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Abstract

Background: Household survey data are frequently used to measure reproductive, maternal, newborn, child and
adolescent health (RMNCAH) service utilisation in low and middle income countries. However, these surveys are
typically only undertaken every 5 years and tend to be representative of larger geographical administrative units.
Investments in district health management information systems (DHMIS) have increased the capability of countries
to collect continuous information on the provision of RMNCAH services at health facilities. However, reliable and
recent data on population distributions and demographics at subnational levels necessary to construct RMNCAH
coverage indicators are often missing. One solution is to use spatially disaggregated gridded datasets containing
modelled estimates of population counts. Here, we provide an overview of various approaches to the production of
gridded demographic datasets and outline their potential and their limitations. Further, we show how gridded
population estimates can be used as alternative denominators to produce RMNCAH coverage metrics in combination
with data from DHMIS, using childhood vaccination as examples.

Methods: We constructed indicators on the percentage of children one year old for diphtheria, pertussis and tetanus
vaccine dose 3 (DTP3) and measles vaccine dose (MCV1) in Zambia and Nigeria at district levels. For the numerators,
information on vaccines doses was obtained from each country’s respective DHMIS. For the denominators, the number
of children was obtained from 3 different sources including national population projections and aggregated gridded
estimates derived using top-down and bottom-up geospatial methods.

Results: In Zambia, vaccination estimates utilising the bottom-up approach to population estimation substantially
reduced the number of districts with > 100% coverage of DTP3 and MCV1 compared to estimates using population
projection and the top-down method. In Nigeria, results were mixed with bottom-up estimates having a higher
number of districts > 100% and estimates using population projections performing better particularly in the South.
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Conclusions: Gridded demographic data utilising traditional and novel data sources obtained from remote sensing
offer new potential in the absence of up to date census information in the estimation of RMNCAH indicators. However,
the usefulness of gridded demographic data is dependent on several factors including the availability and detail of
input data.
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Background
The ‘leave no-one behind’ agenda focusing on equitable
development is central to the Sustainable Development
Goals (SDG) with universal health coverage (UHC) of
quality services considered a key strategy to reach targets
on reproductive, maternal, newborn child and adolescent
health (RMNCAH). Substantial gains in the provision
and use of health services have been seen in many low
and middle income countries (LMICs), but progress has
been uneven. Geographical location is often strongly as-
sociated with inequalities in health service utilisation
where populations living in peripheral areas tend to have
considerably lower utilisation and poorer health out-
comes compared to more centrally located and urban
populations [1–4]. Moreover, recent research suggests
that there is a positive correlation between increasing
coverage at national levels and increasing subnational in-
equalities in several sub-Saharan countries [5].
Representative household surveys such as Demographic

Health Surveys (DHS) and Multiple Cluster Indicator Sur-
veys are often used as data sources to measure the progress
towards international and national RMNCAH targets in-
cluding UHC. Key advantages of surveys are that they pro-
vide direct estimates of indicators and include measures of
uncertainty. However, these surveys tend to be undertaken
every 5 years and they are not necessarily synchronised with
the reporting requirements of long term international tar-
gets and national health interventions plans. Furthermore,
in countries with decentralised health systems, they are typ-
ically not representative at geographical administrative units
relevant to planning and monitoring (e.g. districts).
LMICs have in recent years taken significant steps to

meet the needs for data-driven planning and monitoring
at subnational levels. Investments in district health man-
agement information systems (DHMIS) have resulted in
increasing availability of timely data from health facilities
providing regular information on the provision, service
readiness and utilisation. Many RMNCAH indicators
and related metrics used to plan and evaluate progress
towards universal coverage, including utilisation such as
antenatal care, delivery care and child vaccinations re-
quire integration of DHMIS data (numerators) with esti-
mates of the relevant sub-population (denominators).
These sub-populations typically include groups such as
newborns, women of childbearing age (WoCBA) or

children under 5 years old. In the absence of timely sur-
vey data at subnational levels, there has traditionally
been a high reliance on population and housing censuses
to produce estimates of population distributions by age
and sex at subnational levels, since vital registration sys-
tems are often of poor quality or non-existent in many
LMICs [6]. The advantage of using a census as a source
for the calculation of denominators is that it includes
the entire population, but since censuses are infrequent,
information collected at the time of enumeration quickly
becomes outdated [7]. Additionally, exact subnational
boundaries for older census are often not well defined
and can differ compared to digitised boundaries espe-
cially when different government ministries are respon-
sible for different administrative unit levels. These can
result in under- or over- coverage estimates (> 100%) of
health and health care indicators at subnational levels as
highlighted in previous research [7, 8].
Novel data and methodological advances are offering

new opportunities to estimate population denominators
at high spatial resolution that can be used in the monitor-
ing coverage of RMNCAH interventions. Here we de-
scribe two different geospatial methods (top-down and
bottom-up modelling) to estimate the numbers and distri-
butions of population at high spatial resolution and high-
light how gridded data can be used as a source of key
catchment population counts at subnational levels. Using
vaccination coverage in Zambia and Nigeria by districts,
we show how these methods, as alternatives to population
projections, can be combined with DHMIS data obtained
from health facilities and highlight their potential in cover-
age estimation of RMNCAH interventions.

Methods for measuring and mapping national
population counts and key RMNCAH population
subgroups at high spatial resolution
Population and housing censuses remain the core data
source for the majority of countries globally in terms of
obtaining small area demographics including population
counts [9]. Moreover, they serve as the baseline from which
projections are built for non-census years. Given the dec-
adal implementation of national population censuses and
the limitations of vital registry data sources, projections
form the basis of the denominator population of many
RMNCAH indicators [10, 11]. Population projections can
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be calculated in multiple ways. Simple projections from
census baselines assuming a linear growth rate, or more
complex methods, taking into account additional assump-
tions about age specific fertility and mortality, are generally
undertaken by national statistical offices in LMICs to pro-
duce official estimates of age and sex structures in between
census enumeration periods. However, the estimates are
generally not undertaken at smaller geographical adminis-
trative units due to limited data on local patterns of fertility
and mortality. Additionally, internal migration is rarely
accounted for in such projections. This can have substantial
impacts at subnational levels where rural to urban migra-
tion and/or movement across administrative boundaries
are large. Furthermore, due to their size, complexity, costs
or political and security constraints, many LMICs have
struggled to conduct full censuses every decade, and the
further such projections are undertaken away from the cen-
sus baseline, the greater the uncertainty of the estimates [7,
12]. Finally, the importance of population estimates for re-
source allocation has resulted in political interference in
enumeration, while in some cases poor implementation has
led to unreliable numbers and populations being missed in
some areas [13, 14]. This set of factors means that

projections many years beyond a census baseline, in par-
ticular where there are issues with this baseline, can pro-
duce highly uncertain and inaccurate population estimates
at subnational levels.
Geospatial methodologies using a combination of popula-

tion data and satellite imagery have been put forward to
compensate for some of these issues [7]. The past few de-
cades have seen major advances in spatial detail and the
availability of high resolution satellite imagery. Moreover,
increasing computing power, along with advances in algo-
rithm design using machine learning approaches have en-
abled automated processing of such imagery to extract high
quality maps of building footprints, road networks, land
use, neighbourhood types and other features related to
population distributions across entire countries and conti-
nents [15–17]. To derive population estimates, increasingly
sophisticated dasymetric methods have been developed for
disaggregating census data (‘top-down’ models) to produce
data at high spatial resolution [18, 19]. Such approaches
have been applied for mapping population counts [20], age
and sex structures [21], as well as births and pregnancies
through the integration of subnational fertility data [22].
Figure 1 provides an illustration of gridded data produced

Fig. 1 Estimated number of children aged 0–1 years old in Zambia and Nigeria in 2018 for each 100 × 100 metre grid cell, produced through
application of a top-down modelling approach [23]
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through top-down modelling, showing the estimated num-
ber of children under 1 year in Zambia and Nigeria in
2018.
To counteract the tendency for poor population pro-

jections from long past censuses, a growing area of re-
search is now focussing on the development of census-
independent methods for population estimation that are
built on detailed geospatial datasets and statistical
models (‘bottom-up’ models). Through the use of small
area sample enumerations and the exploration of the re-
lationships between population densities measured in
these enumeration data and geospatial covariate data,
statistical models such as Bayesian hierarchical ap-
proaches fitted using integrated nested Laplace approxi-
mation or other methods are built to predict population
numbers in unsampled areas, together with uncertainty
intervals, based on covariate and spatial relationships [7,
24]. The approaches can also be adapted to situations
where an incomplete census has been undertaken and
estimates are required for areas where enumeration was
not possible. Such approaches have been developed and
applied to produce cross-sectional estimates in Nigeria,
Zambia, Democratic Republic of the Congo, Colombia
and Afghanistan [25–30]. Cross-validation efforts have
shown the accuracy and value of such approaches, and
validation with independent datasets is being planned in
multiple settings.

Gridded demographic mapping and its
applications
Aside from the simple projections from census data at
national or province levels that still form the basis of
most official population data in between census periods,
each of the geospatial approaches outlined above can
produce population estimates at grid squares of e.g.
1x1km or 100x100m.
Gridded data have a range of advantages over the pro-

duction of estimates at administrative geographical unit
levels. Firstly, by producing estimates for each grid
square across a country, the spatial variations in popula-
tion densities and characteristics that exist across a land-
scape can be better captured. In the SDG ‘leave no-one
behind’ era and in the context of UHC, this has signifi-
cant advantages in terms of identifying and mapping
populations that can often be missed in large area totals
or averages, ensuring that everyone is counted and pol-
icies can be tailored accordingly. Secondly, they facilitate
the ease of integration with DHMIS and infrastructure
datasets that are key to RMNCAH interventions at dif-
ferent spatial scales including according to health facility
catchment area. Health facilities are increasingly being
mapped using the global position system across LMICs
[31, 32], and it is challenging to measure the population
served or within reach of these facilities using population

estimates mapped to administrative provinces or dis-
tricts. Gridded demographic data present a more suitable
format for the flexible provision of, for instance, esti-
mates of numbers of WoCBA or total number of births
residing within a certain distance or travel time of a fa-
cility providing comprehensive emergency obstetric and
neonatal care [33]. Finally, the flexibility of gridded data
at high spatial resolution means that it can be summarised
to construct population estimates at district, province or
any operational unit required using geographic informa-
tion system software. While studies using gridded demo-
graphic data on population and births to calculate RMNC
AH service utilisation are limited, they have more fre-
quently been used in the estimation of availability of and
travel time to health facilities including emergency obstet-
ric and newborn care [34–36].
While gridded population data do have some signifi-

cant advantages over data at larger administrative units,
it is important to keep in mind the uncertainties inher-
ent in data at such fine spatial scales [18]. Uncertainty
intervals in estimates tend to be much larger at small
scales and reduce as the data are aggregated. Recent
work applying Bayesian statistical models to capture un-
certainty provides quantitative measures of uncertainty
in population estimates at grid square, district, province
and national levels, highlighting how uncertainty inter-
vals shrink as data is aggregated, and the need to ac-
count for this in applications [7, 24, 37].

Using gridded population data to produce
vaccination coverage estimates in Zambia and
Nigeria
In the absence of representative household survey data
on RMNCAH coverage indicators at subnational levels,
LMICs are exploring the use of existing data where the
numerator is derived from a different data source (typic-
ally DHMIS) compared to the denominator (typically a
census). Using this approach, it is not uncommon to find
subnational estimates of health intervention coverages
reported as being > 100% [38] and sources of error can
be associated with both the numerator and the denom-
inator [8]. Here, we provide coverage estimates for diph-
theria, pertussis and tetanus vaccine dose 3 (DTP3) and
measles vaccine dose (MCV1) in Nigeria (774 districts)
and Zambia (110 districts) to exemplify how gridded
population data can be used as alternatives to population
estimates obtained from nationally produced projections.
Nigeria and Zambia were selected because district level
information on vaccinations and data using all three
methods for estimating the denominators (national pro-
jections from censuses, top-down modelling and
bottom-up modelling) were available for analysis. For
the numerators, we obtained district level data on vac-
cine doses delivered for DTP3 and MCV1 for 2018
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sourced from each country’s respective DHMISs, as re-
ported to the World Health Organisation (WHO) [38].
The numerators are held fixed across each respective
vaccination coverage estimate for each country to show
how the three different denominator estimates of the
population vary depending on the method applied. The
methods used to estimate the denominator population
used data from 2016/2017, 2018 or 2019 depending on
data availability. The denominator estimates derived
using official census-based population projections were
reported by each country to the WHO for the year 2018
[38]. The top-down geospatial population estimates for
2018 for both countries produced by WorldPop were
obtained through dasymetric methods using subnational
projections from census data [23], and the bottom-up
population estimates were derived from geospatial mod-
elling using a Bayesian approach implemented for the
Geo-Referenced Infrastructure and Demographic Data
for Development (GRID3) programme [26, 39, 40]. The
bottom-up estimates for Zambia used data from 2019
and the bottom- up estimates for Nigeria used data from
2016/17. Because estimates of 12–23 months old chil-
dren commonly used to produce DTP3 and MCV1 indi-
cators are not available, estimates of 0–1 years old are
used as proxies. For top-down and bottom-up modelled
datasets in both countries, the 0–1 year old proportions
are defined using subnational data from household sur-
veys [21]. The bottom-up population estimates are the
only modelled estimates that provide uncertainty metrics
for the population denominator. Uncertainty estimates
of DTP3 and MCV1 coverage are measured as the differ-
ence between the lower and upper ends of the 95% cred-
ible intervals (Supplementary Fig. 1). Because true
vaccination coverage in Zambia and Nigeria is unknown
at the district level, the performance of the population
estimates in regards to under-coverage cannot be
assessed, but the frequency of over-coverage defined as
districts with > 100% coverage can be analysed and com-
pared across the estimates using the different denomin-
ator source. While > 100% coverage does not necessarily
mean there is an error in the denominator, it does indi-
cate a high likelihood of problems, for example with
more children receiving doses than estimated to be liv-
ing in the district, suggesting inaccuracies in the
numerator.
Figures 2 and 3 show coverage estimates of DTP3 and

MCV1 for Zambia and Nigeria respectively using popu-
lation projection (maps a and d), top-down model (map
b and e) and bottom-up model (map c and f). In both
countries, the vaccination estimates vary considerably
according to the denominator estimates used, but pat-
terns within countries also vary. Figure 2 shows that in
Zambia, vaccination estimates utilising the bottom-up
approach to population estimation substantially reduce

the number of districts with > 100% coverage compared
to estimates using population projection and the top-
down method (maps a-f). For DTP3, the bottom-up ap-
proach yields 13 districts, the population projection
yields 37 districts and the top-down yields 49 districts
with vaccination coverage > 100%. For MCV1, the corre-
sponding figures are 18, 51, and 61 districts with > 100%
vaccination coverage for bottom-up, projection and top-
down estimates respectively (Supplementary Table 1).
Figure 3 (maps a-f) shows that DTP3 and MCV1

coverage estimates in Nigeria vary considerably accord-
ing to different methods of population estimation, with
similar patterns evident for both vaccination pro-
grammes. With the exception of some districts, the
bottom-up estimate has substantially more districts with
> 100% vaccination coverage compared to the projection
and top-down estimates. For example, the bottom-up es-
timate yields 509 districts with > 100% coverage com-
pared to 282 districts using projection and 405 districts
using the top-down estimate (see Supplementary Table 2
for these and corresponding estimates for MCV1). Fur-
thermore, a geographical pattern suggesting a North-
South divide in vaccination coverage of > 100% accord-
ing to the different population estimation methods (top-
down and projection) can be identified. Figure 3 (maps
a, b, d and e) and Supplementary Table 2 show that in
the North west, North central and the North east, the
population projection yields 46 more districts with >
100% DTP3 coverage compared to top-down estimation
(n = 178 districts and 132 districts respectively). Con-
versely, the top-down method of population estimation
produces more districts with vaccination coverage esti-
mates of > 100% in the South, South west and South east
of the country compared to those derived using projec-
tions. For DTP3, the top-down method has 163 more
districts with coverage estimates with > 100% compared
to population projections (n = 273 and 104 districts re-
spectively). Similar patterns are observed for MCV1 vac-
cination coverage estimates (Supplementary Table 2).

Conclusions
While household surveys are likely to continue to play a
prominent role to measure the progress towards inter-
national and national RMNCAH targets including UHC
in the future, the potentials of other sources should be
explored to produce more frequent estimates at geo-
graphical administrative levels where survey data are not
representative. Here we have highlighted how traditional
demographic data from censuses can be complemented
by new technologies to improve the spatial detail and re-
cency of population estimates. Moreover, they can sup-
port the production of gridded outputs to facilitate ease
of integration with DHMIS data when estimates
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obtained through population projections are considered
too unreliable to be used in health coverage estimation.
RMNCAH coverage indicators require accurate popu-

lation data to be estimated at subnational levels. Figures 2
and 3 (maps a and d) highlighted the challenges that
governments face in producing subnational vaccination
coverage estimates, when data on vaccination doses are
combined with simple projections from census data col-
lected more than a decade previously, with many dis-
tricts showing coverage estimates of over 100%. This
could be due to, for example, reporting errors inherent
in numerators or associated with coverage errors in the
denominator, including inaccurate assumptions that
affect population growth and change [8]. It can also be
due to the health care seeking behaviour of the popula-
tion living in one subnational administrative catchment
area crossing its border to obtain health services in an-
other area [41], particularly in cases where administra-
tive units with > 100% coverage have neighbouring units
with large underestimates. It should also be noted that

coverage estimates of < 100% can also be inaccurate,
though more difficult to determine, since they are within
the feasible range for coverage estimation. We did not
distinguish coverage estimates that exceeded 100% by
different amounts (for example, 101% was treated the
same as 200%).
Keeping the numerator fixed, results contained in Figs.

2 and 3 on vaccination coverage exemplify the advan-
tages and limitations of the applicability of geospatial
population modelling in the monitoring of RMNCAH
interventions. The switch from official population pro-
jections to model based estimates produced using top-
down (map b and e) and bottom-up (map c and f)
methods in Nigeria results in different vaccination
coverage patterns, with fewer districts showing coverage
estimates over 100% in the north and centre, but inter-
estingly, more districts breaching this threshold in the
south. The reasons for these variations are complex,
with many factors driving differences in estimates.
Firstly, questions over the Nigeria 2006 census that

Fig. 2 Estimated district coverage maps of diphtheria, pertussis and tetanus vaccine third dose (DTP3) and measles first dose (MCV1) for Zambia.
Numerator: DTP3 and MCV1 vaccination doses from DHMISs, as reported to the WHO (maps a, b, c, d, e and f) [38]. Denominators: official
population projections from the last census as reported to WHO (map a and d) [38]; WorldPop modelled top-down population estimate (map b
and e) [23]; and GRID3 modelled bottom-up population estimate (map c and f) [26, 39]

Nilsen et al. BMC Health Services Research 2021, 21(Suppl 1):370 Page 6 of 10



forms the baseline of the WHO and top-down modelling
have been raised regularly [42]. Secondly, the approaches
for projecting these up until recent years and breaking
them down by age group differ between the two geospa-
tial approaches, with the dataset making use of subna-
tionally varying growth rates and age structure data
from recent household surveys [21]. Thirdly, the settle-
ment map (LandScanHD) used in the bottom-up ap-
proach in Nigeria was mostly based on 2014 satellite
imagery and therefore omits newly built up areas [30],
and areas mapped as non-residential were excluded (e.g.
mapped as zero population) because no population data
were available from those areas [25]. Fourthly, the differ-
ent years represented by the available denominator data-
sets likely had an impact, given high and varying age
specific fertility rates across Nigeria. Finally, uncertain-
ties in the numerator data exist, with the precise district
boundaries used in collating vaccination delivery num-
bers being unclear, meaning that those used to both
map out the WHO coverage estimates and summarise
the modelled estimates could have been different,

contributing to errors in mapping coverages. All of these
factors contribute to uncertainties in estimates of both
the denominators and numerators, emphasising the need
to capture and communicate these where possible, as
well as the need for further research into each source of
uncertainty.
While top-down population estimates suffer from the

same limitations and uncertainties as census projections,
this could be partially compensated for by the method’s
utilisation of recent geospatial datasets on settlements,
buildings and infrastructure. Bottom-up models also in-
corporate such information, however it is important to
note that the precision of the population predictions in
such models is largely dependent on the numbers, loca-
tions, sizes and representivity of the sample area enu-
merations in addition to recency of the high resolution
satellite imagery used [7, 30].
The bottom-up estimates used here utilise a Bayesian

modelling framework to undertake the measurement of
uncertainty [24]. Efforts have been made recently to esti-
mate and map similar uncertainty ranges in vaccination

Fig. 3 Estimated district coverage maps of diphtheria, pertussis and tetanus vaccine third dose (DTP3) and measles first dose (MCV1) for Nigeria.
Numerator: DTP3 and MCV1 vaccination doses from DHMISs, as reported to the WHO (maps a, b, c, d, e and f) [38]. Denominators: official
population projection from the last census as reported to WHO (map a and d) [38]; WorldPop modelled top-down population estimate (map b
and e) [23]; and GRID3 modelled bottom-up population estimate (map c and f) [36, 40]
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coverages from household surveys [43, 44], and future
work should be directed towards trying to capture such
uncertainties from DHMIS data. Reducing uncertainties
and improving predictions in model-based estimates re-
quire a coordinated effort to incorporate the latest popu-
lation enumerations from household surveys, high
resolution settlement maps from recent satellite imagery,
and other geospatial data into population models.
In Zambia, the top-down estimates yielded a larger num-

ber of districts with > 100% vaccination coverage compared
to the estimates using population projections. This could
be due the simple subnational projections used to produce
the input count data [45]. Conversely, the bottom-up esti-
mates greatly reduced the number of districts at > 100%
compared to the population projections (and the top-down
estimates). Compared to the bottom-up estimates for
Nigeria, the estimates for Zambia were based on more re-
cent building footprints, mostly from 2018 and 2019. Fur-
thermore, compared to Nigeria, multiple data sources were
obtained to achieve good national coverage of sample loca-
tions as well as representation of non-residential settlement
types. While the overall reduced number of districts with >
100% vaccination coverages in Zambia suggests that the
bottom-up estimates would be the favourable denominator,
there may also be districts with underestimates of vaccin-
ation coverage due to overestimated district level popula-
tion counts. For both Zambia and Nigeria, underestimation
or overestimation due to the denominator is most likely in
areas where there is high uncertainty in the bottom-up esti-
mates (Supplementary Fig. 1).
There have been limited attempts to systematically

evaluate the predictions of the population estimates
using any of the methodologies discussed here. Valid-
ation of both top-down and bottom-up modelled popu-
lation estimates have largely involved cross-validation so
far [46, 47], and there is a need for additional assess-
ments using independent datasets. Part of the challenge
is to identify accurate population data sources to com-
pare the outputs of the different methodologies with up-
to-date population enumerations immediately utilised to
update and improve models. A thorough approach to
validation will require the comparison of outputs in sev-
eral countries, following previous cross-validation efforts,
as different methods may perform better or worse de-
pending on country specifics. Such an assessment of
modelling method accuracies would facilitate narrowing
down the drivers behind some of the differences seen in
Figs. 2 and 3.
The approaches to the production and use of modelled

population datasets outlined above represent an alterna-
tive for the production of key RMNCAH metrics for
small areas where existing demographic data are out-
dated, unreliable, incomplete or non-existent. Their po-
tentials are not limited to district level estimates as

demonstrated here. The methodology can also be ap-
plied to other small areas, for example, in under-
researched urban settings such as slum areas where low
service use and poor health outcomes are masked by
high urban area averages. The results for Nigeria show
that they only represent one component of the challenge
in producing robust and reliable metrics with much
work still to be done in understanding sources of uncer-
tainty and inaccuracy. Further still, the integration of
such new datasets and approaches into routine use in
health systems will require significant capacity strength-
ening efforts in some countries where expertise in geo-
graphical information systems and spatial data are
limited. Finally, population data can be highly sensitive
and political, and resistance to the use of alternative esti-
mates that vary substantially from official estimates can
be common, placing a further barrier to the adoption
and widespread use of such data. Nevertheless, the ad-
vantages of such gridded population datasets outlined
above are leading to their increasing use, with local uni-
versities and multiple international initiatives supporting
ministries of health, national statistics offices and others
across LMICs to explore the use of these new forms of
data in building health information systems.
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in 2016/7 (map a and b) and Zambia 2019 (map c and d) using a
bottom-up approach to population estimation for children aged 0–1
years old. Uncertainty is displayed as the difference between the lower
and upper 95% credible boundaries of the vaccination coverage esti-
mates. Numerator: DTP3 and MCV1 vaccination doses from each coun-
try’s DHMISs, as reported to the WHO (maps a, b, c and d) [38].
Denominator: GRID3 modelled bottom-up population estimate for
Nigeria (map and b) [39, 40] and GRID3 modelled bottom-up population
estimate for Zambia (map c and d) [26, 39].

Additional file 2: Table S1. Number of districts in Zambia where
vaccination coverage for DTP3 and MVC1 is > 100%. Numerator: DTP3
and MCV1 vaccination doses from each country’s DHMISs, as reported to
the WHO [38]. Denominator: official population projections from the last
census as reported to WHO [38]; WorldPop modelled top-down popula-
tion estimates [23]; and GRID3 modelled bottom-up population estimate
[26, 39].

Additional file 3: Table S2. Number of districts by region in Nigeria
where vaccination coverage for DTP3 and MVC1 is > 100%. Numerator:
DTP3 and MCV1 vaccination doses from DHMISs, as reported to the WHO
[38]. Denominators: official population projection from the last census as
reported to WHO [38]; WorldPop modelled top-down population esti-
mate [23]; and GRID3 modelled bottom-up population estimate [39, 40].
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