 bp Hexamers. The
tubes were incubated at 65�C for 5 min and 0�C at least 1 min. Four
microlitre 5� First strand buffer, 1 ml 0.1 M DTT, 1 ml RNasin and
1 ml SuperScript III reverse transcriptase were mixed and added the
mixture into each tube. The tubes were incubated at 55�C for
60 min followed by 70�C for 15 min. The reverse transcribed prod-
ucts were stored at -20�C.

The spike-in RNA was used as internal unspecific binding con-
trol to normalize binding of RNA between IgG control and m5C
sample. Five tubes of reverse transcribed MeRIP products were
mixed and measured for the enrichment using 2-DDCt method by
comparing the anti-m5C sample with the anti-IgG sample. Data
were expressed as the expression of target genes relative to the
spike-in control in the anti-m5C sample compared with the anti-IgG
sample. PCR primers can be found in the Supplementary Table S1.
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If our model is correct, we should expect

Predicted MR rate ~Observed MR rate

where

Predicted MR rate ¼ m5c level from isoform A

m5c level from isoform B

Observed MR rate ¼ observed m5c level in isoform A

observed m5c level in isoform B

¼

m5C counts from isoform A

IgG counts from isoform A

m5C counts from isoform B

IgG counts from isoform B

¼ FCmeRIPðisoform AÞ
FCmeRIPðisoform BÞ

3 Results

We present an RNA-BisSeq data analysis package, named Episo, to
quantify m5C at the transcript isoform level. Episo consists of three
tools: named mapper, quant and Bisulfitefq, for mapping, quantify-
ing and simulating RNA-BisSeq data, respectively (Fig. 1). The
detailed algorithm can be found in the Section 2.

3.1 In silico assessment of Episo
To in silico assess the performance of Episo, we simulated paired-end
RNA-BisSeq data with three global methylation rates, 0.1, 1 and 10%
(about 23 million 101-bp length paired-end reads for each methylation
rate) using Bisulfitefq. Comparing to meRanTK, the mapping rates of
mapper were consistently higher at all three methylation rates tested
(86.6% versus 80.72%). Next, we assessed the accuracy of quant at
global and single-nucleotide level. The quant accurately estimated the
relative global RNA m5C rates at all nucleotide contexts, i.e. CpG,
CHG and CHH, and at all the three methylation rates (Supplementary
Table S2). Because Episo, to the best of our knowledge, is the first com-
putational tool that enables isoform level quantification of m5C, there
are no existing methods to compare with. Thus, to further assess the ac-
curacy of quant at isoform level, we simulated RNA-BisSeq data with
10, 5 and 1% m5C isoform level methylation (Fig. 2A). These three
methylation levels were examined because most methylated transcript
isoforms were estimated carrying 1–10 percent m5C in real samples
(Fig. 2B). Because the m5C level is so low, when gene expression level is
also low, the data would be too noisy to made meaningful predictions,
e.g. the average differences are 0.2076, 0.4211 and 0.4765 compared
with simulated levels of 10, 5, 1%, respectively (Supplementary Fig.
S1). We only considered the transcripts that have sufficient expression
level, i.e. fragments per kilobase per million reads (FPKM) >2 in our
tests. We found that the average differences between estimated and
simulated m5C levels were minor (the average differences are 0.0070,
0.0013 and 0.0006 compared with simulated levels of 10, 5, 1%, re-
spectively, Fig. 2A). To assess the accuracy of quant at single-nucleotide
level, we simulated RNA-BisSeq data with 60, 40 and 10% level single-
nucleotide m5C methylation. These three methylation levels were tested
because most methylated cytosines have an m5C level between 10 and
60% in real samples (Fig. 2C). In this dataset, we also found that the
average differences between the estimated and simulated RNA m5C lev-
els were nearly zero (the average differences are 0.0267, 0.0113 and
0.0013, when the simulated levels are 60, 40 and 10%, respectively,
Fig. 2A). Last, Episo was found to predict isoform m5C levels specifical-
ly and sensitively in tested methylation level (Supplementary Fig. S2).

3.2 Experimental assessment of Episo
To experimentally assess the accuracy of Episo’s prediction by MeRIP
followed by qPCR (Fig. 2D and Supplementary Fig. S3), we applied
Episo to RNA-BisSeq data of HeLa cells and predicted m5C level of
transcripts at isoform level. To distinguish the methylation levels

between isoforms easily, we looked for genes satisfied all the following
conditions for experimental validation. First, this gene should have and
only have one Guanine site that its corresponding cytosine site in the
RNA production be methylated. Second, the gene generates at least
two isoforms that carrying the methylated site. Third, the predicted
methylation level at the site is no less than 0.1 in tested isoforms, be-
cause the accuracy of current RNA m5C examination technology, i.e.
MeRIP were limited when the methylation level is low. Fourth, there is
at least one unique exon to enable proper primers design distinguishing
the two tested isoforms (Fig. 2D). We identified seven sites after filter-
ing (Supplementary Table S3). Finally, we picked three genes (PIK3R2,
TUBGCP2 and PRKCA). The rest four genes are excluded from experi-
mental validation because of unsuccessful primer design (STK32C and
COPS7A) or having too distinguished expression levels between the
isoforms (fold change> 30, RALY and GPAA1).

The experimental observed m5C levels have consistent trends
with the predictions (Fig. 2E). We measured the methylation ratio
(MR) between the isoforms with three independent experiments
(each independent experiment had two replications) using a modi-
fied methyl-RNA immunoprecipitation (meRIP) assay (Section 2).
The order of average MR ratio in the experiments are PIK3R2

A B

C

D

E

Fig. 2. The accuracy of Episo and the distribution of estimated m5C levels in human

cells and mouse tissues. (A) The distribution of estimation errors of Episo. The dif-

ference of m5C levels between the simulated and Episo estimated data is shown at

the resolution of RNA isoforms and single cytosine. At both resolutions, the com-

parisons were made at three m5C levels that covered the main range of estimations

in real data from human cells and mouse tissues as shown in (B) and (C). (B) The

distribution of estimated m5C levels at the resolution of RNA isoforms. In the

mouse tissues tested, the m5C level is significantly higher in brain than that in the

other three tissues. The ‘***’ indicates significant difference of P-value < 0.001.

(C) The distribution of estimated m5C levels at the resolution of single cytosine.

For both metrics, we found no significant different among mouse tissues tested. (D)

Experiment design for PIK3R2. The unique exons for isoform PIK3R2-002 and

PIK3R2-004 are marked in pink shadow and the primers design are indicated as red

arrows. The unique methylated cytosine is marked with red flag. See Supplementary

Figure S3 for PRKCA and TUBGCP2. (E) The comparison of the predicted MR

ratio with the observed MR ratio. The hollow points and horizontal whiskers repre-

sent the expectation and 95% confident interval of predicted MR rate, respectively.

The Y coordinates for the hollow points are the mean of experimental data. The

solid points and vertical boxplots represents the experimental measured MR rates

and their distributions of six replicates (three independent experiments with two

replicates each), respectively. The diagonal line is Y¼X. (Color version of this figure

is available at Bioinformatics online.)
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(1.195) < TUBGCP2 (1.701) < PRKCA (2.18), which was rather
close to Episo’s predictions of PIK3R2 (1.507) < TUBGCP2
(2.3865) < PRKCA (3.3903) (Fig. 2E). However, the 95% confident
interval of the predictions are large, particular for the PRKCA,
which need to be improved in the further. Nevertheless, our experi-
mental data suggested that Episo can finely predict m5C level at iso-
form level from BisSeq-seq data.

Taken together, the assessment using both simulated and wet ex-
perimental data suggested that Episo is a fine RNA-BisSeq data ana-
lysis tool and it can estimate m5C level at global, isoform, exons and
single-nucleotide level.

3.3 Uneven m5C distribution among tissues at isoform

level
To explore the distribution of m5C level in real samples, we applied
quant to recently published RNA-BisSeq data in human (HeLa) and
mouse (liver, kidney heart and brain). At the isoform level, although
the overall m5C is low in all the samples tested, it is indeed higher in
HeLa cells and the mouse brains than other tissues and the differ-
ence is moderate (The median m5C level in isoforms of HeLa cells,
mouse liver, kidney, heat and brain were estimated as 0.035, 0.027,
0.025, 0.023 and 0.035, respectively) (Fig. 2B). Intriguingly, the dis-
tribution of m5C at single-nucleotide level is undistinguishable in all
mouse tissues and HeLa cells (Fig. 2C), suggesting the presence of
more methylated cytosine sites in HeLa cells and mouse brain com-
pared to other mouse tissues.

It is well known that the transcriptome pattern of brain is dis-
tinct from other tissues in mouse (Zheng-Bradley et al., 2010).
Therefore, we asked if the distinct m5C pattern in mouse brain
stemmed from gene expression level per se. We found a weak nega-
tive correlation between RNA m5C at isoform level and its expres-
sion (Spearman’s R ¼ -0.31, P<2.2e-16) in mouse brain data.
However, this weak correlation may only hold for transcripts with
relatively low m5C level because when we limit the analysis to the
region of m5C larger than 0.3, the correlation disappeared
(Spearman’s R¼0.15, P¼0.26). A similar pattern can be found in
other mouse tissues and HeLa cells (Supplementary Fig. S4).
Therefore, the distinct m5C pattern in mouse brain and HeLa cells
may be largely independent of gene transcription activity.

3.4 A fraction of cytosines are methylated specifically

towards certain isoforms and CG dinucleotide
Next, we asked whether m5C was evenly distributed in genome. If
m5C, in general, is subjected to a certain regulation, we reasoned
that the distribution of m5C over isoforms, or between genomic con-
texts, should deviate from random expectation. Thus, we compared
the diversities of m5C as estimated by Episo in real data to the ran-
dom controls, which were simulated with comparable total expres-
sion and methylation levels (about 0.1%) using Bisulfitefq.

First, we found that the RNA m5C in real data is less evenly dis-
tributed over isoforms than random expectation (Fig. 3A). We
employed the coefficient of variation (CV) to index the diversity.
The CV is a statistic measures the diversity of a distribution, and is
defined as the ratio of the standard deviation r to the mean l of the
distribution and a distribution with a larger CV indicates that it is
more diverse than distributions with smaller CVs. We compared the
distribution diversity of m5C over isoforms between real data and
randomly simulations. The percentages of mRNAs that carrying
m5C are comparable between real and simulated control (29, 27,
34, 31 and 40% of mRNAs in the HeLa, liver, kidney, heart and
brain, respectively, compared to about 40% in the control, Fig. 3B).
However, for those methylated mRNA in real data, their diversity is
much higher than that in control (Fig. 3B and C). The average CV of
m5C in HeLa, liver, kidney, heart and brain was 2.28, 2.06, 2.04,
2.08 and 1.94, respectively, higher than the expected CV in simula-
tion data (1.34, KS test’s P-value <2.2e-16 for all the samples
tested). The largest CV in simulation was less than three, while the
distribution in real tissues was heavily tailed towards larger CVs.
For example, 19, 9, 8, 9 and 7% genes for HeLa, liver, kidney, heart
and brain, respectively, had CVs larger than 3 (Fig. 3D). This results

suggest, at least, these fraction of cytosines are methylated specific-
ally towards certain isoforms.

Next, we wonder whether this larger than expected CVs were
also true at single-nucleotide level. Because the CV will be zero if a
m5C site was methylated in one isoform, we divided m5C sites into
two classes. The two classes, named singletons and multitons, con-
tain the m5C sites that be methylated in only one isoform and mul-
tiple isoforms, respectively. We noticed that the CVs in multitons
are much smaller than control (Fig. 3C). The average CV of multi-
tons in HeLa, liver, kidney, heart, brain and control was 0.87, 0.97,
0.99, 0.98, 1.02 and 1.42 (KS test, P<2.2e-16 for all tissues), re-
spectively. This lower than expected CV implies that, if a cytosine is
methylated in multiple isoforms, the methylation tends to be even.

There are 991, 870, 872, 1261 and 2959 singletons in HeLa,
mouse liver, kidney, heart and brain, respectively. We asked if they
are biased to certain nucleotide type. By comparing the relative fre-
quencies of m5C at three di-/tri-nucleotide (CG, CHH and CHG)
contexts between these singletons and control, we detected a strong
bias towards CG in all tissue types we tested (Fig. 3C). And m5C is
also enriched at CHH in brain. GO analysis of genes with CV > 0
showed that they were enriched for several post-translational modi-
fications, while motif analysis on singletons showed that they were

A

B

C

D

Fig. 3. Diversity of m5C levels. (A) The distribution of expression and m5C levels be-

tween RNA isoforms of the M6PR gene in HeLa cells. The relative FPKMs were cal-

culated as the absolute FPKMs of isoforms divided by the average FPKM of the

isoforms of M6PR. (B) The proportion of m5C-containing and m5C-variable genes.

The blue bars represent the proportion of genes that have at least one m5C- contain-

ing mRNA over all protein coding genes in the human HeLa cells, four mouse tis-

sues and simulated data (sim). The red bars represent the proportion of genes with

diversity of m5C CV > 1 over that of all genes represented by blue bars. (C) The pro-

portion of diversity singleton sites (CV > 1) in the genomic context of CG, CHG

and CHH. (D) The distribution of diversity of m5C at isoform and single-cytosine

resolution. The orange curve represents the expected distribution of CV as obtained

by random shuffling of real data. (Color version of this figure is available at

Bioinformatics online.)
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enriched in the simple repeats region (Supplementary Figs S5 and
S6). Together, at the whole gene level, the above analysis implies
that the distribution of m5C may be isoform-specific, while at

single-nucleotide level, it may be more CG specific.

4 Discussion

In this work, we described a computational tool, Episo, to quantify
the RNA m5C at isoform level and single cytosine sites. The ability

to distinguish m5C level between isoforms of the same gene distin-
guishes Episo from existing tools, e.g. meRanTK. To the best of our

knowledge, Episo is currently the only method with this feature. The
accuracy of Episo mainly depends on the expression level of the host
gene and the methylation level per se (Fig. 2). Although the expected

estimation error is almost zero, variation cannot be completely
ignored. Given the low m5C level in most real samples, ultra-high
sequencing depth would be recommended. A recent work by Zhang

and colleagues showed that there might be technical biases in RNA-
BisSeq data (Huang et al., 2019). Thus, further development is

needed, computationally and experimentally, to reduce the varia-
tions and the costs in the RNA-BisSeq analysis, respectively.

Episo utilizes RNA-BisSeq data for m5C estimation, even though
the most abundant modification type is N6-methyladenosine (m6A)
(Wang et al., 2016), not m5C, in mammals. Episo may not the best

to handle m6A data, as current assays for m6A detection are mostly
antibody-based and seldomly reach single-nucleotide resolution

(Zhou et al., 2016). However, we foresee the use of Episo for m6A
in the future, most likely by taking advantage of rapidly evolving
third-generation sequencing technologies. With the help of the third-

generation sequencing technology, chemical modifications on DNA
could now potentially be directly identified (Shendure et al., 2017).

However, the two most popular third-generation sequencing tech-
nologies, Pacbio (Eid et al., 2009) and Nanopore (Branton et al.,
2008), suffer from severe sequencing errors. In real practice, data

correction using second-generation data is a widely used strategy for
both technologies (Mahmoud et al., 2017). Thus, when the third-
generation sequencing technology has evolved to the point where it

can directly identify chemical modifications on RNAs with short
reads, Episo might be a powerful tool for quantifying m6A and all

detectable modifications at isoform level.
We applied Episo to RNA-BisSeq data from human HeLa cells

and mouse liver, kidney, heart and brain samples. We showed that
RNA m5C at isoform level tends to be tissue-specific, particularly in
brain sample and HeLa cells. Evidence suggested that not all m5Cs

are randomly methylated, implying a potential layer of regulation in
the m5C program. The biological significance of low-level chemical

modifications detected in transcripts is always a concern (Agris,
2015; Song and Yi, 2017). In general, the present analysis showed
that some m5C sites do not mimic the distribution from pure sto-

chastic sampling. It is this portion of m5C sites that will draw much
more attention in future functional investigation.

The current version of Episo only takes into account the static
m5C level in a given sample. If the m5C program is indeed involved
in important biological processes, dynamic changes of m5C level be-

tween samples should be expected (Supplementary Text, Fig. S7and
Table S4). Thus, a quantitative model for differential methylations

is needed in the future.
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