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Abstract
Rejection is a common problem after cardiac transplants leading to significant number of

adverse events and deaths, particularly in the first year of transplantation. The gold stan-

dard to identify rejection is endomyocardial biopsy. This technique is complex, cumber-

some and requires a lot of expertise in the correct interpretation of stained biopsy

sections. Traditional histopathology cannot be used actively or quickly during cardiac in-

terventions or surgery. Our objective was to develop a stain-less approach using an

emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify

different components of cardiac tissue by their chemical and molecular basis aided by

computer recognition, rather than by visual examination using optical microscopy. We

studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in

an example of complex cardiovascular pathology. We recorded data from human cardiac

transplant patients’ biopsies, used a Bayesian classification protocol and developed a vi-

sualization scheme to observe chemical differences without the need of stains or human

supervision. Using receiver operating characteristic curves, we observed probabilities of

detection greater than 95% for four out of five histological classes at 10% probability of

false alarm at the cellular level while correctly identifying samples with the hallmarks of the

immune response in all cases. The efficacy of manual examination can be significantly in-

creased by observing the inherent biochemical changes in tissues, which enables us to

achieve greater diagnostic confidence in an automated, label-free manner. We developed

a computational pathology system that gives high contrast images and seems superior to

traditional staining procedures. This study is a prelude to the development of real time in
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situ imaging systems, which can assist interventionists and surgeons actively during

procedures.

Introduction
The success of cardiac transplantation depends foremost on the immune response to the new
implant[1]. The gold standard for identifying allograft rejection is endomyocardial biopsy
(EMB)[2]. Endomyocardial biopsy section from a normal heart consists mostly of myocardium
which is unoriented and appears red-tan. The tissue section is bordered by the overlying endo-
cardium which is pearly white in appearance[3]. In case of cardiac transplant, an activation of
the immune system can cause severe inflammation which can result in transplant rejection and
eventual death of patient. Grade of acute cellular rejection, as defined by the revised ISHLT (In-
ternational Society for Heart & Lung Transplantation) heart biopsy grading scale[4] is deter-
mined by the presence of infiltrate and associated myocyte damage. Grade 0 signifies no
rejection while grade 2 (mild rejection), 3 (moderate rejection) and 4 (severe rejection) requires
assessing the number of foci of infiltrate and associated myocardium damage. Prolonged tissue
damage, which could be a result of immune attack, injury or toxins etc. may result in deposi-
tion of extracellular matrix components at the site of damage, leading to a condition termed as
fibrosis[5–7]. Such an observation of fibrosis is important in assessing myocardium damage in
case of allograft rejection. For a detailed description of histopathology associated with cardiac
allograph rejection, the readers are directed to available literature[3–5].

In routine cases of monitoring allograft reception, biopsy sections are stained and the in-
flammatory response is observed, which is predominantly lymphocytic[3]. This approach suf-
fers from inter-observer variability and an inability to quantify accuracy and confidence in data
[8,9]. The estimation variance complicates decision-making. For example, misinterpretation of
fibrosis through the sub-endocardium can give the erroneous impression of extensive fibrosis
[2] and can cause false positives. The subjective nature of histopathological assessment and the
apparent potential for errors has long been recognized and debated upon[10,11]. This has led
to development of immunohistochemistry for diagnostic purposes by evaluation of specific
biomarkers[11,12] but this technique can get affected from variations in sample preparation,
fixation procedures, antibody specificity and similar other experimental details[12]. There is a
need, therefore, to explore technologies that can make routine histopathological examinations
more accurate, consistent, facile and reliable.

As opposed to the standard practice of staining tissue with dyes or molecular imaging of
specific epitopes, the emerging technology of chemical imaging can utilize the inherent molec-
ular contrast within samples to provide histologic data. One approach in particular, infrared
(IR) spectroscopic imaging, offers strong contrast, high sensitivity and rapid data recording. It
has shown potential broadly in biomedical applications for understanding metabolomics and
molecular diagnostics[13,14]. Combined with computer algorithms, IR imaging has been used
for differentiating between diverse cell types in tissues and for detecting disease[15–17]. Several
studies related to cardiovascular systems have reported spectral analysis of tissue and disease in
terms of resulting biochemical changes. Infrared imaging has been used to study calcifications
in aortic valve[18], for characterizing heart valves [19], studying diabetes induced changes in
myocardium and vessels[20–23], for analyzing cardiac extracellular matrix (ECM) remodeling
[24]; and ECM and serum components following myocardial infarction[25–28]. While these
studies successfully demonstrate differentiation between diseased and healthy tissue via lipid
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and protein composition and collagen content, a histologic analysis consistent with existing pa-
thology practice is lacking. Characterization of atherosclerotic plaques[29–35] is a step towards
clinically-actionable information. However, a practical assay to diagnose conditions and pro-
vide actionable information is still lacking. One step in this direction is to utilize digital infor-
mation obtained from FT-IR spectroscopy and develop a classification protocol which can
assign cell identifier value to each pixel on the tissue image. Such classification systems, which
require multivariate analysis have been attempted for identification of various cell types in can-
cer but very little work is found in diseases related to heart[36,37]. Specifically in case of identi-
fication of cardiac allograft rejection, we require an automated detection system that has ability
to distinguish not only between different cell types but more importantly correctly identify
lymphocytes. Identification of lymphocytes is also critically needed as it has potential impor-
tance in assessment of many more diseases, for example, identification of tumor infiltrating
lymphocytes is also of great interest, and a recent study has sought to identify lymphocytic sig-
nature in peripheral blood samples[38]. Another study has utilized unsupervised clustering al-
gorithm to obtain impressive identification of B and T cells in a single patient sample using
infrared spectroscopy[39]. However, when analyzing multiple patient samples, accounting for
point-to-point variations in the samples and across samples is difficult via unsupervised classi-
fications, leading to reduction in accuracy. The work presented in this manuscript takes this
goal of identifying lymphocytes one step further by classifying infiltrating lymphocytes spatial-
ly in a biopsy section using supervised classification algorithms of infrared spectroscopy data.
Given the complexity and expertise required when conventional pathology is used to diagnose
transplant rejection in the heart, we used chemical imaging to see if it could provide the neces-
sary diagnoses and visualizations useful in clinical practice. We utilized differences in the infra-
red absorbance patterns among different histological classes to develop an automated system
where the digital input of IR spectroscopy data yielded a computationally colored image show-
ing different classes similar to what one would obtain using rigorous staining procedures.

Materials and Methods

Sample procurement
Written consent was obtained in all patients for study of their archived pathological specimens.
The consents were recorded and maintained securely and separately. The consent process for
this study was reviewed by the IRB at Rush University Medical Center and approved. All speci-
mens were anonymized, de-identified and no clinical or demographic information was re-
corded. Thirty five anonymized human EMB sections from ten patients, formalin fixed and
paraffin embedded were examined. The biopsies were taken using a bioptome, which is an in-
strument inserted through the internal jugular vein, and directed under fluoroscopy to be posi-
tioned in the right ventricle. The biopsies are then taken as small pieces of tissue, typically
measuring 1 mm x 1 mm x1 mm. The section thickness was 5μm. Of the thirty five sections ob-
tained; three sections had to be discarded due to damage to the sections. Out of the 10 patients
analyzed, patient 1–5 had no rejection; thus counted as control. Patient 6, 7 and 8 had moder-
ate rejection; and patient 9 and 10 had mild rejection. In current practice, it is very rare to find
samples with grade 4 severe rejection, and hence such samples could not be included in
the study.

Sample preparation
Samples were microtomed onto reflective low-emission (Low-E) glass slides for IR imaging.
These slides provide a reflective substrate for the sample in IR light but are transparent to visi-
ble light. Although when using Low-E slides, the IR beams pass through the sample twice and
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suffers from distortions in the spectrum[40,41], we have observed that standard preprocessing
and treatment of data yields good classification results without performing rigorous corrections
for distortions. Albeit using substrates like Calcium Fluoride and Barium Fluoride is preferable,
Low-E slides are inexpensive and easy to maintain, making them more practical in
clinical environment.

Prior to acquiring IR data, paraffin was removed from the samples by washing them twice
with hexane and immersion in hexane for 14 hours at room temperature with continuous stir-
ring. Removal of paraffin was evident from the reduction of paraffin-associated CH bending
peak at 1464cm-1 (Fig 1). Furthermore, the spectral features used in our analysis were extracted
from regions which are not affected by paraffin vibrational modes to ensure that any residual
paraffin did not interfere with results.

Fourier transform infrared imaging
De-paraffinized sections were imaged under mid-infrared light on the IR imaging system.
FT-IR imaging was performed using a Spotlight 400 system from Perkin Elmer. Spectra were
collected using a liquid nitrogen cooled mercury-cadmium-telluride (MCT) 16-element linear
array detector. The background was collected on a clear area of low-E slide at 4cm-1 resolution
using 120 scans for each sample. All images were acquired in reflection mode with 6.25 μm
x 6.25 μm pixel size and 4 cm-1 spectral resolution with 2cm-1 step size using a single interfer-
ometer scan with signal to noise ratio (SNR) exceeding 500:1 in all cases. Data was collected
over the mid-infrared region and truncated for storage (800cm-1 to 4000cm-1). The image reso-
lutions were nominally 6.25 μm and 25 μm. Since the samples were large, (smallest dimension
being at least 500 μm for every section) and irregularly shaped, each image was acquired by
breaking it down to 5–10 smaller rectangular regions and using raster scanning of these parts.
Each region was separately focused by the instrument to remove any error due to change in
focus and the composite image was stitched back together using ENVI-IDL 4.8(Environment
for Visualizing Images-Interactive Data Language). Processing time for a square section of
1mm X 1mm at 6.25 μm, starting with imaging and obtaining computational stain was about
2 hours. Processing time for the same section at 25 μmwas about 10 minutes. It has to be kept
in mind that this imaging was performed by sweeping through all the wavenumber bands from
4000 cm-1 to 800 cm-1 at 4 cm-1 resolution. After building the classifier, one can realize that
only a segment of this range is actually necessary for classification (discussed in results), and
thus scanning at discrete frequencies for detection can enable reduction in imaging time by
three folds or larger[42,43].

Hematoxylin and Eosin (H&E) staining
Serial sections were preserved and stained with H&E for initial determination of rejection
grade by the pathologist. In addition, after IR imaging was performed on sections, the sections
on low-E slides were stained with Hematoxylin and Eosin stains for future comparisons and
imaged using Zeiss visible microscope. All the data analysis done in this manuscript used H&E
images from same section imaged by infrared spectroscopy and not serial section.

Data analysis
Data pre-processing. Acquired data were imported in ENVI-IDL 4.8 software for analysis.

A figure annotating important IR peak assignment is shown in S1 Fig. A very comprehensive
table of band assignments of IR spectra of heart tissue is given in this study [20] which can also
be referred to. Throughout the analysis, we excluded pixels without protein-characteristic
Amide I absorbance since all cells and ECM in this tissue will contain protein (see Fig 1). This
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was done by setting a threshold of minimum absorbance value corresponding to an absorbance
of 0.30, which is at least 10-fold larger than the peak-to-peak noise in the data.

Identification of histological features (classes). With the aim of understanding spectral
differences in various components of the section and in order to build a Bayesian classifier for
automated classification of the sections, we first built a classification grid comprising of 16 sec-
tions by combining data from 16 images in a single file. The breakdown of 16 chosen sections
for classification training set was as follows: 3 sections from patient 1, 2 sections each from pa-
tient 5, 6,9,10 and 1 section each from patient 2, 3, 4, 7, and 8. Sections were chosen to suffi-
ciently represent each class, namely Myocardium, Endocardium, Fibrosis (Endocardium),
Fibrosis (Myocardium) and Lymphocytes and to provide maximum inter-patient diversity to
the training set. Remaining sections were used for validation set. The breakdown of validation
set was as follows: 2 sections each from patient 3, 4, 5, 6, 7, 8, and 9 and 1 section each from pa-
tient 1 and 10.

We then used the peak height of vibrational mode at 1236 cm-1 to see contrast between lym-
phocytes and muscle. The 1236 cm-1 peak is associated with CH2 wagging vibrations associated
with proteins [44,45]; which was found to be useful in prima facie differentiation of different
classes (see Fig 2). Five histological classes, namely, Myocardium, Endocardium, Fibrosis (En-
docardium), Fibrosis (Myocardium) and Lymphocytes were considered for our analysis. After
H&E staining of samples, regions were marked by pathologist as the above classes and this an-
notation was considered as gold standard[46]. Next, exact same regions were marked in IR im-
ages by comparison with pathologist-annotated H&E images from same sections. Care was
taken to mark only those regions which clearly belonged to a particular class as seen from H&E
images (gold standard, as described earlier [46]). This process yielded approximately 330,000
spectra for training the classification algorithm. For each of the classes, a linear two point cor-
rection across peaks of interest or specific peaks was used. The points were fixed for all spectra
in the sample. Spectra were normalized to amide I peak (1652 cm-1) to account for the varia-
tions in sample thickness[47]. We then extracted average spectra for each class, which is shown
in Fig 1.

Fig 1. Baseline corrected absorption spectra, normalized using the Amide I peak, for all five classes
of cells observed in the study. Important spectral differences observed over the fingerprint spectral region
(1500–900 cm-1) are highlighted in grey and zoomed in without offset.

doi:10.1371/journal.pone.0125183.g001

Chemical Imaging in Cardiovascular Pathology

PLOS ONE | DOI:10.1371/journal.pone.0125183 May 1, 2015 5 / 15



Bayesian classification algorithm. Our Bayesian classifier works by determining the like-
lihood that an unknown pixel belongs to a particular class by using biochemically significant
features called metric parameters defined by the user. Each of these parameters can have differ-
ent weights in the classification process depending on their ability to differentiate between clas-
ses. We used a protocol that has previously been established and validated [44,48,49]. Using
the spectral differences observed among the classes in training set (shown in Fig 1), we defined
a set of 217 parameters using four types of spectral metrics (peak height ratio, peak area to
height ratio, peak area to area ratio and center of gravity) to differentiate each class from the
others. To begin with, normalized peak heights are considered as parameters for all peaks ap-
pearing in absorbance spectrum using peak height ratio with amide I peak. Next, other quanti-
ties, peak area to height ratio, peak area to area ratio and center of gravity are defined as metric
parameters using peaks in the spectra by manual examination of the differences in spectra be-
tween classes. This gave us 217 metric parameters to analyze data with. The significance of
these metrics is to reduce data to significant quantities which is readily analyzable[44].

Use of ratios instead of absolute values also ensures that these metric definitions are inde-
pendent of variability in instrumentation and sample preparation steps. We evaluated these
metrics in terms of their ability to separate the classes by using minimum error in identification
of class and the area under the curve (AUC) for the Receiver Operating Characteristic (ROC).
We further tested the Bayesian classifier built using these parameters on an independent set of
sections to evaluate its accuracy in identification of classes. The findings are described in the
following section.

Results and Discussion

Training
Samples were imaged using IR microscopy and correlated to features in H&E images that were
marked by the pathologist’s review as the ground truth. Computerized pattern recognition of IR
imaging data from unstained EMB samples led to every tissue pixel being classified into a specif-
ic histological class. Compared to the ground truth, the resultant probability of detection at the
pixel level for the training set was quite high for lymphocytes (0.991), fibrosis-endocardium
(0.999), fibrosis-myocardium (0.997) and myocardium (0.952) and somewhat lower for endo-
cardium (0.860) with approximately 0.10 probability of false alarm (Fig 3(i)). There is a proba-
bility of confusing fibrosis with endocardium as evident from confusion matrix shown in

Fig 2. Relative intensities of peak height ratios useful in discriminating classes; examples frommetric
definitions (i) 1239cm-1 to 1652cm-1; (ii) 1204cm-1 to 1236cm-1; (iii) 1027cm-1 to 1543cm-1.

doi:10.1371/journal.pone.0125183.g002
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Table 1. As can be seen, 48.5% of the tissue identified as endocardium by the pathologist was
classified as fibrosis in myocardium and 9.1% of the endocardium was identified as fibrosis in
endocardium. It is well known that the nature and structure of endocardium is not well visual-
ized with conventional pathological methods. This may be due to endocardial damage caused
by the bioptome and the fact that endocardium is a very thin layer that is easily washed away
during preparation. The lower accuracy in this data set also arises from a limited number of en-
docardium pixels, as partly mitigated by having higher number of pixels in validation set (S1
Table). The issue of endocardium damage during biopsy is unfortunately out of our control.
The nature of the biopsy is such that as the bioptome is used along the endocardial surface of
the right ventricle, there is inherent damage to the endocardium. This coupled with the fact that
the endocardium is a thin, evanescent layer that is easily damaged/disturbed makes endocardial
evaluation difficult. Therefore, we have not discussed any precautions for sample preparation. It
is important to remember that findings pathognomonic of transplant rejection are not mani-
fested in the endocardium but in the sub-endocardial tissue and in the myocardium. Since our
focus here was the identification of transplant rejection, future efforts can be undertaken to re-
fine the data and potentially improve efficiency by better capability instruments for enhanced
spatial resolution and faster imaging time. Focused efforts to collect specific tissue components,
such as endocardium would give us sample size large enough to accurately characterize
these components.

Fig 3. Receiver operating characteristic (ROC) curves demonstrating the accuracy of the
classification algorithm (i) Training set at 6.25 μm x 6.25 μmpixel size; (ii) Validation set at 6.25 μmx
6.25 μmpixel size; (iii) Validation set at 25 μm x 25 μmpixel size.

doi:10.1371/journal.pone.0125183.g003

Table 1. Confusion matrix for classification for validation data and training data (in parentheses).

Ground Truth(Percentage)

Class Endocardium Myocardium Lymphocyte Fibrosis myocardium Fibrosis endocardium

Unclassified 3.10 2.25 1.68 1.87 2.21

(10.90) (4.80) (0.90) (0.30) (0.10)

Endocardium 12.74 0.08 0.00 1.28 0.55

(12.30) (0.20) (0.00) (0.30) (0.80)

Myocardium 6.42 95.91 0.03 10.11 0.02

(18.90) (94.50) (0.50) (0.40) (0.00)

Lymphocyte 0.19 0.02 82.82 4.74 0.00

(0.40) (0.00) (85.70) (13.20) (0.00)

Fibrosis myocardium 52.91 1.54 15.48 81.49 3.53

(48.50) (0.50) (12.90) (84.80) (19.10)

Fibrosis endocardium 24.65 0.20 0.00 0.49 93.69

(9.10) (0.00) (0.00) (1.10) (80.00)

Total 100 100 100 100 100

doi:10.1371/journal.pone.0125183.t001
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Validation
We performed validation using an independent set of 16 samples with approximately 300,000
pixels. Uniformly high probability of detection with low probability of false alarm (0.13) was
found (Fig 3(ii)). Comparison of our technique with H&E staining is shown in Fig 4; and com-
parison from different grades of rejection has been shown for boxed areas from Fig 4 in S2 Fig.
Probability of detection at 10% probability of false alarm is provided in Table 2. While achiev-
ing significant accuracy, our approach is likely limited by mixed pixels (particularly in regions
of lymphocyte infiltration; which is strongly associated with myocyte necrosis and fibrosis) and
inclusion of boundary pixels. This limitation is also reflected in identification of endocardium
for which we do not have comparatively good representation of pure pixels. Endocardium was
not easily visible in the pathology specimens either. While pixel level accuracy may be im-
proved, we achieved accurate identification of the key histopathologic features for decision-
making in every sample. Hence, we sought to examine if accurate information could be
achieved by speeding up the data acquisition process. Scanning at coarser resolutions can not
only make chemical imaging real time but may also lead to higher accuracy due to the higher

Fig 4. Biopsy section array of 16 samples used for validation. Top panel: (i) H&E stained image of
sections (scale bar represents 500μm); Asterisk marked samples showed no rejection in pathologist review.
(ii) absorbance at 1236 cm-1 demonstrating differences between samples and different cell types; (iii)
Classified IR image showing color coded pixels indicating different pathological classes; Bottom panel:
Magnified view of one sample from validation set with matched lower spatial resolution IR image. (iv) H&E
stained image of section; (v) Classified 6.25 μm x 6.25 μm pixel size IR image; (vi) Classified 25 μm x 25 μm
pixel image.

doi:10.1371/journal.pone.0125183.g004

Table 2. Probability of detection at 10% probability of false alarm.

Training Validation 6.25 μm Validation 25μm

Lymphocyte 99.1 98.3 72.9

Fibrosis endocardium 99.9 95.7 93.3

Fibrosis myocardium 99.7 95.9 62

Endocardium 86 85.8 48.4

Myocardium 95.2 97.5 88.7

doi:10.1371/journal.pone.0125183.t002
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signal to noise ratio of the detector[50]. Hence, we also collected data at a larger pixel size of
25μm x 25μm (at least 16-fold faster) to evaluate the applicability of the procedure at lower res-
olution. As seen from Fig 3(iii) and Fig 4, most classes are identified well, but the confidence in
data reduces due to larger pixel size. This leads to lower sensitivity which is typical of tradeoff
between time required to take image and the resolution achieved[48]. We anticipate that a
multi-scale scanning algorithm will be practical when translated to use. The tissue could be
scanned in minutes at low resolution and specific areas can be scanned at higher resolution for
better accuracy. It is notable that the molecular basis of our histologic approach provides this
flexibility, and is truly unique to this technology as we have deployed. In contrast, morphologic
analysis of conventional stained tissue is specific to the resolution and is very unlikely to yield
similar results. The ability to identify areas of concern with coarse resolution and hone into
those areas with high resolution maybe analogous to scanning at low power and then searching
the involved areas with high power microscopy. However, the FT-IR imaging based approach
is significantly quicker and may be automated quite easily. Presence of lymphocytes in endo-
cardium as well as in nearby myocardium can be checked by looking up neighbors of pixels
using simple algorithms; which could also enable us to quantitate foci of infiltrations used for
grading rejection. Future efforts can be undertaken to incorporate these ideas and making IR
based detection a practical technique by using focal plane array (FPA) detectors for high spatial
resolution at faster time frames by utilizing noise reduction[51] techniques.

Infrared imaging to identify chemical changes in tissue
According to the ISHLT criteria[4], for the sample to be qualified as grade zero (no rejection),
there should be no evidence of mononuclear inflammation or myocyte damage. We observed
that in all grade 0 cases, there were negligible lymphocyte pixels, and even the lymphocytes
that were found were not encroaching in the myocardium. Thus, using IR spectroscopy, it is
very straightforward to differentiate between positive (rejected) and negative (not rejected)
samples. In addition to histologic identification, biochemical changes undergone by tissues can
also be captured using chemical imaging. Since our hypothesis was that the classifier could cap-
ture important tissue changes efficiently, we have related specific infrared absorption patterns
that we identified from the classifier with previous observations. During fibrosis, ECM compo-
nents (majorly collagen) are accumulated in the myocardium[52] which is apparent by higher
infrared absorption intensity of amide III peak in fibrotic regions[53]. Our classifier corre-
spondingly identified the absorbance at 1236 cm-1 (high contribution from collagen
[15,45,49,54]) as an important parameter(Tables 3 and 4). Peak due to absorbance at 1236 cm-

1 / 1239 cm-1 is due to the CH2 wagging vibrations associated with proteins and is known as
amide III peak. However, for the sample being analyzed here, owing to empirical evidences
(Fig 2(i)) and observations from past literature discussed above, it can be inferred that major
contribution to this peak is coming from collagen. With peaks at 1204 cm-1 and 1239 cm-1 re-
flecting the characteristic vibrational modes of collagen proteins-amide III[55] (Fig 2 (i)), a
significantly low level was observed in healthy myocardium. Absorbance (1027 cm-1 to
1032 cm-1) associated with glycogen[56] was decreased at sites of fibrosis (Fig 2(iii)) as previ-
ously noted[57]. Hence, this multivariate approach, utilizing multiple biochemical characteris-
tics of tissues, is effective in identifying multiple pathologic conditions.

Together, these results indicate that both the spatial and chemical information can be uti-
lized to identify tissue changes during immune response to the allograft. While we use cardiac
allograft rejection as a proof of concept, chemical imaging can be expanded to identify addi-
tional cardiac pathologic conditions. Studies show that the false negative rate in identification
of myocarditis can be up to 45% due to errors in sampling and sensitivity[58]. Differentiation
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of lymphocytes from other normal constituents like mast cells, fibroblast nuclei, pericytes and
endothelial cells is difficult via visual pathological examination[59]. It has already been shown
that IR spectroscopy can identify different cell types[16,60,61]. However, it has been very diffi-
cult to classify lymphocytes using earlier supervised classifiers due to low density of lympho-
cytes in other tissues, and their small size, resulting in problems of mixed pixels at current
spatial resolution. It is possible to quantify lymphocyte infiltration in tissue in terms of number
of pixels per sample. S1 Table shows the number of pixels marked for each class using gold
standard. About 83% of these were correctly identified as lymphocytes by our classifier. This
data can be combined with quantification of associated myocyte damage in order to computa-
tionally assess the grade of rejection. We are confident that using high definition IR imaging
systems[62,63] would enable us to differentiate between even more cell types, making this tech-
nique very useful for pathology applications in a variety of conditions.

While manual examination would require presence of lymphocytes in the section (resulting
in error due to sampling as well as need to sample multiple times from patient), infrared spec-
troscopy can potentially detect changes undergone by the tissue which are indicative of trans-
plant rejection even when lymphocytes are not picked in sampling, reducing the error rates,
false negatives and avoiding significant trauma to the patient tissue. Apart from chemical infor-
mation associated with tissues, tissues digitally stained with IR imaging approach are capable
of providing a much better contrast and easy quantification of lymphocytes which can greatly
reduce the time and effort spent per section by the pathologist.

This report stresses the capabilities of this approach in a complex condition such as cardiac
transplant rejection, which traditionally needs careful tissue preparation, multiple stains and
review by experienced cardiac pathologists to provide accurate diagnoses. Combined with the
speed of the data acquisition and emerging technologies for high speed IR microscopy[42,43],
we believe this study opens the path to more rapid tissue assessment much closer to the patient
than previously possible. Eventually, intra-operative and in vivo imaging can be attempted
based on chemical molecular imaging. This can be made possible by touch probe based fiber

Table 3. List of metric definitions found useful to differentiate classes- peak height ratio; all values are in wavenumber (cm-1).

Peak Height Ratio Peak Height Ratio Peak Height Ratio

Peak 1 Peak 2 Peak 1 Peak 2 Peak 1 Peak 2

1389 1236 3315 1236 1204 1236

1027 1065 1163 1236 1239 1652

1239 1543 1163 1065 1236 1543

1389 1452 1452 1543 1236 3300

1239 3300 1389 1652 1389 3300

1389 1065 1452 1236 1027 1543

1405 1236 1155 1452 1032 1236

doi:10.1371/journal.pone.0125183.t003

Table 4. List of metric definitions found useful to differentiate classes- peak area to height ratio and center of gravity; all values are in wavenumber
(cm-1).

Peak area to peak height ratio Center of gravity

Left area bound Right area bound Peak position Left bound Right bound CG 1 CG 2

1482 1594 1652 1184 1302 1188 1216

1424 1480 1546 1482 1726 1482 1594

1184 1300 1652 984 1144 1016 1048

doi:10.1371/journal.pone.0125183.t004
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optic technology on which work is currently under progress. Multiple studies show that spec-
tral in-vivo analysis is promising using probe based instruments and have previously been ap-
plied to study atherosclerosis [64–66] and to detect cancer[67,68]. Using attenuated total
reflectance (ATR) infrared imaging, mid-infrared light can be used to detect the ailment. More-
over, since this study has already identified specific molecular peaks that can be used for detec-
tion, we can now build instruments that operate on discrete frequencies to give even faster
detection systems. This is different from near-infrared imaging, which has many pitfalls in
making accurate diagnoses[69].

Although the present study has shown excellent promise in terms of on-site detection, we
are currently limited by spatial resolution and speed of data acquisition and processing. Spatial
resolution used in this study can identify single lymphocytes larger than 10 μm, and lympho-
cytes smaller than this can be identified in large enough cluster. While the current study can
successfully identify grade 0 through grade 4, in order to accurately identify grade 2(mild rejec-
tion), one would require much better spatial resolution to identify single lymphocytes. This
task can be accomplished in near future using high definition imaging systems which have spa-
tial resolution of the order of single micron, reducing the problem of boundary pixels and en-
abling us to identify every cell more accurately in tissue. Another challenge faced by
pathologists is to identify whether the rejection is cellular or antibody mediated. Good spatial
resolution is necessary to identify individual cells and to classify cells that are present in low
density in tissues, for example macrophages, basophils; or bacterial cells in case of pathogen in-
fections. As the project expands, we hope to be able to identify many other cell populations in
the region such as activated mononuclear cells and pathogens; making spectroscopic analysis
of specific cells possible. This could in turn enable us to understand other pathological mecha-
nisms of disease development. While we were limited by speed in terms of imaging and data
processing in this study, progress is now being made to reduce data acquisition time by mani-
folds using discrete infrared spectroscopy [42,43]. The trade-off between the resolution and
time can also be improved by the use of FPA detectors, using which large areas can be mea-
sured at higher resolutions at faster time frames, and which are becoming more and more ame-
nable. These advances further go on to show that IR imaging provides a potential approach for
next generation histology procedures that are highly precise and accurate while the automation
can lead to better decision making closer to the patient. This could be done within a very short
period of time; thereby reducing the work load on pathologist and bringing smart detection de-
vices to surgery suites.

Conclusion
The chemical molecular imaging approach offers numerous advantages over traditional sample
examination techniques, providing a new avenue for clinical diagnosis. Chemical information,
along with morphologic and architectural tissue information provides for a comprehensive
analysis of tissue. Computer algorithms allow us to dispense with staining and pathological rec-
ognition is aided by color coded images. In this study, we have shown an example of how
chemical imaging can be applied in cardiac tissues to achieve automated pathology while pro-
viding a high probability of detection and low probability of false alarm. We identified specific
spectral characteristics which related to the biochemical changes undergone by the tissue
which could be used for chemical detection of rejection. In future, we can make this even more
extensive by differentiating between acute cellular rejection and Quilty lesions. This is the first
study to show that the chemical molecular imaging approach can be used to diagnose complex
cardiac conditions, with results equivalent to and probably superior to conventional pathology.
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This technique would also be useful in identifying other cell populations that can be present
in cardiovascular environment such as activated immune cells, antibody mediated rejection
and bacterial infections to name a few. It is also possible to integrate this digital data with pa-
tient history to provide an even more nuanced scientific assessment of disease and prognosis.
The idea here is to kick start the development of an approach which can give an all-encompass-
ing rapid diagnosis at the site of collection of sample without stains and more importantly, as-
sist during surgery for identification of diseased and problem areas in the heart & vasculature.

Supporting Information
S1 Fig. IR peak assignments for tissue.
(TIF)

S2 Fig. Computationally stained infrared image compared with H&E image at various
grades of rejection. Arrows show lymphocytic infiltration. Top panel: No rejection; Middle
panel: Mild rejection; Bottom panel: Moderate rejection.
(TIF)

S1 Table. Number of pixels for each class in training and validation sets.
(XLS)
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