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the structural basis of the genetic 
code: amino acid recognition 
by aminoacyl‑tRnA synthetases
florian Kaiser1,2,4*, Sarah Krautwurst3,4, Sebastian Salentin1, V. Joachim Haupt1,2, 
Christoph Leberecht3, Sebastian Bittrich3, Dirk Labudde3 & Michael Schroeder1

Storage and directed transfer of information is the key requirement for the development of life. Yet 
any information stored on our genes is useless without its correct interpretation. The genetic code 
defines the rule set to decode this information. Aminoacyl-tRNA synthetases are at the heart of this 
process. We extensively characterize how these enzymes distinguish all natural amino acids based on 
the computational analysis of crystallographic structure data. The results of this meta-analysis show 
that the correct read-out of genetic information is a delicate interplay between the composition of the 
binding site, non-covalent interactions, error correction mechanisms, and steric effects.

One of the most profound open questions in biology is how the genetic code was established. While proteins are 
encoded by nucleic acid blueprints, decoding this information in turn requires proteins. The emergence of this 
self-referencing system poses a chicken-or-egg dilemma and its origin is still heavily  debated1,2. Aminoacyl-tRNA 
synthetases (aaRSs) implement the correct assignment of amino acids to their codons and are thus inherently 
connected to the emergence of genetic coding. These enzymes link tRNA molecules with their amino acid cargo 
and are consequently vital for protein biosynthesis. Beside the correct recognition of tRNA  features3, highly 
specific non-covalent interactions in the binding sites of aaRSs are required to correctly detect the designated 
amino  acid4–7 and to prevent errors in  biosynthesis5,8. The minimization of such errors represents the utmost 
barrier for the development of biological  complexity9 and accurate specification of aaRS binding sites is proposed 
to be one of the major determinants for the closure of the genetic  code10. Beside binding side features, recogni-
tion fidelity is controlled by the ratio of concentrations of aaRSs and cognate tRNA  molecules11 and may involve 
spatial secondary structures motifs in addition to side chain  configurations12,13.

Evolution.  The evolutionary origin of aaRSs is hard to track. Phylogenetic analyses of aaRS sequences show 
that they do not follow the standard model of  life14; the development of aaRSs was nearly complete before the 
Last Universal Common Ancestor (LUCA)15,16. Their complex evolutionary history included horizontal gene 
transfer, fusion, duplication, and recombination  events14,17–21. Sequence  analyses22 and subsequent structure 
 investigations23,24 revealed that aaRSs can be divided into two distinct classes (Class I and Class II) that share no 
similarities at sequence or structure level. Each of the classes is responsible for 10 of the 20 proteinogenic amino 
acids and can be further grouped into  subclasses15. One exception to this class separation rule is lysyl-tRNA 
synthetase (LysRS), where euryarchaeal genomes were shown to contain a Class I  form25 instead of the standard 
Class II form. Most eukaryotic genomes contain the complete set of 20 aaRSs. However, some species lack certain 
aaRS-encoding genes and compensate for this by post-modifications7,26–28 or alternative  pathways29–31. A sce-
nario where Class I and Class II originated simultaneously from opposite strands of the same  gene32,33 is among 
the most popular explanations for the origin of aaRSs. This so-called Rodin-Ohno hypothesis (named after 
Sergei N. Rodin and Susumu  Ohno32) is supported by experimental deconstructions of both aaRS  classes34–36. 
At the dawn of life the concurrent duality could have allowed to implement an initial binary choice, which is the 
minimal requirement to establish any  code9.

Origin of genetic coding.  Several theories exist (for a summary see  reference2) that aim to explain the 
origin of the genetic code and its self-translating machinery. The theory of co-evolution37, states that the appear-
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ance of amino acids via new biochemical synthesis pathways was strongly coupled with their integration into 
the genetic code. Thus, the co-evolution theory takes the age of amino acids—defined by the complexity of their 
biochemical  pathways38—into account. Another theory, ambiguity reduction of physicochemical  properties39,40, 
considers the major selective pressure for genetic code emergence to be the minimization of deleterious effects 
of mutations. According to this theory, codons that differ only in a single base, encode for amino acids with com-
parable physicochemical properties to mitigate the effect of translation errors. The role of stereochemical forces 
in genetic code formation, is supported by numerous  studies2. Here, the role of primordial amino acid binding 
structures is seen as a major determinant of which amino acids were embedded in the genetic code. This theory 
is of special interest in the light of our study, as amino acid binding sites of aaRSs might have composed such an 
ancient recognition structure.

Biochemical function.  In order to fulfill their biological function aaRSs are required to catalyze two dis-
tinct reaction steps. Prior to its covalent attachment to the 3’ end of the tRNA molecule, the designated amino 
acid is activated with adenosine triphosphate (ATP) and an aminoacyl-adenylate intermediate is  formed41,42. 
In general, the binding sites of aaRSs can be divided into two moieties: the part where ATP is bound as well 
as the part where specific interactions with the amino acid ligand are established (Fig. 1). Is is assumed that 
the amino acid activation with ATP constituted the principal kinetic barrier for the creation of peptides in the 
prebiotic  context36. Due to the fundamental importance of this first reaction step, highly conserved  sequence4 
and structural  motifs43 exist, which are likely to be vital for the aminoacylation reaction. These structural motifs 
were detected in our previous  study43, reinforcing the Class I and Class II separation of aaRSs. In structures of 
Class I aaRSs, ATP is bound via backbone hydrogen bonds. This motif, termed Backbone Brackets, undergoes 
structural rearrangement upon ATP binding and is only revealed at functional interaction level. Class II aaRSs 
ensure ATP binding with a pair of arginine residues, forming salt bridges towards the ATP molecule. These 
Arginine Tweezers are observable at sequence as well as structure level. While the activation of amino acids with 
ATP is the basic requirement of all aaRSs and is consistent within each aaRS  class43, the recognition mechanism 
of individual amino acids differs substantially between each aaRS. These differences are among the key drivers 
to maintain a low error rate during the translational process.

Non-covalent binding site interactions.  Non-covalent protein-ligand interactions play an important 
role for the specific binding of any ligand. These interactions are generally reversible and correspond to an 
energy of binding between −80 kJ·mol−1 and −10 kJ·mol−1 , which is less compared to covalent  interactions44. 
Several types of non-covalent interactions exist that can add energetic contribution to the binding of a pro-
tein ligand-complex. Each type is constrained regarding interaction partners and geometry. Generally, directed 

Figure 1.  The aaRS·tRNA complex (PDB:1f7u) and the architecture of its active site. The enzyme catalyzes the 
covalent attachment of an amino acid to the 3’ end of a tRNA molecule. The binding site itself can be divided 
into two moieties. While the ATP moiety is responsible for the fixation of ATP, which is consistent within each 
aaRS  class43, the specificity-conferring moiety differs between each aaRS and forms highly specific non-covalent 
interactions with the amino acid ligand. Depending on the reaction state (pre- or post-activation), the ATP 
moiety contains ATP or an adenylate group.
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hydrogen bonds are considered to be the strongest non-covalent interaction, followed by π-cation and π-stack-
ing interactions, electrostatic (or salt bridge) interactions, and hydrophobic  interactions45. Based on experi-
mentally determined three-dimensional structures of protein-ligand complexes, non-covalent interactions can 
be studied computationally. However, this requires a detailed annotation of non-covalent interaction patterns. 
In this study, we use the rule-based Protein-Ligand Interaction Profiler (PLIP)46 to characterize the amino acid 
binding in aaRSs.

Motivation.  In our last study we identified two unique ATP binding motifs in Class I and Class II  aaRSs43, 
which are by now the minimal description of the two classes. Hence, a detailed study of the amino acid binding 
site is the logical next step to extend the picture of ligand binding in aaRSs. Protein structures of aaRSs from all 
kingdoms of life, co-crystallized with their amino acid ligands, are publicly available in the Protein Data Bank 
(PDB)47. Furthermore, there are tools such as  PLIP46 to characterize and map the interactions of proteins and 
their ligands. These rich data allow for the investigation of specific characteristics of amino acid recognition in 
individual aaRS. The overall aim is to contribute to the understanding of how aaRSs realize the correct mapping 
of the genetic code and to provide a compendium of binding site interactions relevant to maintain amino acid 
specificity. The results shed light on how evolution implemented a specific recognition via the amino acid com-
position of the binding size, non-covalent interaction patterns, pre- or post-transfer correction mechanisms, and 
steric effects such as the volume of the binding cavity. Moreover, the overall recognition strategies for Class I and 
Class II aaRSs differ, suggesting that the existence of the classes allowed the enzymes to cover a broader ligand 
diversity and thus the gradual incorporation of new amino acids into the genetic code.

Results
Dataset.  Based on all available structures in the PDB, 424 (189 Class I, 235 Class II) three-dimensional 
structures of aaRSs co-crystallized with their corresponding amino acid ligands were analyzed. The selected 
data covers aaRSs of 56 different species in total, 180 from eukaryotes, 213 from bacteria, and 31 from archaea 
(SI Appendix Fig. S1). In total, 70 human structures are part of the dataset. Each protein chain that contains a 
protein-ligand complex of a catalytic aaRS domain was considered. Data was available for each of the 20 aaRSs, 
plus the non-standard aaRSs pyrrolysyl-tRNA synthetase (PylRS) and phosphoseryl-tRNA synthetase (SepRS). 
Unfortunately, Class I LysRS could not be considered for analysis. The single structure of this enzyme from 
Pyrococcus horikoshii (PDB-ID: 1irx), which is part of the dataset, does not contain any co-crystallized amino 
acid ligand. The numbers of protein-ligand complexes available for each aaRS are given in SI Appendix Fig. S2. 
For twelve aaRSs, protein-ligand complexes were available in both pre-activation and post-activation reaction 
states, i.e. co-crystallized with either amino acid or aminoacyl ligand (SI Appendix Fig. S3). Out of all analyzed 
structures, 240 are in pre-activation and 184 in post-activation state. Out of the post-activation complexes, 72 are 
adenosine monophosphate (AMP) esters and 112 are non-hydrolysable analogs, mainly sulfamoyl derivatives.

Interaction features.  The frequencies of observed non-covalent binding site interactions in respect of the 
aaRS class and the type of interaction are shown in Table 1. In general, hydrophobic interactions are the most 
prevalent interactions for Class I aaRSs with a frequency of 44.60% with respect to the total number of interac-
tions, while hydrogen bonds are most frequently observed in Class II aaRSs with 59.23% frequency. Five (hydro-
gen bonds, hydrophobic interactions, salt bridges, π-stacking, and metal complexes) interaction types were 
observed in aaRSs. No π-cation interactions were observed to be involved in amino acid binding. Water bridges 
were excluded from the interaction analysis. Some aaRS structures deposited in the PDB are resolved including 
water, but other structures do not contain water molecules. In these cases, no water bridges can be detected using 
PLIP, despite them existing in vivo, which would lead to an experimental bias. Nonetheless, water molecules are 
known to mediate important interactions for ligand  recognition48 and their role should not be underestimated.

Amino acid recognition. The annotation of non-covalent protein-ligand interactions allowed to character-
ize interaction preferences of each aaRS at the level of individual atoms of their amino acid ligands. This analysis 
highlights the preferred modes of binding for each of the 22 amino acid ligands. Figure 2 shows the occurring 
interactions for each aaRS based on the analysis with PLIP. Each interaction is annotated with its occupancy, 
i.e. the relative frequency of occurrence in respect of the total number of structures for this aaRS. Binding site 
features are neglected at this point and all interactions are shown with respect to the amino acid ligand.

Table 1.  Overview of observed interactions between aaRSs and their amino acid ligands. The most prevalent 
interactions are hydrophobic interactions for Class I aaRSs and hydrogen bonds for Class II aaRSs (typeset in 
bold). Relative frequencies in respect of all interactions of the aaRS class are given in parentheses.

Interaction type

Hydrogen bond Hydrophobic Salt bridge π-stacking Metal complex Total

Class I 468 (37.96%) 550 (44.60%) 153 (12.41%) 59 (4.79%) 3 (0.24%) 1233

Class II 856 (59.23%) 193 (13.36%) 202 (13.98%) 144 (9.97%) 50 (3.46%) 1445
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Class I.  In general, Class I aaRSs interact mainly via hydrogen bonds and hydrophobic interactions with the 
ligand. The backbone atoms of all Class I ligands feature hydrogen bonding with the primary amine group. The 
occupancy of this interaction is high throughout all Class I aaRSs, indicating a pivotal role of this interaction for 
ligand fixation. Additionally, the oxygen atom of the ligand’s carboxyl group is involved in hydrogen bonding 
except for glutaminyl-tRNA synthetase (GlnRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase 
(ValRS). The same atom forms additional salt bridges in leucyl-tRNA synthetase (LeuRS), arginyl-tRNA syn-
thetase (ArgRS), methionyl-tRNA synthetase (MetRS), and glutamyl-tRNA synthetase (GluRS). The side chains 
of the aliphatic amino acids leucine, isoleucine, and valine are exclusively bound via hydrophobic interactions. 
ArgRS and GluRS form salt bridges between binding site residues and the charged carboxyl and guanidine 
groups of the ligand, respectively. Glutamine is bound by GlnRS via conserved hydrogen bonds to the amide 
group and hydrophobic interactions with beta and delta carbon atoms. The two aromatic amino acids tyrosine 
and tryptophan are recognized by π-stacking interactions and extensive hydrophobic contact networks. Tryp-
tophan is bound preferably from one side of its indole group at positions one, six, and seven. The sulfur atom of 
the cysteinyl-tRNA synthetase (CysRS) ligand forms a metal complex with a zinc ion in both structures. MetRSs 
bind their ligand with a highly conserved hydrophobic interaction with the beta carbon atom.

Class II.  Class II aaRSs consistently interact with the backbone atoms of the ligand via hydrogen bonds and 
salt bridges. The primary amine group forms hydrogen bonds with high occupancy and is involved in metal 
complex formation in threonyl-tRNA synthetases (ThrRSs) and seryl-tRNA synthetases (SerRSs). The carboxyl 
oxygen atoms of the ligands are bound by a combination of hydrogen bonding and electrostatic salt bridge inter-
actions. The overall backbone interaction pattern is highly conserved within Class II aaRSs. Closer investigation 
revealed that a previously described structural motif of two arginine  residues43, responsible for ATP fixation, 
seems to be involved in stabilizing the amino acid carboxyl group with its N-terminal arginine residue. The 
charged amino acid ligands in histidyl-tRNA synthetase (HisRS) and LysRS form highly conserved hydrogen 
bonds with the binding site residues. Other specificity-conferring interactions include π-stacking interactions 
and hydrophobic contacts observed for phenylalanine-tRNA synthetase (PheRS), metal complex formation for 
ThrRS and SerRS with zinc, and salt bridges as well as hydrogen bonds for aspartyl-tRNA synthetase (AspRS). 
The amino acids alanine and proline are bound by alanyl-tRNA synthetases (AlaRSs) and prolyl-tRNA syn-

Figure 2.  The recognition of individual amino acids by aaRSs mapped to their ligands. The ligands are grouped 
by physicochemical  properties49 and aaRS class. Different types of non-covalent protein-ligand interactions were 
determined with  PLIP46 and assigned to individual atoms of the ligand using subgraph isomorphism  detection50. 
Backbone atoms of the ligand are depicted as circles without filled interior. The relative occupancy of each 
interaction in respect of the total number of investigated structures (number in parentheses for each aaRS) is 
given by pie charts. Interactions with an occupancy below 0.1 are neglected. Interactions for which a unique 
mapping to an individual atom is not possible due to ambiguous isomorphism, e.g. for the side chain of valine, 
were assigned to multiple atoms. π-stacking interactions are shown in dark green and refer to all atoms of the 
aromatic ring structures in TyrRSs, TrpRSs and PheRSs. Some aaRSs prevent the mischarging of their tRNAs via 
error correction mechanisms (“editing”)51. The aaRSs conducting error correction are typeset in bold.
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thetases (ProRSs) via hydrophobic interactions. No specificity-conferring interactions can be described for the 
smallest amino acid glycine due to absence of a side chain. Hence, glycyl-tRNA synthetase (GlyRS) can only 
form interactions with the backbone atoms of the ligand. Furthermore, asparaginyl-tRNA synthetases (AsnRSs) 
mediate highly conserved hydrogen bonds with the amide group of their asparagine ligand. The non-standard 
amino acid pyrrolysine is bound by PylRS via several hydrogen bonds and hydrophobic interactions with the 
pyrroline group. SepRSs employ mainly salt bridge interactions to fixate the phosphate group of the phosphoser-
ine ligand.

Conserved Interaction Patterns. Class I aaRSs show a strong conservation of hydrogen bonds with the 
primary amine group of the amino acid ligand with 83.16% of all structures forming this interaction. Interac-
tions with the carboxyl group are less conserved with a frequency of 32.65% for hydrogen bonds and 28.57% 
for salt bridges, respectively. In this context, the salt bridges with the carboxyl group are a form of extra strong 
hydrogen  bonding52. Interaction patterns with the backbone atoms of the amino acid ligand are strikingly con-
sistent within Class II aaRSs. This class forms hydrogen bonds with the primary amine group in 92.15% of all 
structures. Additionally, hydrogen bonds with the oxygen atom of the carboxyl group occur in 65.70% of all 
structures and salt bridges with the same atom are formed in 39.26% of all Class II protein-ligand complexes.

Similar recognition requires editing mechanisms. Various aaRSs are known to conduct pre- or post-transfer 
editing (see the work of Perona and Gruic-Sovulj51 for a detailed discussion of editing mechanisms) in order to 
ensure proper mapping of amino acids to their cognate tRNAs. The similarity of interaction preferences depicted 
in Fig. 2 suggests that groups of very similar amino acids require editing mechanisms for their correct handling. 
Especially the three aliphatic amino acids isoleucine, leucine, and valine are bound via unspecific and weak 
hydrophobic interactions, substantiating the necessity of editing mechanisms observed for their  aaRSs53 and 
that substrate hydrophobicity cannot entirely account for  specificity54. Distinction between those three similar 
amino acids is proposed to happen via the “double sieve”52 mechanism. Exemplarily for IleRS, amino acids larger 
than isoleucine are excluded with the “first sieve” at the aminoacylation site, whereas smaller amino acids (like 
valine and leucine) are sorted out by the editing domain, functioning as a finer “sieve”. Specificity can therefore 
be accomplished by steric selection based on side chain length and shape at the editing  site53. A similar trend can 
be observed, e.g., for  AlaRS55 in order to distinguish alanine from serine or glycine.

Binding site geometry and cavity volume.  We investigated binding site geometry and cavity volume 
in order to quantify their potential contribution to amino acid recognition. Known editing mechanisms in aaRSs 
are focused on the prevention or correction of tRNA mischarging within one aaRS class (intra-class), e.g. the 
amino acids isoleucine, leucine, and valine belong to Class I. However, GluRSs and AspRSs have a highly similar 
interaction pattern of hydrogen bonds and salt bridges with the carboxyl group and weak hydrophobic interac-
tions. Both aaRSs do not use editing and are handled by different aaRS classes. In this case, the geometry and size 
of the binding site can act as an additional layer of selectivity; a mechanism also exploited by  ValRS53,56. To quan-
tify the contribution of binding site geometry, seven structures of GluRS and six structures of AspRS were super-
imposed with respect to their common adenine substructure using the  Fit3D57 software. As this superimposition 
can solely be computed for protein-ligand complexes which resemble the post-reaction state, only a subset of 
the structures was used. The results show that the ligands of GluRSs and AspRSs are oriented towards different 
sides of a plane defined by their common adenine substructure (Fig. 3A). There is a significant difference (Mann-
Whitney U p<0.01) in ligand orientation, described by the torsion angle between phosphate and the amino acid 
substructure of the ligand (Fig. 3B). Class I GluRSs feature a torsion angle of 54.64 ± 7.12◦ , whereas the torsion 
angle of Class II AspRSs is −65.02 ± 7.40◦ . Furthermore, the volume of the specificity-conferring moiety of the 
binding site (see Fig. 1) was estimated with the  POVME58 algorithm. It differs significantly (Mann-Whitney U 
p<0.01) between GluRS (147.00 ± 22.31 Å 3 ) and AspRS (73.34 ± 17.12 Å 3 ). This trend can be observed for all 
Class I and Class II structures, respectively. An analysis of all representative structures for Class I and Class II 
aaRSs shows that Class I binding sites are significantly (Mann-Whitney U p<0.01) larger on average (Fig. 3C). 
While Class I binding cavities have a mean volume of 143.40 ± 39.62 Å 3 , Class II binding sites are on average 
90.36 ± 32.09 Å 3 in volume.

Interaction patterns of individual aaRSs. In addition to the investigation of interaction preferences 
from the ligand point-of-view, the binding sites of each aaRS were analyzed regarding the residues that form 
interactions with the amino acid ligand. Because each aaRS is backed by multiple proteins from diverse organ-
isms with considerably divergent sequences, we devised a computational abstraction to allow the reader to infer 
amino acids of individual proteins via a structure-driven multiple sequence alignments (MSAs) (see "Methods" 
section). Original sequence numbers for each position can be inferred with the mapping tables published along 
with this manuscript (see Data Availability). Each row in the table corresponds to the artificial sequence posi-
tion, whereas each column gives the original position for each structure in our dataset as defined by the PDB. 
Figure 4A shows a sequence  logo59 representation of binding site interactions for AlaRS. Each colored position 
in the sequence logo represents interactions occurring at this position. Highly conserved interactions can be 
observed at renumbered position 135. The corresponding hydrogen bond and salt bridge interactions are formed 
with the backbone atoms of the ligand. On the protein side, this interaction is mediated by a conserved argi-
nine residue that corresponds to the N-terminal residue of the previously described Arginine Tweezers  motif43. 
Another prominent interaction is formed by valine at renumbered position 293. This residue interacts with the 
beta carbon atom of the alanine ligand via hydrophobic interactions. In some structures, this hydrophobic inter-
action is complemented by an alanine residue at renumbered position 325. Aspartic acid at renumbered position 
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323 is highly conserved in AlaRSs and seems to be involved in amino acid fixation via hydrogen bonding of the 
primary amine group. Overall, the specificity-conferring interactions with the small side chain of alanine are 
hydrophobic contacts. An example for amino acid recognition in AlaRSs is given in Fig. 4B. The structure of 
bacterial Escherichia coli AlaRS forms the whole array of observed interactions. Sequence logos of the remaining 
aaRSs are given in SI Appendix Figs. S4–S24. Based on the interactions between binding site residues and the 
ligand, a qualitative summary of specificity-conferring mechanisms and key residues was composed (Table 2). 
Moreover, the ligand size and count of observed interactions was checked for dependence. There is a weak but 
significant positive correlation between the average number of interacting binding site residues for each aaRS 
and the number of all non-hydrogen atoms of the amino acid ligand (Pearson r=0.32, p<0.01). This indicates 
that the number of formed interactions generally increases with ligand size. However, smaller amino acids do 
not necessarily have a less complex recognition pattern. ThrRSs, for example, bind their amino acid ligand with 
on average more than a dozen binding site residues, while ValRSs employ on average five binding site residues. 
The hydroxyl group of threonine allows for an extended range of non-covalent interactions to be formed with 
binding site residues compared to valine, where only hydrophobic contacts can be established. Distributions of 
interacting binding site residues for each aaRS are given in SI Appendix Fig. S25.

Quantitative comparison of ligand recognition. To allow for a quantitative analysis and comparison 
of ligand recognition between several aaRSs, interaction and binding site features were represented as binary 
vectors, so-called interaction fingerprints (see "Methods" section). Based on these fingerprints, the Jaccard dis-
tance was computed for each pair of structures to represent the dissimilarity in ligand recognition. Subsequently, 
the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)  algorithm61 was used 
for dimensionality reduction and embedding of the high-dimensional fingerprints into two dimensions for visu-
alization. This embedding is considered to be the recognition space of aaRSs. The two-dimensional visualization 
of this recognition space (Fig. 5) can be seen as a map describing the similarity in ligand recognition across 
all aaRSs. Thereby, each data point corresponds to a single amino acid binding site that was characterized by 
interaction and binding site features. In general, a similar recognition mechanism between two aaRSs can be 
assumed if they are located close to each other in this map. The more distant two aaRSs are from each other, the 
less similar their amino acid recognition. However, it has to be noted that the applied dimension reduction does 
not perfectly conserve distances. Figure 5A shows the embedding results for all aaRSs in the dataset colored 
according to the aaRS classes. A Principal Component Analysis (PCA) of the same data is given in SI Appendix 
Fig. S26. For each aaRS the average position of all data points in the embedding space was calculated and is 
shown as one-letter code label. Figure 5B shows the same data colored according to the physicochemical proper-
ties of the amino acid ligand, i.e. positive (lysine, arginine, and histidine), aromatic (phenylalanine, tyrosine, and 
tryptophan), negative (aspartic acid and glutamic acid), polar (asparagine, cysteine, glutamine, proline, serine, 
and threonine), and unpolar (glycine, alanine, isoleucine, leucine, methionine, and valine).

Figure 3.  Binding geometry and binding cavity volume analysis. (A) Binding geometry of GluRSs and AspRSs. 
Aminoacyl ligands of Class I GluRSs and Class II AspRSs in post-activation state aligned with  Fit3D57 with 
respect to their adenine substructure. The midpoints of non-covalent  interactions46 with binding site residues 
are depicted as small spheres. Blue is hydrogen bond, yellow is salt bridge, and gray is hydrophobic interaction. 
(B) Distribution of torsion angles between the phosphate and amino acid substructure of the ligand. The 
orientation of the ligand in the binding site differs significantly (Mann–Whitney U p < 0.01 ) between GluRSs 
and AspRSs. (C) The volume of the specificity-conferring moiety of the binding site, estimated with the POVME 
 algorithm58, differs significantly between Class I and Class II aaRSs (Mann-Whitney U p < 0.01).
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Class I.  In terms of amino acid binding both aaRS classes seem to employ different overall mechanism; they 
separate almost perfectly in the embedding space. Especially aromatic amino acid recognition in Class I tryp-
tophanyl-tRNA synthetases (TrpRSs) and tyrosyl-tRNA synthetases (TyrRSs) is distinct from Class II aaRSs 
and forms two outgroups in the embedding space. Remarkably, two different recognition mechanisms exist for 
TrpRSs, indicated by two clusters approximately at positions (−2.0,6.0) and (1.0,8.5) of the embedding space, 
respectively. The cluster at position (−2.0,6.0) is formed by structures from bacteria and archaea, while the cluster 
at position (1.0,8.5) is formed by eukaryotes and archaea and is in proximity to TyrRSs. Closer investigation of 
two representatives from these clusters shows two distinct forms of amino acid recognition for TrpRSs. Human 
aaRSs employ a tyrosine residue in order to bind the amine group of the indole ring, while prokaryotes employ 
different residues (SI Appendix Fig. S27). The Class I aaRSs that are closest to Class II are GluRSs and CysRSs. A 
cluster of high density is formed by Class I IleRS, MetRS, and ValRS, which handle aliphatic amino acids. This 
indicates closely related recognition mechanisms and difficult discrimination between these amino acids.

Class II.  For Class II aaRSs the recognition space is less structured. Nonetheless, clusters are formed that 
coincide with individual Class II aaRSs, e.g. a distinct recognition mechanism in AlaRSs. The aaRSs handling 
the small and polar amino acids threonine, serine, and proline are closely neighbored in the embedding space. 
Recognition of GlyRSs seems to be diverse; GlyRSs are not grouped in the embedding space. However, the rec-
ognition of glycine, which has no side chain, is limited by definition and thus the fingerprinting approach might 
fail to capture subtle recognition features. AspRSs and AsnRSs are located next to each other in the embedding 
space. Their recognition mechanisms seem to be very similar as the only difference between these two amino 
acids is the carboxylate and amide group, respectively.

Mechanisms that drive specificity.  In order to quantify the influence of different aspects of binding site evolu-
tion on amino acid recognition by aaRSs, different interaction fingerprint designs were compared against each 
other. Each design includes varying levels of information and combinations thereof: the sequence composition 
of the enzyme’s binding site (Seq), non-covalent interactions formed between side chains of the enzyme’s bind-
ing site and the amino acid ligand (Int), whether pre- or post-transfer correction (i.e. “editing”) is conducted 

Table 2.  Overview of specificity-conferring recognition mechanisms for all aaRSs grouped by aaRS class and 
 subclass15. Only interactions with side chain atoms of the amino acid ligand were included in this summary. 
HB is hydrogen bond, SB is salt bridge, HP is hydrophobic, MC is metal complex, and PS is π-stacking 
interaction. Correspondences between interactions and residues are indicated by superscript letters. Entries in 
parentheses were only observed in certain structures and are no general pattern. (*) Residue numbers are given 
according to the respective MSA (see "Methods" section). Original residue numbers can be inferred with tables 
published along with this manuscript (see Data Availability).

Subclass aaRS Recognition mechanism Involved residues (*)

Class I

IA

MetRS HP with C β Trp-319, Ile-365

IleRS HP network with aliphatic side chain Glu-567, Trp-575

LeuRS HP network with aliphatic side chain Met-50, Phe-51, Phe/Leu/Trp-562, Tyr-568, His-650

ValRS HP with side chain methyl groups Pro-41, Trp-456, Trp-495

IB

CysRS Cys-Cys-Cys-His tetrahedral MC with Zn Cys-31, Cys-215, His-240

GlnRS HBa with amide group, HPb with C β , C γ Arg-234a , Tyr-417a , Pro-236b , Phe-439b

GluRS Arg-mediated SBa coordination with carboxylate group, HPb with C γ Arg-15a , Arg-49a , Arg-236a , Tyr-218b

IC
TrpRS HPa network with indole, HBb to indole amine Leu/Tyr/Phe-94a , Val/Ile-289a , His/Glu-135b

TyrRS HBa and HPb with phenole, (PSc  with phenole) Tyr-74a,b , Asp-271a , Leu-108b , Gln-268b , (His-113c)

ID ArgRS double SBa and HBb with guanidine group, HPc  with C γ Asp/Glu-203a , Asp-414a , Tyr-410b,c

Class II

IIA

AlaRS HP with C β Val-293

GlyRS n/a n/a

HisRS HBa with imidazole group, (HPb with C β) Thr-98a , Glu/Asp-148a , Tyr-459a , (Ala-507b)

ProRS HBa and HPb with pyrrolidine ring Thr-127a , Asp/Glu-178b , Trp/Met/Phe-176b

SerRS tetrahedral MCa with Zn, HBb with hydroxyl group Glu-413a , Lys/Arg-411b , Ser-500b

ThrRS Cys-His-His-Thr tetrahedral MCa with Zn, HBb with hydroxyl group, HPc  
with methyl group Cys-346a , His-397a , His-537a , Arg-538b , Thr-507c

IIB

AspRS SB coordination with carboxylate group Lys-267, Arg-661, (His-261), (His-262)

AsnRS HB with amide group Glu-233, Arg-377

LysRS HBa with side chain amino group, HPb with C δ Tyr-283a , Glu-509a , Tyr/Phe-507b

IIC PheRS sandwich PSa and HPb with phenyl group Phe-520a , Phe/Tyr-522a , Thr/Val-523b , Ala-578b

n/a PylRS HBa and HPb with pyrroline group, HBc  with hydroxyl group and side chain 
amine group, HPd with C δ

Tyr-208a , Leu-126b , Tyr-127b , Asn-167c  , Gly-243c  , Ala/Val-225d

n/a SepRS (backbone) HBa network, SBb with phosphate group Met-25a 8, Thr-259a , His-257b , Ser-302b , Ser-304b , Asn-396b
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(Ed), and the overall volume of the enzyme’s binding cavity (Vol). To assess the segregation power of each fin-
gerprint variant, the mean silhouette  coefficient62, a quantification for the error in clustering methods, over all 

Figure 4.  Interaction patterns of AlaRS. (A) Sequence  logo59 of representative sequences for AlaRSs. Non-
covalent interactions with the amino acid ligand occurring at certain positions are indicated by colored circles. 
Filled circles are interactions with the side chain atoms, while hollow circles are interactions with any of the 
backbone atoms of the amino acid ligand. Blue is hydrogen bond, yellow is salt bridge, gray is hydrophobic 
interaction. (B) Depiction of interactions in the binding site (blue stick model) of an AlaRS from Escherichia 
coli (PDB:3hxz chain A) with its ligand (orange stick model). Here, hydrogen bonds (solid blue lines) and 
hydrophobic interactions (dashed gray lines) are established. The sequence positions of the interacting residues 
are given in accordance to the MSA (black) as well as the original structure (red). Figure created with  PyMol60. 
Double bonds are indicated by parallel line segments, aromatic bonds by circular dashed lines.
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data points was calculated. This score allows to assess to which extent the recognition of one aaRS differs from 
other aaRSs and how similar it is within its own group. Perfect discrimination between all amino acids would 
give a value close to one, while a totally random assignment corresponds to a value of zero. Negative values indi-
cate that the recognition of a different aaRS is rated to be more similar than the recognition of the same aaRS. 
Figure 6 shows the results of this comparison. When using fingerprints describing the sequence composition of 
the enzyme’s binding site (Seqsim ), the mean silhouette coefficient over all samples is −0.0510, which indicates 
many overlapping data points and unspecific recognition. By including non-covalent interactions (Seq, Int) 
the value increases to 0.1361. If pre- or post-transfer correction mechanisms are considered (Seq, Int, Ed), the 
silhouette coefficient improves further to 0.2731. Adding information about the binding cavity volume (Seq, Int, 
Ed, Vol) slightly increases the quality of the embedding to 0.2757. The silhouette coefficients for error correction 
and volume-based fingerprints were calculated as baseline comparison. If only pre- or post-transfer correction 
mechanisms (Ed) are considered the mean silhouette coefficient amounts to −0.3027. For binding cavity volume 
(Vol) the mean silhouette coefficient is −0.4682.

Relation to physicochemical properties of the ligands. In order to investigate whether the fingerprinting approach 
is a simple encoding of the physicochemical properties of the amino acids, the results were related to experimen-

Figure 5.  Recognition space analysis of all aaRSs. (A)  Embedding61 space of interaction fingerprints for all 
aaRS structures in the dataset. Scaling is in arbitrary units. The data points are colored according to the aaRS 
class. One letter code labels are given for each aaRS based on the averaged coordinates in the embedding space. 
An asterisk indicates the non-standard amino acids phosphoserine (J*) and pyrrolysine (O*). (B) Embedding 
space of interaction fingerprints for all aaRS structures in the dataset except phosphoserine and pyrrolysine. 
Scaling is in arbitrary units. One-letter codes of amino acid ligands are used to identify each aaRS. Every data 
point represents an individual protein-ligand complex. The color of the data points encodes the physicochemical 
 properties49 of the ligand.

Figure 6.  Comparison of different fingerprint designs that include the sequence composition of the enzyme’s 
binding site (Seq), non-covalent interactions formed between side chains of the enzyme’s binding site and the 
amino acid ligand (Int), pre- or post-transfer correction (i.e. “editing”) mechanisms (Ed), and volume of the 
enzyme’s binding cavity (Vol). Simple sequence-based fingerprints (Seqsim ) are a 20-dimensional representation 
of binding site composition. The line plot shows the silhouette  coefficient62 for each embedding. Points represent 
mean values, error bars are calculated based on all silhouette coefficients for each data point.
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tally determined phase transfer free energies for the side chains of amino acids from water ( �Gw>c ) and vapor 
( �Gw>c ) to  cyclohexane3,63. These energies are descriptors for the size and polarity of amino acid side chains and 
underlie both, the rules of protein folding and the genetic  code64. The Spearman’s rank correlation between pair-
wise distances for each aaRS in the recognition space and physicochemical property space is weak with ρ=0.2564 
and p< 0.01 (see SI Appendix Fig. S28). This indicates that the fingerprinting approach used in this study is a true 
high-dimensional representation of the complex binding mechanisms of amino acid recognition in aaRSs. This 
assumption is supported by a PCA (SI Appendix Fig. S26) of the fingerprint data, where the first two principal 
components account for only 9.24% and 8.44% of the covered variance, respectively.

Discussion
The correct recognition of individual amino acids is a key determinant for evolutionary fitness of aaRSs and 
considered to be one of the major determinants for the closure of the genetic  code10. The results of this study 
emphasize the multitude of mechanisms that lead to the identification of the correct amino acid ligand in the 
binding sites of aaRSs. Based on available protein structure data, a thorough characterization of binding site 
features and interaction patterns allowed to pinpoint the most important drivers for the correct mapping of the 
genetic code. The main findings of this analysis can be summarized as follows: (i) Class I and Class II aaRSs 
employ different overall strategies for amino acid recognition. (ii) Interaction patterns and binding site composi-
tion are the most important drivers to mediate specificity. However, very similar amino acids require additional 
selectivity through steric effects or editing mechanisms. (iii) The analysis of interaction fingerprints suggests 
that error-free recognition is a delicate task demanding a complex interplay between binding site composition, 
interaction patterns, editing mechanisms, and steric effects. The results point towards a gradual diversification 
of amino acid recognition and, hence, a gradual extension of the genetic code.

Genetic code formation.  We propose that the ancient aaRS binding sites might have formed the struc-
tural basis of the genetic code on the protein side. The exploration of stereochemical possibilities in the binding 
sites of aaRSs was likely to be vital for a stable and successful integration of amino acids into the genetic code. For 
the case of an RNA world, nucleotide sequences that bind specific amino acids were already  suggested65. How-
ever, the limited conformational and catalytic repertoire of RNA  molecules66 is an underestimated factor. The 
amino acid binding sites of ancient aaRS precursors could have created a much broader recognition space, which 
was gradually gaining more complexity upon the addition of new amino acids to the translational system. Com-
bined with the findings of our previous structural  analyses43, a modularity may be proposed for the substrate 
binding in aaRSs. This modularity allowed to re-use recognition patterns across different aaRSs, yet achieving 
a sufficient separation of the amino acid entities. ATP fixation differs substantially between the aaRS classes, 
implemented as the Backbone Brackets for Class I and the Arginine Tweezers for Class II. Binding of the amino 
acids still shows a general trend to employ different kinds of interaction for the two classes. Nonetheless, recog-
nition of each amino acid is realized less class-specific, but more determined on slight differences between this 
highly specific ligand part. We find these considerations being compatible to the idea of sterochemically driven 
genetic code  formation39 and support the hypothesis that peptides and RNA coexisted and complemented each 
other from the very  beginning32,33,66,67.

Generation of orthologous aaRS·tRNA pairs. According to our analysis and the representation of 
binding site features in a high-dimensional vector space, the recognition space of aaRSs seems to be not yet 
fully explored, i.e. there are “blank areas” (Fig. 5). Whether these spots are tangible to the enzymes by binding 
site evolution can only be speculated. However, engineering aaRS·tRNA pairs in order to create an artificially 
extended genetic and subsequently to generate novel biopolymers is of high  interest68,69. Beside the requirement 
of new codons and engineered ribosomes with broader substrate compatibility, the choice of an appropriate 
aaRSs·tRNA pair is of great importance. The major goal at the aaRS level is hereby to engineer specificity towards 
the new substrate but not to interfere with canonical aaRSs. According to our analysis there are several interest-
ing candidates which are separated from other aaRSs in terms of their amino acid recognition as described by 
the high-dimensional fingerprints (see Fig. 5), namely bacterial TrpRSs, AlaRSs, HisRSs, GlnRSs, and LeuRSs. 
These aaRSs, especially bacterial TrpRSs (SI Appendix Fig. S27), form distinct clusters in the recognition space 
analysis and thus might be interesting targets for directed evolution of binding sites. TrpRSs were already suc-
cessfully used to accomplish this  goal70. We envision that an approach similar to the one presented in this study, 
might be helpful to estimate the success for generating novel aaRSs binding sites in silico. The characterization 
of key interactions for each aaRS (SI Appendix Fig. S4–S24) provides a valuable resource for predicting which 
mutations in the binding site are expected to alter specificity.

Coupling between tRNA and amino acid recognition. The specific detection of the cognate amino 
acid by aaRSs investigated here is only part of the whole reaction. aaRSs need to discriminate the tRNA molecule 
as well, to ensure correct coupling of amino acid and tRNA. This happens based on the anticodon and the accep-
tor stem of the tRNA, being recognized by the aaRS anticodon binding domain and the catalytic domain, respec-
tively. Mischarged tRNAs due to failed cognate tRNA detection can hardly be corrected by the respective aaRS, 
but mistranslation may still be avoided by cross-editing of the cognate  aaRS71. The evolutionary  older72 acceptor 
stem is highly necessary for specificity, whereas tRNAs are still correctly detected when the evolutionary younger 
anticodon information is  masked73. Additionally, certain informative nucleotide motifs in the tRNA are relevant 
for the aaRS to couple the cognate tRNA and amino acid, differing only in as few as one position between the 
20  types15,73,74. These specific discrimination are thought to have been incorporated and extended over time as 
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new amino acids joined the genetic  code75. Combined with our results on amino acid recognition, it is therefore 
conceivable that aaRS specificity towards the cognate amino acid and tRNA developed simultaneously.

Class duality extends possibilities.  The aaRS class duality allowed to broaden the amino acid recogni-
tion space significantly. In general, the recognition of amino acids with low side chain complexity seems to be 
complemented by allosteric interactions and cannot be exclusively implemented by configuring side chains. 
Although the volumes of Class I and Class II binding sites differ significantly, they are probably not the major 
determinants for amino acid selectivity. In general, Class I aaRSs handle most of the hydrophobic and larger 
amino  acids3 and thus the binding site volume of Class I aaRSs is expected to match the volumes of their larger 
ligands. Nonetheless, binding site volume and geometry may act as additional layers of selectivity. An example 
are the two negatively charged amino acids glutamic acid and aspartic acid, handled by a Class I and Class II 
aaRS, respectively. In this case, overall interactions are highly similar but binding geometry and binding site 
volume is significantly different. Both ligands are attacked from the opposite  side76 as highlighted by significantly 
different conformations (Fig. 3B). There is evidence that both amino acids were among the first to exist in the 
prebiotic  context37,77–81. It is conceivable that the discrimination between glutamic and aspartic acid was based 
on tertiary contacts between secondary structures elements and size selectivity rather than on specific side chain 
 interactions82. The recent identification of a protein folding  motif83 strengthens this assumption. This is further 
supported by the observation that ancient proteins, based on a limited set of amino acids, were still capable to 
exhibit secondary  structures81,84,85. One canonly speculate whether a simultaneous emergence of two different 
aaRS classes and secondary structure formation allowed to incorporate these early – but highly similar – amino 
acids into the genetic code. An interesting hypothesis for the existence of two aaRS classes describes that ances-
tral Class I and II aaRS paired together with a tRNA molecule, contacting it from the opposite site to form a 
ternary complex. These pairs can be traced to belong to the now known aaRS  subclasses86. This coincides with 
GluRS and AspRS, belonging to subclass Ib and IIb, respectively. The distribution of the aaRSs in Fig. 5 might 
support this idea of the development of two symmetrical classes as well, since the proposed  pairs86 are separated 
from each other. According to the biochemical pathway  hypothesis77, GluRS and AspRS might have been the 
first Class I and Class II representatives, with other aaRSs evolving from  them77,87. However, the decreased usage 
of aspartic acid and the enrichment of glutamic acid in modern species, compared to the LUCA, points towards 
a different  direction88. According to these usage frequencies, aspartic acid was incorporated into the genetic code 
prior to glutamic acid. This temporal order was equally concluded by the evaluation of various criteria to derive 
a consensus order of amino acid  appearance89.

Glutamine and asparagine followed glutamic acid and aspartic acid. Glutamine and asparagine 
are chemically closely related to glutamic and aspartic acid, respectively. It is likely that  GlnRSs6 and  AsnRSs7 
mutually co-evolved from the evolutionary old GluRSs and AspRSs through recent gene duplication and were 
distributed via horizontal gene transfer (HGT)15, 90. A theory for this fast change in recognition was recently 
proposed by Carter et al.91, according to which the HGT resulted in distinct clades in the phylogenetic tree of 
aaRS, distinguishing an aaRS like GlnRS strictly from the others. This resulted in a rapid change of specific-
ity towards the amino acid ligand. In contrast, older aaRSs did not go through HGT, allowing their sequences 
to “wander” more during evolution, leading to clades which are not as clearly separated from each other and 
therefore inferior in discriminating specific amino  acids91. Although the ligands of GluRS and GlnRS are rather 
similar, interaction patterns and binding site compositions differ between these two enzymes. These differences 
coincide with the analysis of the recognition space (Fig. 5), where GluRSs and GlnRSs are not neighbored in 
the embedding. Hence, they evolved to distinguish between these amino acids without editing  mechanisms92 
or the exploitation of the negative charge of glutamic  acid93,94. The discrimination of glutamine and glutamic 
acid by GlnRS cannot be attributed entirely to the composition of the binding site; changing the specificity from 
glutamine and glutamic acid could not be achieved by mutating only first order binding site  residues95. This 
emphasizes the role of subtler interactions and allosteric effects within the catalytic domain as it was shown to 
be the case for  TrpRS96. In contrast to the observed differences between GlnRS and GluRS, AspRS and AsnRS 
are directly neighbored in the embedding space and share a greater similarity in their recognition mechanism. 
However, as for GlnRS and GluRS, the discrimination between aspartic acid and asparagine is not entirely driven 
by specific interactions with binding site residues. Correct recognition depends on a water molecule that forms 
water-assisted hydrogen bonding between a binding site leucine in AsnRS and the amide group of the activated 
asparagine. Additionally, specificity of AsnRS to discriminate asparagine against aspartic acid is supported by 
two water molecules, forming the binding pocket to perfectly fit the asparagine side  chain48. Although such indi-
rect aspects may not be detected with our interaction-based investigation of static structures, they still contribute 
to specificity. The vicinity in the recognition space might be due to the limitation of interaction data, since water 
bridges were excluded from our analyses. Multiple aaRS structures were not determined with co-crystallized 
water molecules, making a detection with PLIP impossible. To avoid an overall bias due to this imbalance, water-
mediated interactions were not considered during analysis. We conclude that for both Class I GlnRS/GluRS and 
Class II AsnRS/AspRS, the role of allosteric effects and other subtle interactions should not be underestimated.

Distinct recognition of arginine and lysine. Another interesting example are the two positively charged 
amino acids lysine and arginine. Interaction data suggests two unrelated ways to achieve ligand recognition in 
Class II LysRSs and Class I ArgRS, i.e. the two enzymes are well separated in the embedding space. The poor 
editing capabilities for LysRS regarding  arginine97 might have required a good separation of the two recognition 
mechanisms. Even if a relation of ArgRSs to aaRSs of hydrophobic amino acids was  proposed98, a separate sub-
class grouping for  ArgRSs15 seems to be reasonable and is in accordance with the observed data; the recognition 
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mechanism differs substantially from the hydrophobic amino acids. Furthermore, based on the consensus of all 
analyzed ArgRS structures, the characteristic Class I HIGH  motif4 seems to play an important role for stabiliza-
tion of the arginine ligand in pre-activation state (see SI Appendix Fig. S4). For both histidine residues of the 
HIGH motif highly conserved salt bridges are observed that bind to the carboxyl group of the ligand.

Glycine recognition is not interaction-driven.  Based on interaction data, the recognition of the small-
est amino acid glycine seems to be rather unspecific; a large spread in the embedding space can be observed for 
individual protein-ligand complexes of GlyRS. This is to be expected as GlyRS is known to maintain its speci-
ficity not due to interactions with glycine – it has no side chain to interact with – but rather due to active site 
geometry that blocks larger amino  acids10, 99.

Alanine recognition is crucial.  Alanine is the second smallest amino acid with only a single heavy side 
chain atom. The idiosyncratic architecture of AlaRS is different from other Class II  aaRSs100. Still, the confusion 
with glycine and  serine55, or non-proteinogenic amino  acids8, poses a challenge for correct recognition of ala-
nine and a loss of specificity is associated with severe disease  outcomes101. The recognition mechanism in AlaRSs 
seems to differ substantially from other Class II aaRSs (see Fig. 5), indicating evolutionary endeavor to develop 
a unique recognition mechanism.

Discrimination of hydrophobic amino acids requires editing.  The hydrophobic amino acids isoleu-
cine, leucine, valine, and methionine likely entered the genetic code at the same  time20,37,98. The highly similar 
interaction patterns for IleRS, ValRS, and MetRS substantiate this assumption. Due to their difficult discrimina-
tion, editing functionality is  key5,56,92,102,103 for these aaRSs.

Tryptophan recognition suggests late addition to the genetic code. The emergence of TrpRSs 
and TyrRSs isconsidered to have happened at a later stage of evolution. The two aaRSs are likely to be of common 
 origin42,104 and constitute their own subclass, which is supported by sequence and structure  studies15,18,19,105,106. 
PheRS supposedly evolved from the same precursor as TrpRS and  TyrRS21. In general, TrpRSs and TyrRSs sepa-
rate well from other aaRSs in the recognition space, which is likely due to the unique utilization of π-stacking 
interactions with binding site residues. Beside specific interactions in the binding site, allosteric effects and inter-
domain  cooperativity107,108 are drivers for TrpRS specificity. Furthermore, mutations in the dimerization inter-
face of TrpRSs were shown to reduce  specificity96. Remarkably, two distinct ways of recognition are apparent for 
TrpRSs in bacteria and eukaryotes. These differences support the previous described separation of eukaryotic 
TrpRSs and TyrRSs from their prokaryotic  counterparts109 and late addition of these amino acids to the genetic 
 code110. However, structures from archaea do not follow this pattern and feature both recognition variants.

Methods
Data acquisition. The dataset from our last  study43 served as the basis for all analysis. As all structures 
in the dataset are annotated with ligand information, only entries containing ligands relevant for amino acid 
recognition were considered, i.e. they bind to the specificity-conferring moiety of the binding site (see Fig. 1). 
Every protein chain of the entry was considered that: (i) comprises a catalytic aaRS domain, (ii) contains a co-
crystallized specificity-relevant ligand in the active site, and (iii) the ligand must contain an amino acid substruc-
ture. Filtering of the data resulted in 189 (235) structures for Class I (Class II) aaRSs that contain ligands with 
relevance for specificity. The number of structures in respect of the pre- or post-activation state of the catalyzed 
reaction is shown in SI Appendix Fig. S3. Furthermore, sequences of the dataset entries were clustered using 
single-linkage clustering with a sequence identity cutoff of 95% according to a global Needleman-Wunsch111 
alignment with BLOSUM62 substitution matrix computed with  BioJava112. Representative chains for each clus-
ter were selected, preferring wild type and high-quality structures. In total, 47 (54) protein chains were selected 
to be representatives for Class I (Class II) aaRSs. The dataset covers structures of all known aaRSs from species 
across all kingdoms of life (SI Appendix Fig. S1).

Mapping of sequence positions. Amino acid sequences were derived from the set of representative 
structures of the respective aaRS. To allow a unified mapping of sequence positions, an MSA was computed for 
each aaRS using the T-Coffee113 Expresso pipeline. The quality of each MSA in the specificity-conferring region 
of the binding site was assessed regarding the correct mapping of the Backbone Brackets and Arginine Tweezers 
structural  motifs43, and the conservation of the respective sequence signature  motifs4,22. All MSAs preserved 
the considered regions and passed the quality checks. The sequence positions for each aaRS were then unified 
according to the resulting MSA in order to investigate conserved interaction patterns. For this purpose the cus-
tom script “MSA PDB Renumber”, available under open-source license (MIT) at githu b.com/vjhau pt, was used.

Annotation of non-covalent protein-ligand interactions. Non-covalent protein-ligand interactions 
were annotated for all entries in the dataset that contained a valid ligand using PLIP v1.3.346 with default param-
eters.

Determination of interactions relevant for specificity. Only interactions formed between the amino 
acid substructure of the ligand and binding site residues were considered for analysis. For this purpose subgraph 
isomorphism detection with the RI  algorithm50 was applied. The RI implementation of the SiNGA framework 
v0.5.0114 was used. Each amino acid scaffold was represented by a graph created from the amino acid’s SMILES 

http://github.com/vjhaupt
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string taken from  PubChem115. The full amino acid graph was modified using MolView v2.4 (available at molvi 
ew.org) in order to remove the terminal hydroxyl group, which is cleaved during the enzymatic reaction and 
must thus be ignored for subgraph matching. For each dataset entry that contained a valid ligand, the cor-
responding amino acid graph was matched against the ligand in order to identify the atoms involved in the 
formation of specificity-conferring interactions. A depiction of the workflow to determine specificity-conferring 
interactions is given in Fig. 7.

Generation of interaction fingerprints. To allow for a quantitative comparison of recognition mecha-
nisms, each protein-ligand complex was represented by a structure-invariant binary interaction fingerprint (see 
for example the paper of Salentin et al.45 about the idea of interaction fingerprinting). Different fingerprint 
designs were chosen for comparison: a simple 20-dimensional fingerprint on binding site composition and a 
500-dimensional fingerprint based on binding site composition and interaction information. The latter was fur-
ther enriched with editing and binding site volume information.

Simple binding site based fingerprints. Binary and structure-invariant fingerprints that represent binding site 
compositions (used as baseline for the comparison of different fingerprint designs, Fig. 6) were constructed as 
follows. Each residue predicted to be in contact with any specificity-relevant atom of the ligand was considered 
for fingerprint generation. A 20-dimensional binary vector was used to represent the occurrence of individual 
residue types in the binding site. For each of the interacting residues the corresponding bit was set to active. 
Hence, multiple occurrences of the same residue type were not taken into account.

Binding site and interaction‑based fingerprints. Single three-dimensional vectors of non-covalent interactions 
were encoded into a binary vector by considering the type of interaction, the interacting group in the ligand and 
the interacting amino acid residue. One such feature could be a hydrogen bond between an oxygen atom in the 
ligand and tyrosine in the protein. Each of these features is hashed to a number between 1 and 500 so that the 
resulting fingerprint has 500 bits.

Encoding of editing mechanisms and binding site volume. Information about the editing mechanisms performed 
by some aaRSs were taken from the paper of Perona and Gruic-Sovulj51 and encoded by appending a 22-dimen-
sional bit vector to the 500-dimensional fingerprint. Each active bit represents a ligand against which editing is 
performed, e.g. for structures of ThrRS the bit for serine is set. In addition to editing information the binding site 
volume, estimated with the  POVME58 algorithm, was encoded. Twelve bins were created that represent binding 
site volumes ranging from 30–270 Å 3 in steps of 20 Å 3 . For example, if a structure has a binding site volume of 
45 Å 3 the first bit was set to active. For a binding site volume of, e.g., 52 Å 3 the second bit was set to active and 
so on. The fingerprints were concatenated to contain the binding site and interaction features (500 bits), editing 
mechanisms (22 bits), and binding site volume (12 bits). The final fingerprint has a size of 534 bits.

Embedding of interaction fingerprints. To allow for a quantitative comparison of the interactions 
between individual aaRSs, the high-dimensional interaction fingerprints were embedded using UMAP version 
0.3.261. The parameters for all embeddings given in this manuscript were set as follows: |nneighbors| = 60 , 
|mindist| = 0.1 , |ncomponents| = 2 . The Jaccard distance was used to describe the dissimilarity between two 
fingerprints a and b:

(1)d(a, b) = 1−
na∧b

na + nb − na∧b

Figure 7.  The identification of specificity-conferring interactions in SerRS. For each aaRS a pattern graph is 
used to map interactions. This patterns graph resembles the amino acid without its terminal hydroxyl group 
and is matched against the full ligand with annotated interactions using subgraph isomorphism  detection50. 
The interactions formed between matched atoms and binding site residues are considered to be specificity-
conferring interactions.

http://molview.org
http://molview.org
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with na∧b being the count of active bits common between fingerprints a and b, na the number of active bits in 
fingerprint a, and nb the number of active bits in fingerprint b. This distance metric was used as input for UMAP.

Data availability
All accompanying data is made publicly available under https ://doi.org/10.5281/zenod o.35982 50. This reposi-
tory contains the MSA files of representative structures for each aaRS that were used for consistent renumbering 
as well as Excel tables to infer original sequence positions from renumbered positions for each aaRS. Rows are 
renumbered positions, columns are sequence positions of individual structures.
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