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A B S T R A C T   

Value-associated cues in the environment often enhance subsequent goal-directed behaviors in adults, a phe-
nomenon supported by the integration of motivational and cognitive neural systems. Given that the interactions 
among these systems change throughout adolescence, we tested when the beneficial effects of value associations 
on subsequent cognitive control performance emerge during adolescence. Participants (N ¼ 81) aged 13–20 
completed a reinforcement learning task with four cue-incentive pairings that could yield high gain, low gain, 
high loss, or low loss outcomes. Next, participants completed a Go/NoGo task during fMRI where the NoGo 
targets comprised the previously learned cues, which tested how prior value associations influence cognitive 
control performance. Improved accuracy for previously learned high gain relative to low gain cues emerged with 
age. Older adolescents exhibited enhanced recruitment of the dorsal striatum and ventrolateral prefrontal cortex 
during cognitive control execution to previously learned high gain relative to low gain cues. Older adolescents 
also expressed increased coupling between the dorsal striatum and dorsolateral prefrontal cortex for high gain 
cues, whereas younger adolescents expressed increased coupling between the striatum and ventromedial pre-
frontal cortex. These findings reveal that learned high value cue-incentive associations enhance cognitive control 
in late adolescence in parallel with value-selective recruitment of corticostriatal systems.   

1. Introduction 

Adolescence is a time of life when learning is paramount. As ado-
lescents navigate their worlds, they encounter many new situations, 
both good and bad, and they must use the outcomes of these situations to 
guide their future decisions and actions. For example, imagine an 
adolescent enters the cafeteria, looking for a place to eat lunch. They 
must first learn from positive and negative feedback to determine where 
it is appropriate to sit and who is willing to sit with them. Following 
these encounters, the learned associations from these initial in-
teractions, both good and bad, may generalize across contexts. There-
fore, when encountering these cues in new environments, their learning 
history will orient their attention towards high value cues. For instance, 
upon seeing peers from prior interactions in the hallway or classroom, 
they will focus attention towards a friendly classmate. As such, learning 
from feedback can create longstanding consequences for goal-directed 
behavior. However, it remains unclear when and how adolescents 
transfer these learned associations to new contexts when immediate 
feedback is no longer provided. Given that the brain systems that 

integrate information about incentive value and action selection 
continue to mature throughout adolescence (Insel et al., 2017), here we 
tested how the ability to transfer value associations across contexts to 
guide goal-directed behavior emerges with age during adolescence. 

Adolescence is a period of the lifespan when brain systems that 
support cognition and motivation continue to mature to guide the 
emergence of successful goal-directed behavior (Davidow et al., 2018a; 
Somerville and Casey, 2010), and adolescents continue to refine their 
cognitive abilities with age (Casey, 2015; Paus, 2005). The ability to 
implement cognitive control, a mental process that allows individuals to 
select contextually appropriate behavior to pursue superordinate goals 
(Miller and Cohen, 2001), continues to improve through late adoles-
cence and into early adulthood (Crone and Steinbeis, 2017; Luna et al., 
2010). This protracted development of cognitive control is related to 
ongoing structural and functional maturation of the prefrontal cortex 
(Baum et al., 2017; Satterthwaite et al., 2013; Tang et al., 2017). 
Moreover, strategic improvements in cognitive control emerge with age 
alongside enhanced functional connectivity between the striatum and 
prefrontal cortex (Vink et al., 2014). 
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While the majority of prior developmental research has tested 
cognitive control to neutral cues, a growing body of work investigates 
how cues denoting motivational value interact with the execution of 
cognitive control differentially with age (Cohen et al., 2016; Davidow 
et al., 2018b; Hare et al., 2008; Somerville et al., 2011). Findings from 
some of these studies suggest that adolescents exhibit behavioral dis-
ruptions when exerting control to actively appetitive cues relative to 
earlier and later ages, and this adolescent-unique behavioral expression 
is linked to age-related differences in recruitment of neural systems 
implicated in reward processing and cognitive control (Casey, 2015). 
These prior findings in adolescents may reflect Pavlovian-instrumental 
transfer, whereby the biases to approach reward related cues increase 
instrumental responding (Cartoni et al., 2016; Talmi et al., 2008). 
Therefore, if a learned reward association is especially strong, it may be 
even more difficult to successfully engage response inhibition when the 
cue is presented, such as in the Go/NoGo tasks described above, which 
require individuals to stop prepotent responses to reward-related cues. 
Therefore, reward associations may hinder subsequent control perfor-
mance when these associations are yoked to motor actions. 

However, in prior work on adults, there are situations when prior 
reward history can yield beneficial effects and enhance subsequent 
cognitive control performance. In adults, cues that are otherwise neutral 
but hold value based on learning history can modulate attention and 
facilitate behavior, which can in turn bolster goal-relevant action se-
lection as well as enhance the salience and detection of motivated cues 
in the environment (Corbetta and Shulman, 2002). Prior work in adults 
has examined how previous value associations influence cognitive 
control by first training associations between visual cues and incentive 
outcomes, and then testing how individuals perform in a subsequent 
cognitive task when a previously-valued cue is present (Krebs and 
Woldorff, 2017). Typically, the presence of a previously-valued cue 
yields a performance benefit, even when the subsequent task is no longer 
incentivized. For example, prior work using a visual search task found 
that cues with prior reward associations enhanced attention when in-
centives were no longer at stake (Anderson et al., 2011a, 2011b). 
Further, prior research has found that when low and high value asso-
ciations are first trained, and then these previously rewarded cues are 
inserted in a subsequent working memory task, working memory im-
proves for cues that once predicted high value outcomes (Gong and Li, 
2014). Together, this prior work in adults suggests that the presence of 
previously valued cues can orient attention and facilitate goal directed 
behavior. 

While previously-incentivized cues can benefit adult cognitive per-
formance, it remains unclear how adolescent cognitive control is 
impacted by prior reinforcement history. A growing body of work has 
tested adolescent cognitive performance when actions are actively 
incentivized, and converging evidence suggests that adolescents are less 
likely than adults to enhance performance according to the value of their 
goals (Castel et al., 2011; Stormer et al., 2014), with the ability to do so 
emerging in late adolescence (Insel et al., 2017). This late developing 
ability to integrate value goals with control performance may be related 
to ongoing development of corticostriatal circuitry (Davidow et al., 
2018a). For example, when sustained attention is rewarded, recruitment 
of the dorsal striatum and prefrontal cortex increases with age from 
childhood to adulthood during rewarded compared to neutral cognitive 
performance (Smith et al., 2011). Further, when cognitive control is 
incentivized, older adolescents and young adults selectively increase the 
recruitment of the striatum and prefrontal cortex during the execution of 
cognitive control when high stakes outcomes are at play, but younger 
adolescents do not (Insel et al., 2017). 

However, it remains unclear whether this age-related pattern in 
value-selective behavior and corticostriatal recruitment persists when 
previously-valued cues are presented during cognitive control execu-
tion, but performance is no longer incentivized. Specifically, we aimed 
to test whether value associations acquired through learning persist 
beyond the learning environment to modulate subsequent performance. 

If value history confers a persistent beneficial effect on performance, this 
would reveal that learned value associations can transfer across cogni-
tive domains and modulate attentional control. Moreover, by testing the 
transfer of behavior when performance is no long incentivized, we can 
isolate how learned cue-incentive associations can confer lasting bene-
fits to behavior. 

Specifically, this study tested whether the valence (gain vs. loss) and 
magnitude (high vs. low) of learned incentives differentially influence 
subsequent control performance to resolve two theoretical accounts of 
value-related control performance. On the one hand, if gain learning 
enhances approach behavior and loss learning enhances avoidance 
behavior, previously learned gain cues should dampen response inhi-
bition whereas previously learned loss cues should enhance response 
inhibition, a profile which has been observed in prior studies testing 
adults (Guitart-Masip et al., 2014). On the other hand, if gain learning 
sharpens visual attention and discrimination more than loss learning, we 
would expect to see improved cognitive control to previous gain cues, in 
line with prior work (Krebs and Woldorff, 2017). Finally, the magnitude 
manipulation allows us to test not just how valence-associations influ-
ence control performance, but whether these helping or hindering ef-
fects scale with the magnitude of learned incentive value. 

To do so, we first trained low and high gain and loss value associa-
tions with specific cues during reinforcement learning, and then tested 
the ability to withhold responses to these previously learned cues during 
a Go/NoGo task when performance is no longer incentivized. Behavioral 
analyses identified age-related patterns in how previously learned cue- 
incentive associations interact with subsequent cognitive control per-
formance. We specifically queried whether prior low and high stakes 
value differentially bias subsequent performance for cues previously 
associated with gains versus losses. Neuroimaging analyses examined 
age-related differences in functional recruitment during cognitive con-
trol that, with age, varied as a function of prior stakes value. 

2. Methods 

2.1. Participants 

84 male and female participants age 13–20 participated in this study 
(mean age ¼ 16.97, standard deviation ¼ 2.47). Participants were 
recruited from the greater Boston area and screened for current psy-
chiatric or neurological illness, history of learning disabilities, profi-
ciency of the English language, and had no lifetime use of psychotropic 
medication. Before study participation, participants and their legal 
guardians (for minors) provided written assent and consent under the 
protocol approved by the Committee for Use of Human Subjects at 
Harvard University. The total sample included 81 participants for the 
behavioral analysis and 74 participants for the fMRI analysis. 

Two participants were excluded from behavioral analysis due to 
technical issues with data collection, and one participant was excluded 
for responding to fewer than 50% of trials during the experimental task. 
Two participants did not complete the fMRI scan and performed the task 
behaviorally outside of the scanner. Five participants were excluded 
from fMRI analysis due to excessive motion (see Section 2.8 below for 
details). 

2.2. Reinforcement learning task 

Participants completed a reinforcement learning task (Fig. 1A) in 
which they repeatedly viewed pairs of fractals, one of which was the 
optimal choice for accruing financial earnings. Participants selected 
among the pairs and received trial-by-trial probabilistic feedback indi-
cating monetary payouts, and participants could use this feedback to 
learn to orient their subsequent choices toward the optimal fractal. 

The task included four conditions consisting of distinct fractal pair-
ings, where each pair of fractals was associated with different monetary 
stakes and valence outcomes: high gain (þ$0.50/þ$0.00), low gain 
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(þ$0.25/þ$0.00), high loss (-$0.50/-$0.00), and low loss (-$0.25/- 
$0.00). The potential outcomes at stake were displayed at the time of 
choice at the top and bottom of the screen to minimize working memory 
demands. Participants were instructed that their earnings would be paid 
out at the end of the study. In the event that a participant ended up with 
a net loss, no money was taken away. 

For each trial, two fractal images appeared on the screen, and par-
ticipants chose one fractal by pressing the index finger of the right hand 
to choose the fractal on the left side of the screen or the middle finger to 
choose the fractal on the right side. Once a choice was made, a box 
appeared on the screen surrounding the chosen fractal. Monetary feed-
back was then displayed to indicate the outcome of the choice. For gain 
trials, choosing the optimal fractal resulted in a monetary gain, whereas 
for loss trials choosing the optimal fractal resulted in no losses. Feedback 
was probabilistic such that the optimal fractal yielded the favorable 
outcome for 75% of trials, whereas the suboptimal fractal yielded un-
favorable outcomes on 75% of trials. If a participant failed to choose a 
fractal in the time window (missed trial), they received the unfavorable 
outcome. 

Participants completed 240 learning trials, with 60 trials per incen-
tive condition. Trials were split evenly across four blocks, with 60 trials 
per block and 15 trials of each condition intermixed throughout the 
block. Condition order was pseudo-randomized within and across runs. 
Fractal pairs were displayed for 3 s; when the participant made a choice, 
a selection box appeared to highlight the chosen fractal. Next a jittered 
fixation was displayed (1.5–3 seconds). Finally, monetary feedback was 
displayed for 1 s. Fractal display was counterbalanced across trials (left 
versus right side presentation). Fractal condition assignment was 
counterbalanced across participants. 

2.3. Post-learning Go/NoGo task 

Following the reinforcement learning task, participants completed a 
Go/NoGo task during functional neuroimaging. In this task, participants 
first viewed an instruction screen, which displayed the NoGo fractal 
image for the next block, and participants were instructed to not press a 
button when this image appeared during the forthcoming block of trials. 
Next, a series of 18 fractal images were displayed, consisting of Go 
targets and NoGo targets. Participants were instructed to press the index 
finger of their right hand as quickly as possible for Go targets but to 
withhold responding for NoGo targets. Go targets consisted of novel 
fractal images that the participants had not encountered in the prior 
task. NoGo stimuli consisted of the fractals displayed during the learning 
task that were previously associated with the greatest chance of winning 
or losing money (e.g. low gain optimal choice image, high gain optimal 
choice image, low loss suboptimal choice image, high loss suboptimal 
choice image). Importantly, participants were not aware during learning 

that these images would be carried forward to a subsequent task, and 
Go/NoGo performance was not incentivized. 

Participants completed 12 blocks of 18 trials during the Go/NoGo 
task. For each block of trials, participants first viewed an instruction 
screen for 2 s that displayed the NoGo image for the upcoming block of 
trials. Next, a series of 18 target trials were presented for 500 ms each 
followed by a jittered fixation cross (1.5–3 seconds). At the end of the 
block, a fixation cross was displayed for 3 s. Target trials consisted of 
66% Go trials and 33% NoGo trials. The prepotency of Go trials pre-
ceding a NoGo ranged from 0 to 4 Go trials, and prepotency order was 
pseudorandomized across blocks within each condition and balanced 
across conditions. 

2.4. Practice Go/NoGo task 

Before the fMRI session, participants completed a practice Go/NoGo 
task with a different set of fractal images that had no prior learning 
history and were not included in the post-learning Go/NoGo stimuli set. 
The practice task consisted of 24 NoGo and 48 Go trials, which were 
presented across 4 blocks of 18 trials each. Each practice block con-
tained a unique NoGo image. The task presentation parameters, such as 
NoGo frequency and Go prepotency, were identical to the Post-Learning 
Go/NoGo. 

2.5. Task ratings to assess subjective value of monetary outcomes 

To measure individual differences in subjective value of the mone-
tary outcomes in the learning task, participants made subjective pleas-
antness and arousal ratings for how they felt when earning each possible 
monetary outcome: þ$0.50 and þ$0.00 in the high gain condition, 
þ$0.25 and þ$0.00 in the low gain condition, -$0.50 and -$0.00 in the 
high loss condition, and -$0.25 and -$0.00 in the low loss condition. 
These ratings served as a manipulation check to verify that participants 
differentially valued the low and high gain and loss outcomes. Ratings 
were collected using the Self-Assessment Manikin scales for pleasantness 
(how good or bad did that make you feel) and arousal (how intense was 
that feeling) (Lang, 1980) with numerical anchors. Pleasantness ratings 
were made on a scale from 1 (unpleasant) to 9 (pleasant). Arousal rat-
ings were made on a scale from 1 (low arousal) to 9 (high arousal). These 
ratings were not collected from four participants due to technical issues 
with data collection. 

2.6. Behavioral analysis 

2.6.1. Learning Performance 
Learning performance was calculated as the proportion of trials on 

which the participant chose the optimal fractal in the late phase of the 

Fig. 1. Experimental Tasks. A) Learning Conditions. Learning task conditions consisted of high gain, low gain, high loss, and low loss. The monetary outcomes 
associated with the optimal and suboptimal choices were displayed at the time of choice on the top and bottom of the screen. B) Example learning trial. Participants 
chose one fractal and then received probabilistic monetary feedback. Following an optimal choice, participants earned favorable feedback on 75% of trials. C) Post- 
Learning Go/NoGo Task. Following the learning task, participants completed a Go/NoGo Task in which the NoGo cues comprised the previously learned cues 
associated that were most often associated with winning or losing money. There were no incentives for performance during the Go/NoGo Task. 
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task (trials 180–240). The optimal fractal was operationalized for each 
pair of trials as the one that delivered the most favorable outcome the 
majority of the time. In the gain conditions, the most favorable outcomes 
resulted in monetary reward and in the loss conditions the most favor-
able outcomes resulted in no loss (lose 0¢). Optimal choice performance 
was analyzed with a mixed-effects model to test for fixed effects of stakes 
(low/high), valence (gain/loss), continuous linear age, and all interac-
tion terms. The model included a random effect for subject to account for 
repeated measures. 

2.6.2. Go/NoGo Performance 
Behavioral analyses assessed Go/NoGo performance to determine 

whether prior value associations transferred across tasks and influenced 
cognitive control to previously learned cues. The primary dependent 
variable was NoGo accuracy, which was calculated as the proportion of 
trials on which participants successfully withheld a button response to 
NoGo cues. NoGo trials comprised cues that had been previously asso-
ciated with low stakes and high stakes gain and loss outcomes in the 
prior learning task. We conducted a mixed-effects model to test for main 
effects of stakes (low/high) and valence (gain/loss) of the previously 
learned cues and their interaction on NoGo accuracy. This model 
included fixed effects for stakes, valence, a stakes by valence interaction 
term, and included a random effect for subject to account for repeated 
measures. The goal of this analysis was to establish whether previously 
learned cue-incentive associations transferred across tasks to influence 
subsequent NoGo performance when performance was no longer 
incentivized. Additional analyses were conducted by adding covariates 
to this model and evaluating model fit comparisons, as explained below. 

To assess whether there was an effect of learning performance on 
NoGo accuracy, we calculated the proportion optimal choice during the 
late stage of the learning task (last 60 trials) for each participant for each 
learning condition (low gain, high gain, low loss, high loss). We 
computed a mixed-effects model with NoGo accuracy as the dependent 
variable and fixed effects for proportion optimal choice, stakes, and 
valence, and a random effect for subject to account for repeated mea-
sures. This model tested for a main effect of learning performance 
(proportion optimal choice) and the interaction terms for learning per-
formance by stakes, learning performance by valence, and learning 
performance by stakes by valence. 

To examine the effect of age on NoGo performance, we conducted a 
mixed-effects model that included fixed effects for stakes, valence, and 
continuous linear age, to test for a main effect of age and an age by 
stakes by valence interaction (the model also included all possible two- 
way interactions). The model included a random effect for subject to 
account for repeated measures. We repeated this analysis including 
additional covariates for Go Accuracy and Go reaction time to control 
for additional behavioral factors that may have influenced NoGo per-
formance. For example, if Go accuracy was low, this could indicate 
disengagement from the task, which may artificially inflate NoGo ac-
curacy due to non-responding. Go RT analyses accounted for speed/ 
accuracy tradeoffs (Thorpe et al., 1996), as speeded responses during Go 
trials may make it more difficult to withhold a response for NoGo trials. 
For age analyses, post-hoc t-tests with Tukey’s correction (implemented 
via the lsmeans package in R) were computed for age sub-groups, 
separated into two-year age bins: 13–14 years, n ¼ 19; 15–16 years, 
n ¼ 20; 17-18 years, n ¼ 21; 19� 20 years, n ¼ 21. These post-hoc ana-
lyses allowed us to characterize the direction of age interaction effects. 

We conducted analyses on self-report valence and arousal ratings to 
assess whether the subjective pleasantness and intensity associated with 
winning and losing low and high outcomes during learning varied as a 
function of valence (gain/loss), stakes (low/high), and age. We con-
ducted mixed-effects models for valence and arousal ratings to test for 
fixed effects of stakes, valence, continuous linear age, and all interaction 
terms. The model included a random effect for subject to account for 
repeated measures. These analyses allowed us to quantify whether 
subjective experience of the task monetary outcomes was consistent 

across age, which allowed us to validate that the task incentives were 
experienced similarly across the age range. 

All statistical analyses for behavioral data were conducted in R. 
Mixed-effects models were computed with the nlme package (Pinheiro 
et al., 2019). Model fit comparison was calculated by comparing AIC 
values between models and computing a log-likelihood ratio with the 
anova function. 

2.7. FMRI data acquisition 

Participants completed functional MRI scanning in a 3.0 T Siemens 
Prisma MRI scanner equipped with a 32-channel head coil (Siemens 
Medical Systems) at the Harvard University Center for Brain Science. 
Participants viewed the experimental task via a back-projection system. 
Behavioral tasks were developed and presented with Psychopy version 
1.83 (Peirce, 2007). Button responses were recorded with an MRI 
compatible button box. The presentation of the experimental task was 
synchronized to fMRI volume acquisition following initial dummy scans 
collected for magnet stabilization. Functional (T2* weighted) images 
were collected using an interleaved echo planar sequence using the 
following parameters: TR 2000 ms, TE 35 ms, flip angle 80�, 69 axial 
slices, voxel resolution 2.2 � 2.2 � 2.2 mm, multi-band acceleration 
factor of 3. High resolution T1-wighted structural MRI scans were also 
acquired using a multi-echo multi-planar rapidly acquired gradient echo 
(MEMPRAGE) sequence and were used to co-register the functional 
images to a standardized anatomical space (176 sagittal slices, TR 
2200 ms, TE 1.67 ms, flip angle 7�, slice thickness 1 mm, voxel size 
1 � 1 � 1 mm). 

2.8. FMRI data processing and quality assessment 

FMRI data processing and analysis for the Go/NoGo task were con-
ducted with FSL (version 5.0.4) (Smith et al., 2004). Preprocessing was 
conducted in FSL and implemented through the Lyman pipeline (v.0.0.7, 
https://github.com/mwaskom), which relies on the Nipype project 
framework (v. 0.9.2) (Gorgolewski et al., 2011). Standard preprocessing 
steps included slice-time correction, realignment, coregistration of 
functional to structural images using bbregister (Greve and Fischl, 
2009), non-linear normalization of structural to FSL’s MNI152 template 
space using ANTS 1.9.x, svn release 891; (Avants et al., 2009), and 
spatial smoothing with a 6 mm Gaussian kernel. 

Functional MRI data were carefully evaluated for motion and signal 
outliers given the negative impact it can have on signal quality and GLM 
estimates. The following rules were imposed for exclusion of functional 
data as in our prior work (Insel et al., 2017; Insel and Somerville, 2018; 
Insel et al., 2019). Runs in which more than 10% of TRs were censored 
for motion (relative motion > 1 mm) or outlier signal intensity (excee-
ded the grand run median by 4.5 median absolute deviations) were 
excluded from analysis. Runs with a single relative movement exceeding 
5 mm were also excluded. In total, 5 participants were excluded from 
fMRI analyses due to excessive motion. 

2.9. Functional activity analysis 

Preprocessed BOLD data were submitted to a general linear model 
(GLM) analysis using film_gls in FSL (Smith et al., 2004) to estimate 
relevant task effects. Task regressors included temporal onsets for the 
following events: Block instructions, Go trials, previous high gain cue 
NoGo trials, previous low gain cue NoGo trials, previous high loss cue 
NoGo trials, previous low loss cue NoGo trials, Error trials (missed 
response for Go or false alarm for NoGo). Extensive jittered timings that 
were incorporated into the experimental design rendered the different 
trial phases and conditions separately estimable. All task regressors were 
convolved with the canonical hemodynamic response function. 
Nuisance regressors included 6-parameter motion estimates, censored 
frames for deviant signal intensity and excessive motion (> 1 mm), 
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whole brain white matter signal, and cerebral spinal fluid signal. 
Random-effects group analyses (whole-brain voxelwise t-tests) were 

conducted to identify task-based changes in functional activity and 
connectivity, as described below. We conducted whole brain analyses 
using a series of one-sided t-tests. All whole brain maps were thresh-
olded using whole-brain correction of z>2.3 using FLAME 1 þ 2, as 
implemented in FSL, resulting in whole-brain threshold of p < 0.05 
family-wise error (FWE) corrected. 

To assess the effects of previous gain learning, fMRI analyses 
examined the previous high gain cue NoGo > previous low gain cue 
NoGo contrast. This contrast was selected because these conditions were 
found to be driving age-related behavioral effects, such that NoGo per-
formance improvements for previous high gain cue NoGo relative to 
previous low gain cue NoGo trials emerged with age. 

To assess age-related differences in functional activity for previously 
learned gain cues, we added a covariate for mean-centered linear age to 
the contrast of previous high gain cue NoGo > previous low gain cue 
NoGo. Age analyses were small-volume corrected using masks for the 
frontal operculum and striatum (bilateral caudate, putamen, and nu-
cleus accumbens), which were extracted from the Harvard-Oxford Atlas, 
thesholded at a 10% probability. These regions were selected given their 
role in motivated cognitive control, and specifically prior findings 
demonstrating age-related differences in recruitment during Go/NoGo 
performance (Insel et al., 2017). Small-volume correction was con-
ducted using the easythresh function in FSL. Easythresh is a function 
that computes statistics, including corrected thresholds and maps, 
outside of the FEAT environment. 

To assess the effects of previous loss learning, fMRI analyses exam-
ined the previous high loss cue NoGo > previous low loss cue NoGo 
contrast. This contrast served as a point of comparison to determine 
whether the effects of cues associated with previous high stakes learning 
were valence-selective. To assess age-related differences in functional 
activity for previously learned loss cues, we added a covariate for mean- 
centered linear age to the contrast testing previous high loss cue 
NoGo > previous low loss cue NoGo. Because these age-related analyses 
in the loss domain were exploratory, maps were subjected to whole 
brain corrected thresholds. 

Cluster peaks are reported in a table for both the whole-group maps 
and the age covariate maps. We detected clusters that survived correc-
tion for the increasing age covariate maps, but not for the decreasing age 
covariate maps, so only those results are reported below. Region labels 
are based on the Harvard-Oxford Cortical and Subcortical atlases. Sub- 
peaks were defined by local maxima (activation peaks) within each 
cluster using a higher-values-first watershed searching algorithm, as 
implemented in the lyman pipeline. 

2.10. Functional connectivity analyses 

To assess functional connectivity during the task, we conducted 
Psychophysiological Interaction (PPI) analyses to examine functional 
coupling that was enhanced for previously learned high gain relative to 
previously learned low gain cues during NoGo execution. We focused on 
this contrast given that the age-related differences in stakes-selective 
behavior were specific to the gain domain. The caudate was chosen as 
a seed region given its well-established involvement in value-based 
learning and action selection (Haber and Knutson, 2010), and the 
documented anatomical connections between the caudate and prefron-
tal cortex, which have been shown to support value-guided cognitive 
control (Ridderinkhof et al., 2004) and mature through adolescence 
(Crone and Steinbeis, 2017). Caudate seeds were defined by creating 
anatomical masks from the Harvard Oxford atlas. The PPI interaction 
regressors were based on timecourses from the left and right caudate 
seeds that were extracted using the fslmeants function. Separate PPI 
analyses were conducted for the left and right seeds. Timeseries were 
multiplied by the temporal onsets for the previously learned high gain 
NoGo > previously learned low gain NoGo contrast to create the PPI 

interaction regressor. PPI analyses incorporated additional timeseries 
regressors for mean white matter signal and ventricular signal into the 
General Linear Model, which were added as nuisance regressors to 
reduce potential noise confounds. To reduce motion-induced confounds 
which have been shown to distort connectivity profiles, especially in 
developmental samples (Satterthwaite et al., 2012), nuisance regressors 
for the six motion parameters for translations and rotations in order 
were added to the model, and volumes with excess motion were 
excluded from analysis. 

Fixed effects models were conducted at the subject level and then 
submitted to a random effects analysis to compute the group-level sta-
tistics focused on the psychophysiological interaction regressor. 
Random effects analyses were conducted to identify age effects on 
connectivity using the mean-centered linear age regressor as a predictor 
of differential functional connectivity for previously learned high gain 
versus low gain cues. Two separate age models were computed. The 
primary age model implemented an age-increasing covariate to identify 
task-based connectivity that increased across development. The second 
exploratory age model implemented an age-decreasing covariate to 
identify task-based connectivity that decreased across development. 
Finally, a separate whole-brain PPI random effects analysis was con-
ducted to identify brain-behavior linkages. This model included a co-
variate for high stakes gain performance enhancements, which was 
calculated by finding a difference score in NoGo accuracy between 
previous high gain NoGo cues and previous low gain NoGo cues. This 
model identifed task-based connectivity that increased with increasing 
stakes-based performance enhancements. 

3. Results 

3.1. Effects of stakes and valence on learning performance 

Proportion optimal choice was computed as an index of learning 
performance, quantifying how frequently individuals chose the cue that 
received the favorable outcome on the majority of trials. Analyses of 
proportion optimal choice data revealed that there was a main effect of 
age, F(1,79) ¼ 5.44, p ¼ 0.02, whereby the proportion of the time par-
ticipants selected the optimal choice across all trial types increased with 
age. There was also a main effect of stakes, F(1,237) ¼ 4.53, p ¼ 0.03, 
whereby learning performance improved for high stakes incentives. 
These main effects were qualified by a significant age by stakes (low/ 
high) by valence (gain/loss) interaction, F(1,237) ¼ 7.11, p ¼ 0.008. 
These findings indicated that there were age-related differences in 
whether optimal choice differed between low and high stakes conditions 
for trials in which participants were learning about gains versus avoid-
ing losses. Across adolescence, increasing age was associated with 
emerging improvements in learning from high relative to low stakes 
outcomes in the gain condition. However, in the loss domain, perfor-
mance did not differ by stakes with age. 

3.2. Effects of previously learned value-associations on subsequent 
cognitive control 

In this task, participants first learned associations between cues that 
could yield low and high gain and loss incentives during a probabilistic 
learning task, and then they completed a Go/NoGo cognitive control 
task in which they were instructed to withhold responding to these cues. 
To measure the effect of previous learning on Go/NoGo performance, we 
quantified NoGo accuracy for each condition based on the factorial 
crossing of stakes (high, low) and valence (gain, loss). Results revealed a 
main effect of stakes, F(1,236) ¼ 10.32, p ¼ 0.002, demonstrating that 
NoGo performance was better to previous high stakes cues (M ¼ 0.77, 
SD ¼ 0.16) compared to previous low stakes cues (M ¼ 0.74, SD ¼ 0.17). 
The main effects of valence, F(1,236) ¼ 0.83, p ¼ 0.36, and the stakes by 
valence interaction, F(1,236) ¼ 2.32, p ¼ 0.13, were not significant. 

We next added previous learning performance for each condition to 
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the model, which was indexed by proportion optimal choice, a behav-
ioral measure that indicates the proportion of trials on which partici-
pants made the choice that most often yielded the favorable outcome. 
The main effect of optimal choice was not significant, F(1,236) ¼ 3.35, 
p ¼ 0.07. The interactions of optimal choice by stakes, F(1,236) ¼ 0.34, 
p ¼ 0.56, optimal choice by valence, F(1,236) ¼ 0.90, p ¼ 0.34, and 
optimal choice by stakes by valence, F(1,236) ¼ 1.14, p ¼ 0.29, were not 
significant. 

We conducted further analyses to assess whether age-related differ-
ences in learning performance influenced the observed age-related in-
teractions for NoGo accuracy. To do this, we repeated the existing 
analyses for NoGo performance and tested a four-way interaction be-
tween age, optimal choice, stakes, and valence and all two-way and 
three-way interactions. When including these interaction terms, the age 
by valence by stakes interaction remained significant for NoGo accu-
racy, F(1,229) ¼ 5.14, p ¼ 0.02. If learning performance influenced the 
age-related interactions we observed for NoGo accuracy, then we would 
expect that the 4-way interaction term would be significant. However, 
the stakes by valence by age by optimal choice interaction was not 
significant, F(1,229) ¼ 0.20, p ¼ 0.65. 

Model fit comparison revealed that adding optimal choice to the 
model did not significantly improve model fit (AIC model without 
learning performance¼-436.20, AIC model with learning perform-
ance¼-433.31, log-likelihood ratio ¼ 5.23, p ¼ 0.27). Therefore, optimal 
choice performance was not included in subsequent analyses. 

3.3. Cognitive control facilitation from prior high stakes gains emerges 
with age 

Key analyses assessed whether the effect of previously learned value- 
associations differentially influenced cognitive control performance 
across adolescence as a function of age. To test this effect on NoGo ac-
curacy, we added continuous linear age to the model that included 
factors for stakes and valence. Adding the age term to the model 
significantly improved model fit (AIC model without age¼-436.20, AIC 
model with age¼-438.35, log-likelihood ratio ¼ 10.15, p ¼ 0.04). There 
was a significant main effect of age, F(1,79) ¼ 5.87, p ¼ 0.02, revealing 
that NoGo accuracy improved with age. The main effect of stakes was 
significant as in the previous model, F(1,237) ¼ 10.37, p ¼ 0.002. 

Notably, there was a significant age by stakes by valence interaction, 
F(1,237) ¼ 4.18, p ¼ 0.04 (Fig. 2). To interrogate the direction of this 
interaction, we performed post-hoc t-tests between low and high stakes 
within the gain and loss conditions for two-year binned age groups. 
There was a significant improvement for high stakes gain cues relative to 
low stakes gain cues in the 19� 20 year old group (p ¼ 0.006), but this 
difference was not significant for the other age groups (Table 1). The 
difference between NoGo performance for low stakes loss cues and high 
stakes loss cues did not differ for any of the age groups (Table 1). 
Together, these results reveal that NoGo accuracy improvements for 
high stakes relative to low stakes cues emerged with age for previous 
gain cues but not for previous loss cues. 

3.4. Control analyses for age-related performance improvements 

We conducted control analyses to account for other Go/NoGo per-
formance variables that may have influenced NoGo performance, 
including Go accuracy and Go reaction time (RT). For example, if an 
individual was responding faster to Go trials, this could worsen perfor-
mance due to speed/accuracy tradeoffs, whereas if an individual was 
failing to respond to Go cues, this could artificially enhance NoGo ac-
curacy due to disengagement from the task. To test this, we added Go 
accuracy and Go RT to the model testing the age by stakes by valence 
interaction reported above. Adding Go accuracy did not significantly 
improve model fit (AIC model without Go accuracy¼-436.20, AIC model 
with Go accuracy¼-436.63, log-likelihood ratio ¼ 10.42, p ¼ 0.06), and 
the main effect of Go accuracy was not significant, F(1,236) ¼ 0.16, 

p ¼ 0.69. When adding Go accuracy to the model, the main effect of age 
F(1,79) ¼ 5.89, p ¼ 0.02, stakes F(1,236) ¼ 10.33, p ¼ 0.001, and the 
age by stakes by valence interaction F(1,236) ¼ 4.13, p ¼ 0.043, 
remained significant. 

Adding Go RT did significantly improve model fit (AIC model 
without Go RT¼-436.20, AIC model with Go RT¼-439.63, log-likelihood 
ratio ¼ 13.43, p ¼ 0.02). However the main effect of Go RT was not 
significant, F(1,236) ¼ 2.80, p ¼ 0.10. When controlling for Go RT, the 
main effects of age F(1,79) ¼ 6.63, p ¼ 0.01, stakes F(1,236) ¼ 10.05, 
p ¼ 0.002, and the age by stakes by valence interaction F(1,236) ¼ 3.97, 
p ¼ 0.047, remained significant. 

3.5. Subjective value ratings 

Participants completed self report pleasantness and arousal ratings to 
quantify subjective value of the monetary outcomes encountered in the 
learning task. These ratings served as a manipulation check to verify that 
participants differentially valued the monetary outcomes in the learning 
task. These ratings also allowed us to complete age-related control an-
alyses to verify that subjective valuation of the monetary outcomes did 
not systematically vary with age. 

For arousal ratings, there was a main effect of stakes F 
(1,71) ¼ 131.03, p < 0.001, whereby participants rated high stakes 
outcomes to be significantly more arousing than low stakes outcomes. 
There was no main effect of valence on arousal ratings F(1,71) ¼ 0.07, 
p ¼ 0.79, such that arousal ratings were comparable for gain and loss 
conditions. In addition, there was no main effect of age on arousal 

Fig. 2. Significant interaction between age, stakes, and valence on post- 
learning NoGo accuracy. NoGo accuracy is plotted for cues previously asso-
ciated with high stakes (þ50¢ or -50¢, plotted in red) and low stakes (þ25¢ or 
-25¢, plotted in blue) incentives within gain (left panel) and loss (left panel) 
conditions across age. Lines represent linear age fits and shaded bands represent 
between-subjects 95% confidence intervals. 

Table 1 
Post-hoc comparisons for NoGo Accuracy.  

High vs. Low 
Contrast 

13-14 15-16 17-18 19-20 

Previous Gain 
Cue 

t ¼ 0.29, 
p ¼ 0.77 

t ¼ 1.59, 
p ¼ 0.12 

t ¼ 1.73, 
p ¼ 0.09 

t ¼ 2.82, 
p ¼ 0.006 

Previous Loss 
Cue 

t ¼ 1.44, 
p ¼ 0.16 

t ¼ 0.28, 
p ¼ 0.78 

t ¼ 1.27, 
p ¼ 0.21 

t¼-0.64, 
p ¼ 0.53 

p-values corrected for multiple comparisons with Tukey’s HSD method. 
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ratings, F(1,71) ¼ 0, p ¼ 0.99 and no interactions with age (see Table 2), 
indicating that subjective arousal was comparable across the age range. 

For pleasantness ratings, there was a main effect of stakes, F 
(1,71) ¼ 8.42, p ¼ 0.005 and valence, F(1,71) ¼ 406.6, p < 0.001, which 
was qualified by a stakes by valence interaction F(1,71) ¼ 157.68, 
p < 0.001. This demonstrates that participants found high stakes gains to 
be significantly more positive than low stakes gains t(72) ¼ 4.86, 
p < 0.001, whereas high stakes losses were significantly more negative 
than low stakes losses t(72)¼-6.69, p < 0.001. Importantly, there was no 
main effect of age on valence ratings F(1,71) ¼ 0.73, p ¼ 0.40, and no 
interactions with age were significant (see Table 2). Therefore, subjec-
tive ratings of the monetary incentives were consistent with age. 

3.6. FMRI results 

3.6.1. Functional activity analyses 
Neuroimaging analyses for cues previously associated with gain 

outcomes focused on comparisons of functional recruitment for previ-
ously learned high stakes relative to low stakes gain cues during NoGo 
performance, given that the behavioral effects reported above revealed 
that the improvements to previously learned high stakes cues that 
emerged with age were selective to the gain domain. To test for stakes 
effects on previous gain cue NoGo trials, we first computed a whole- 
brain contrast for high gain NoGo cues versus low gain NoGo cues, 
isolating trials when participants successfully withheld a response. This 
group contrast revealed that there was enhanced activity for high stakes 
gain cues relative to low stakes gain cues in the lateral occipital cortex, 
insula, occipital pole, and postcentral gyrus (Fig. 3a, Table 3). 

To assess the effects of age on functional recruitment for previous 
gain cues, we conducted further analyses for the high gain cue 
NoGo > low gain cue NoGo contrast that included a covariate for 
continuous linear age. Because we had specific hypotheses about the 
role of corticostriatal circuitry in value-guided cognitive control (Bot-
vinick and Braver, 2015; Davidow et al., 2018a), we constrained this 
analysis to interrogate voxels within anatomical masks comprising the 
bilateral vlPFC (frontal operculum) and bilateral ventral and dorsal 
striatum (caudate, putamen, and nucleus accumbens). These regions 
were chosen based on prior work which found enhanced recruitment of 
these systems during incentivized control in the same 13–20  year old 
age range tested in the present study (Insel et al., 2017). This age co-
variate analysis identified increased activity for previously learned high 
gain relative to low gain NoGo cues that increased with age across 
adolescence in the caudate and in the frontal operculum, extending to 
the inferior frontal gyrus (Fig. 3b, Table 3). 

Neuroimaging analyses for cues previously associated with loss 
outcomes focused on comparisons of functional recruitment for previ-
ously learned high stakes relative to low stakes loss cues during NoGo 
performance. These analyses of the previous loss cues serve as a relative 
comparison for the previous gain cues to test for valence specificity in 
the effects of previously learned high stakes on subsequent functional 
recruitment during NoGo performance. To test for stakes effects on 
previous loss cue NoGo trials, we first computed a whole-brain contrast 

for high loss NoGo cues versus low loss NoGo cues, isolating trials when 
participants successfully withheld a response. This group contrast 
revealed that there was enhanced activity for high stakes loss cues 
relative to low stakes loss cues in the occipital pole, lingual gyrus, lateral 
occipital cortex, and inferior temporal gyrus (Table 4). 

To assess the effects of age on functional recruitment for previous 
loss cues, we conducted further analyses for the high loss cue 
NoGo > low loss cue NoGo contrast that included a covariate for 
continuous linear age. This age covariate analysis identified increased 
activity for previously learned high loss relative to low loss NoGo cues 
that increased with age across adolescence in the precuneus (Table 4). 

3.6.2. Functional connectivity analyses 
We conducted PPI analyses to examine how previously learned high 

stakes gain cues modulate functional coupling with the striatum. The left 
and right caudate were used as seed regions, given the its role in reward 
learning and action selection, and the PPI analysis targeted the contrast 
for previously learned high gain cues > previously learned low gain 
cues. There were no significant clusters that survived whole-brain cor-
rected thresholding for the full group average analysis. Our primary 
question, however, was whether differences in connectivity changed 
with age. With decreasing age, there was enhanced coupling between 
the caudate, nucleus accumbens, and ventromedial prefrontal cortex for 
previously learned high gain relative to previously learned low gain cues 
(left caudate seed, Fig. 4A, Table 5). With increasing age, there was 
enhanced coupling between the caudate and dorsolateral prefrontal 
cortex (right caudate seed, Fig. 4B, Table 5). 

To assess whether functional connectivity was related to behavioral 
differences on the task, we conducted a PPI analysis to identify loci in 
which greater coupling with the caudate was associated with enhanced 
NoGo accuracy for high stakes gain cues relative to low stakes gain cues. 
For both the right and left caudate seeds, improved accuracy for high 
stakes gain cues was associated with enhanced coupling between the 
caudate and visual cortex (Table 5) during previous high relative to 
previous low gain NoGo cues. 

4. Discussion 

The present study examined how previously learned value associa-
tions influence the subsequent execution of cognitive control differen-
tially with age across adolescence, and interrogated the corresponding 
neurodevelopmental processes. We first trained cue-incentive associa-
tions for low and high stakes gain and loss outcomes through a rein-
forcement learning task, and then tested how these learned value 
associations influenced the ability to withhold a motor response when 
these cues were presented in a subsequent Go/NoGo task and perfor-
mance was no longer incentivized. We compared behavioral and neural 
responses in participants aged 13–20 who completed the post-learning 
Go/NoGo task while undergoing functional neuroimaging. 

Behavioral analyses revealed that there was an emerging improve-
ment in NoGo accuracy with age for previously learned high gain rela-
tive to low gain cues, but not for previous loss cues. Specifically, older 
adolescents 19� 20 years old improved NoGo performance for previ-
ously learned high relative to low gain cues, but they did not differen-
tiate performance for high relative to low loss cues. Neuroimaging 
analyses assessed differences in functional recruitment for previously 
learned high gain relative to low gain NoGo cues. Age analyses revealed 
that, with age, participants exhibited increased recruitment of the 
ventrolateral prefrontal cortex (vlPFC) and caudate for previous high 
gain cues relative to previous low gain cues. Further, for previous high 
gain relative to previous low gain cues, coupling between the caudate 
and dorsolateral prefrontal cortex (dlPFC) increased with age, whereas 
coupling between the caudate and ventromedial prefrontal cortex 
(vmPFC) decreased with age. Together, these findings reveal that pre-
viously learned value-associations acquired through gain learning 
facilitate subsequent cognitive control in older adolescents, and this 

Table 2 
Hedonic Experience Ratings ANOVA table.   

Arousal Ratings Pleasantness Ratings 

Stakes F(1,71) ¼ 131.03, 
p¼<0.001 

F(1,71) ¼ 8.42, p ¼ 0.005 

Valence F(1,71) ¼ 0.07, p ¼ 0.79 F(1,71) ¼ 406.6, p < 0.001 
Age F(1,71) ¼ 0.00, p ¼ 0.99 F(1,71) ¼ 0.73, p ¼ 0.40 
Stakes * Valence F(1,71) ¼ 1.86, p ¼ 0.18 F(1,71) ¼ 157.68, 

p < 0.001 
Stakes * Age F(1,71) ¼ 2.01, p ¼ 0.16 F(1,71) ¼ 1.35, p ¼ 0.25 
Valence * Age F(1,71) ¼ 0.19, p ¼ 0.67 F(1,71) ¼ 1.23, p ¼ 0.27 
Stakes * Valence * 

Age 
F(1,71) ¼ 0.12, p ¼ 0.73 F(1,71) ¼ 0.00, p ¼ 0.98  
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facilitation emerges with age during adolescence. Moreover, the late 
adolescent emergence of improved cognitive control over high-value 
gain cues was paralleled by age-related enhancements in functional 
recruitment and connectivity within corticostriatal circuitry. These 
findings may reflect a late-emerging tendency to integrate value asso-
ciations with cognitive control demands to adjust performance in a 
value-driven fashion. 

The key question of the present study was whether previously 
learned value associations, trained through probabilistic reinforcement 

learning, would transfer beyond the learning environment to influence 
the execution of cognitive control when incentives are no longer at 
stake. To test this, participants first learned cue-incentive associations 
through reinforcement learning, when selecting a cue was associated 
with low stakes or high stakes gain or loss outcomes. Next, participants 
were instructed to withhold responding to the previously learned cues in 
a Go/NoGo task, when performance was no longer incentivized. 
Consistent with prior developmental research, we found that the overall 
ability to execute cognitive control by withholding a motor response 
improved with age (Bunge and Wright, 2007; Crone and Steinbeis, 2017; 
Luna et al., 2004). However, this main effect of age was qualified by an 
interaction with previously learned stakes (low/high) and valence 
(gain/loss) associations. Specifically, with age across adolescence, in-
dividuals were more likely to improve NoGo accuracy to cues previously 
associated with high stakes gain outcomes relative to cues previously 
associated with low stakes gain outcomes. However, NoGo accuracy for 
previous loss cues did not vary by stakes with age. Importantly, this 
age-related pattern in post-learning cognitive control performance could 
not be explained by individual differences in learning performance or 
age-related differences in subjective value of the incentives. 

The high-value gain facilitation effect that emerged in late adoles-
cence mirrors prior research in young adult samples. For example, prior 
studies have demonstrated that when cues are first associated with in-
centives and reintroduced in a subsequent cognitive task, adults typi-
cally improve cognitive performance when encountering cues 
previously paired with high value outcomes, even when performance on 
this secondary task is no longer incentivized (Krebs and Woldorff, 2017). 
Theoretical models based on the young adult literature posit that pre-
viously acquired high-value associations may modulate visual attention, 
which can orient goal-directed action selection (Padmala and Pessoa, 
2011; Pessoa and Engelmann, 2010) along with value-selective 
recruitment of visual cortex, which is believed to orient attention and 
perceptual discrimination to sharpen cognitive performance (Della 
Libera and Chelazzi, 2006; Serences, 2008). Results from the present 
study are consistent with this idea, as we observed enhanced recruit-
ment of visual cortex for previously learned high gain relative to low 
gain cues across the full group. Moreover, better NoGo performance for 
the previous high gain cues relative to the previous low gain cues was 
associated with enhanced functional coupling between the caudate and 
visual cortex. This suggests that value-selective communication between 
the striatum and visual cortex could improve cognitive control perfor-
mance by enhancing bottom-up visual attention, which may aid in visual 
discrimination and facilitate action selection. 

The present results revealed that behavioral facilitation from previ-
ously learned high gain value cues emerged over the course of adoles-
cence in parallel with value-selective upregulation of corticostriatal 
regions. Specifically, we found that with increasing age, participants 

Fig. 3. A) Whole-brain analysis identifying neural regions exhibiting enhanced recruitment for previously learned high stakes gain NoGo cues relative to previous 
low stakes gain NoGo cues in the full sample. B) Neural regions demonstrating linear age-related increases in recruitment for the previously learned high stakes gain 
NoGo > previous low stakes gain NoGo contrast. 

Table 3 
Cluster table for previous high gain versus low gain NoGo contrast, FWE 
p < 0.05.  

Previous High Stakes Gain > Previous Low Stakes Gain NoGo 

Group Mean 
Region x y z k z-stat 
Lateral Occipital Cortex 34 � 86 � 12 5898 4.93 

Superior Temporal Gyrus 66 � 30 10  4.33 
Temporal Pole 62 � 8 � 2  4.09 
Insular Cortex 40 � 16 4  3.11 
Occipital Pole 20 � 100 14  2.6 

Occipital Pole � 12 � 94 � 14 1802 4.64 
Lateral Occipital Cortex � 48 � 70 0  3.58 
Temporal Occipital Fusiform Cortex � 26 � 48 � 18  2.96 

Postcentral Gyrus � 52 � 8 20 1689 4.03 
Planum Temporale � 44 � 40 14  3.15 

Increasing With Agea 

Region x y z k z-stat 
Frontal Operculum Cortex 48 18 0 28 3.21 

Frontal Operculum Cortex 48 10 2  2.87 
Caudate (left) � 4 2 6 53 2.74 
Caudate (right) 8 4 10 27 2.74  

a No regions showed decreasing activity with increasing age. 

Table 4 
Cluster table for previous high loss versus low loss NoGo contrast, FWE p < 0.05.  

Previous High Stakes Loss > Previous Low Stakes Loss NoGo Cues 

Group Mean 
Region x y z k z-stat 
Occipital Pole 2 � 94 22  5.57 

Lingual Gyrus � 6 � 86 � 20  5.33 
Lateral Occipital Cortex 44 � 70 � 26  4.67 
Occipital Pole 22 � 96 � 4  4.36 
Inferior Temporal Gyrus � 50 � 56 � 24  4.11 

Increasing With Agea 

Region x y z k z-stat 
Precuneus 2 � 74 44 559 3.59 
Precuneus 2 � 48 60  2.72  

a No regions showed decreasing activity with increasing age. 
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enhanced recruitment of the caudate and vlPFC for NoGo cues associ-
ated with prior high gain relative to low gain outcomes during the 
previous learning task. However, this age-related pattern was not 
observed when comparing responses between previous high loss and 
previous low loss cues, which detected age-related differences in the 
precuneus. This suggests that the value-selective enhancements of cor-
ticostriatal recruitment, which emerged with age, were specific to the 
gain domain. The caudate is often implicated in representing the value 
of a stimulus and coordinating motor output, and the vlPFC is thought to 
orchestrate action selection and execute cognitive control (Ridderinkhof 
et al., 2004). Notably, these regions share connections within a broad 
and distributed neural circuit (Haber and Knutson, 2010). Within this 
network, functional recruitment of the dorsal striatum and lateral PFC, 
and connectivity between these regions, increases with age alongside 
age-related improvements in motor control (Church et al., 2017; Som-
erville et al., 2011; Vink et al., 2014). Further, as individuals age across 
adolescence, they are more likely to enhance recruitment of this network 
while engaging in more complex cognitive control strategies (Vink et al., 
2014). Therefore, individuals may be more likely to use value cues to 
adjust control performance with age when functional maturation of 
these systems begins to stabilize and cognitive control execution be-
comes more adaptive (Davidow et al., 2018a). 

Functional connectivity analyses identified preferential responses to 
previously learned high gain relative to previously learned low gain cues 
that changed with age. These results revealed distinct shifts in 

corticostriatal connectivity, such that younger adolescents expressed 
enhanced coupling between the caudate, ventral striatum, and vmPFC 
for previously learned high gain cues relative to low gain cues. However, 
with increasing age, older adolescents expressed enhanced coupling 
between the caudate and dlPFC. These findings suggest that for previ-
ously learned high value cues, connectivity with the striatum undergoes 
a medial to lateral shift with age. The vmPFC has been consistently 
implicated in coding subjective value and guiding choice behavior (Roy 
et al., 2012), whereas the dlPFC is more commonly implicated in the 
execution of higher order cognitive control (Badre, 2008). Thus, while 
younger adolescents may exhibit neural signatures of value-based 
learning that persist beyond the learning context, these associations 
may not confer behavioral benefits. In contrast, younger adolescents 
improved performance for previously learned high value cues in 
conjunction with enhanced caudate-dlPFC connectivity. Together, these 
results reveal that age-related shifts in value-guided functional con-
nectivity may account for the late emerging improvements in cognitive 
control over previously incentivized high value cues. 

Taken together, these findings suggest that across adolescence, the 
emerging tendency to integrate previously learned value-associations 
with subsequent cognitive control demands may be subserved by se-
lective recruitment of corticostriatal systems. These findings build on a 
neurodevelopmental framework that posits that during adolescence, the 
ability to integrate value-related information with cognitive control 
demands emerges with age when cognitive control abilities reach a point 
of stable maturation (Davidow et al., 2018a). The present findings 
extend this framework by identifying a similar age-related pattern for 
performance that is no longer incentivized, but which contains cues 
previously associated with valued outcomes. Therefore, these value as-
sociations can confer benefits in cognitive control during late adoles-
cence, even when these cues are no longer incentivized. 

The present findings, which demonstrate the late adolescent emer-
gence of value-based performance facilitation, diverge from prior work 
implementing a similar experimental approach in a developmental 
sample with an overlapping age range. Specifically, Davidow and col-
leagues (2018b) found that when value associations are first trained 
through a speeded instrumental reward task (monetary-incentive delay 
task), which requires participants to respond increasingly quickly to a 
single cue to earn monetary rewards, this value history actually intrudes 
on subsequent cognitive control performance. Notably, this value- 
related intrusion emerged during adolescence and persisted into 
young adulthood. Therefore, while the effect on performance was 
opposite of what we observed in the present study, the age-related 

Fig. 4. A) PPI analysis identifying age-related decreases (stronger in younger adolescents) in functional coupling with the caudate for previously learned high stakes 
gain NoGo cues relative to previous low stakes gain NoGo cues that decreased with age. B) PPI analysis identifying age-related increases (stronger in older ado-
lescents) in functional coupling with the caudate for previously learned high stakes gain NoGo cues relative to previous low stakes gain NoGo cues that increased 
with age. 

Table 5 
Cluster table for PPI analysis, FWE p < 0.05.  

PPI analysis seeded in the caudate 

Decreasing With Age, right caudate seed 
Region x y z k z-stat 
Nucleus Accumbens 12 18 � 6 774 4.16 
vmPFC � 10 40 � 2  3.65 

Increasing With Age, left caudate seed 
Region x y z k z-stat 
Frontal Pole 22 38 16 476 4.16 

High Gain > Low Gain No Go Accuracy, left caudate seed 
Region x y z k z-stat 
Occipital Pole 22 � 94 � 4 438 3.17 
Lingual Gyrus 26 � 64 � 4  2.81 

High Gain > Low Gain No Go Accuracy, right caudate seed 
Region x y z k z-stat 
Occipital Pole 24 � 92 � 2 1244 4.23 
Occipital Pole � 14 98 4  3.34  

C. Insel et al.                                                                                                                                                                                                                                     



Developmental Cognitive Neuroscience 40 (2019) 100730

10

pattern of when value history influences subsequent performance is 
similar in the present study. 

Why would value cues facilitate performance in late adolescence in 
the present study, but hinder performance in this prior work? A recent 
framework of motivation/cognition interactions suggests that reward 
value-associations help when trained value cues are congruent with task 
demands in the subsequent cognitive control test, but these associations 
can hinder performance when they are incongruent and distract atten-
tion away from the central task (Krebs et al., 2011; Krebs and Woldorff, 
2017). Therefore, the motor components of how the value-associations 
are first trained can influence their subsequent interactions with con-
trol implementation. For example, Davidow and colleagues trained 
value associations through response speeding, which may bind value 
associations with immediate motor actions. When these cues are pre-
sented in a new context in which the participant must withhold a 
response, this motor/incentive association makes response inhibition 
difficult because it is incongruent with the learned association. Future 
studies will need to explicitly test this proposed dissociation. 

The present study first trained value associations using a reinforce-
ment learning task, in which individuals could deliberate for up to three 
seconds when making a choice, and there was no inherent utility to 
response speeding. Therefore, this training through learning may link 
attentional features with valued outcomes more than motoric-based 
associations, which could, in turn, benefit subsequent performance. 
Thus, we speculate that the facilitation observed in the present study 
may stem from high value associations orienting visual attention to-
wards salient and task-relevant cues. Another possibility is that high 
value associations enhance context monitoring (Chatham et al., 2012; 
Chevalier et al., 2014; Winter and Sheridan, 2014), a cognitive control 
process that involves selectively attending to the environment for rele-
vant cues to determine the contextually appropriate action to select. 
Maturing memory systems may also account for the age-related differ-
ences we observed in value-guided cognitive control. Future work is 
needed isolate these distinct cognitive mechanisms to better understand 
how key components of value-based transfer shift during development. 

In summary, the present study tested how previously learned cue- 
incentive associations differentially influence subsequent cognitive 
control across age during adolescence. For behavioral performance, no- 
go accuracy increased with age for previously learned high gain relative 
to low gain cues, but not for previous loss cues, and this beneficial effect 
of high gain cues emerged in late adolescence. This suggests that for 
older adolescents, high-value associations transfer across cognitive do-
mains and improve later goal-directed behavior. These beneficial effects 
of high value gain cues may result from enhanced attentional modula-
tion or increased context monitoring, processes which allow an indi-
vidual to optimize action selection in the moment. Neuroimaging 
analyses demonstrated that with increasing age, individuals were more 
likely to enhance recruitment of the dorsal striatum and ventrolateral 
prefrontal cortex to previously learned high gain cues relative to pre-
viously learned low gain cues. Further, older adolescents enhanced 
functional connectivity between the dorsal striatum and dorsolateral 
prefrontal cortex when inhibiting responses to previously learned high 
gain cues. Together, these findings reveal that the persistent beneficial 
effects of learned high value cue-incentive associations on cognitive 
control performance emerge in late adolescence in parallel with value- 
selective recruitment of corticostriatal systems that guide goal- 
directed behavior. 
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