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Methylphenidate and other psychostimulants, originally developed to treat attention 
deficit-hyperactivity disorder, are increasingly abused by healthy adolescents and adults 
seeking an advantage in scholastic performance and work productivity. However, how 
these drugs may affect cognitive performance, especially in the young brain, remains 
unclear. Here, we review recent literature and emphasize the risks of abuse of psycho-
stimulants in healthy adolescents and young adults. We conclude that while the desire 
for cognitive enhancement, particularly with rising costs of education and increasingly 
competitive nature of scholarship programs, is unlikely to diminish in the near future, it is 
crucial for the scientific community to thoroughly examine the efficacy and safety of these 
stimulants in healthy populations across development. The current dearth of knowledge 
on the dose–response curve, metabolism, and cognitive outcomes in adolescents 
following methylphenidate or other psychostimulant exposure may be perpetuating a 
perception of these drugs as “safe” when that might not be true for developing brains.
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Attention deficit-hyperactivity disorder (ADHD) is one of the most commonly diagnosed childhood 
psychiatric disorders, affecting 5% (1) to 11% (2) of children aged 4–17  years old. Diagnosis of 
ADHD has increased in the United States during the past two decades (3, 4). The exact cause of 
this increase is unknown, but may be attributable to better diagnostic tests, increasing awareness 
of ADHD, or even perhaps conflicts of interest (doctors appeasing concerned parents). Diagnosis 
is largely subjective, and stringency of adherence to the DSM-V criteria varies: many children are 
taken to a primary-care physician on the advice of a teacher, and given methylphenidate (MPH) or 
amphetamine (AMPH) as a first-line treatment, often without rigorous psychiatric testing (5). ADHD 
is thought to arise from a deficit of the neurotransmitters dopamine (DA) and norepinephrine (NE) 
in the prefrontal cortex (PFC), which leads to impairments in executive function, causing symptoms 
of impulsivity, locomotor hyperactivity, and impairments in judgment and social behavior, and 
can lead to devastating impairments in scholastic and job performance and deteriorating social 
relationships if left untreated (6, 7). Functional magnetic resonance imaging (fMRI) and positron 
emission tomography (PET) imaging taken from individuals diagnosed with ADHD have shown 
reductions in blood flow in the PFC (8, 9). Proper function of PFC relies on the concentrations of 
the neurotransmitters DA and NE; these neurotransmitters exert control over executive function 
in an inverted-U curve manner: both insufficient and excessive levels result in impairments in PFC 
functions (10, 11). The PFC undergoes extensive synaptic pruning throughout puberty and into early 
adulthood. This delayed maturation may impart particular vulnerability of the adolescent brain to 
perturbations such as drug abuse, injury, and stress (12). In fact, many psychiatric illnesses, including 
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ADHD, that manifest with impairments in executive function, 
are largely diagnosed and treated in juveniles and adolescents 
(13). ADHD and stress-related psychiatric disorders include 
impairments in working memory as a common symptom, further 
implicating PFC impair  ment in their pathology.

Psychostimulants are currently the first-line treatment for 
ADHD in both children and adults; of these, MPH is the most 
widely prescribed (14, 15). MPH exerts its therapeutic effect by 
blocking the function of the DA transporter (DAT) and norepi-
nephrine transporter [NET, thereby increasing the bioavailability 
of the neurotransmitters and correcting the deficit thought to 
cause ADHD (16–18)]. The first stimulant approved for ADHD 
treatment AMPH (Adderall©) blocks reuptake but also increases 
vesicular release of DA; the effect on DA release is the main action 
at low doses (19). There is a large body of research supporting the 
conclusion that psychostimulant treatment reduces symptoms 
of ADHD, particularly hyperactivity (20). However, how other 
psychostimulants may affect cognitive performance is less clear, 
due to varying dosages, varying ages of subjects, and the fact that 
many tests of executive function contain non-executive domains 
on which improvement is noted after psychostimulant treatment. 
For example, MPH is effective at improving performance on a 
simple reaction time, task-switching paradigm, focused attention, 
word-matching, and go/no-go tasks in children with diagnosis of 
ADHD, but not spatial working memory (SWM), pattern recog-
nition, or divided attention tasks (21–30). Regardless, stimulant 
medications seem to improve cognitive function in an inverted-
U curve manner, with lower doses improving and higher doses 
impairing various aspects of cognition (17).

Animal studies have been used to examine safety and effi-
cacy of MPH and similar psychostimulants such as AMPH for 
decades; rats possess the same neurotransmitter systems and 
pathways as humans and have a more primitive, but similar, 
PFC. Studies of stimulant actions in rodents have shown varied, 
often contradictory effects, due to inconsistencies in dosing. For 
example, MPH caused hyperlocomotion and chasing in a paired 
open-field task, reduce learning retention, alter gene expression, 
and produce stereotypies; however, these studies used high 
doses of MPH (31–37). Low-dose MPH has been shown to 
improve performance on sustained attention, signal detection, 
and attentional set-shifting (38–40). For a more thorough his-
torical review of rodent MPH studies, see Ref. (41). Adult rodent 
studies and studies on adult human volunteers suggested that 
psychostimulant improvement of cognition was not “paradoxical 
effect” observable only in ADHD and models of ADHD, but also 
presented in healthy individuals. Further recent studies cor-
roborated the theory that low-dose psychostimulant treatment 
(doses that correspond to those given to ADHD patients) appears 
to enhance prefrontal cortical-dependent functions and cogni-
tive performance in healthy individuals in a similar manner to 
ADHD patients (42–45). This led to consideration of MPH as a 
nootropic, or cognitive-enhancing, drug.

Today, MPH is increasingly abused by adolescents and adults 
seeking an advantage in scholastic performance and work pro-
ductivity. It is used to aid memory when studying for exams and 
to improve focus and wakefulness (46, 47). MPH and other simi-
lar substances are also highly abused by members of the military 

to improve attention in high-stress situations and combat the 
effects of sleep deprivation (48). Prevalence reports range from 
2 to 20% of respondents admitting to cognitive enhancement 
(47, 49–51). There is extreme controversy regarding cognitive 
enhancement, with physicians and the public questioning safety 
and morality of the artificial augmentation of cognition (52–55) 
and even doubts about the true prevalence of misuse (56). Despite 
the rising abuse of MPH among adolescents and young adults, 
the basis for its safety and efficacy as a nootropic arises from 
studies performed on adult rodents and human volunteers; there 
is little information about the potential adverse behavioral and 
cognitive effects of stimulant treatment in normal adolescents. 
Recent precious little research has been conducted using adoles-
cent or juvenile rodents until the last 5 years. These studies have 
revealed strikingly different effects than adult rodent studies. For 
example, adolescent MPH exposure was found to reduce social 
play, impair pattern learning and reversal learning, increase 
locomotor hyperactivity, and response to cocaine, sometimes 
lasting into adulthood (57–60). Early exposure to MPH has also 
been shown to result in increased anxiety lasting into adulthood 
and alter circadian rhythms (61–65). However, many of the recent 
studies on adolescent rats have not been consistent in their dos-
ing regimens, leading to concern as to the therapeutic relevance 
of the results. A therapeutically relevant dose range that results 
in peak blood plasma levels equivalent to those measured in 
successfully treated patients (8–40 ng/dL) has been established 
for adult rats at 0.5–1 mg/kg injected intraperitoneally, but the 
dose–response range has not been systematically examined for 
adolescent rats (18). We recently reported that a single dose of 
1 mg/kg intraperitoneal given at 17–25 postnatal days in the rat 
resulted in significant depression of neuronal activity and synaptic 
transmission in the layer V pyramidal neurons of the PFC. This 
same dose resulted in the expected increase of activity in those 
same neurons in adult rats (66). These results suggest that there is 
an age-dependent effect of MPH in the PFC, and that the juvenile 
brain may be hypersensitive to the effects of psychostimulants, 
and even a low dose may push the healthy developing brain into a 
hyperdopaminergic and hyperadrenergic state. We further exam-
ined the effects of a single 1 mg/kg dose of MPH on glutamate 
receptors and plasticity in the juvenile rat, and reported that MPH 
selectively reduced levels of NR2B-containing NMDA receptors, 
and abolished short-term facilitation while enhancing long-term 
potentiation (LTP) and decreasing long-term depression (LTD) 
(67). Excessive DA levels can lead to reduced expression of 
NR2B-containing NMDA receptors via activation of the glycogen 
synthase kinase (GSK-3β) pathway, disrupting β-catenin associa-
tion with NR2B and allowing ubiquitination (68).

Despite its widespread misuse and ready availability, MPH is 
not the only psychostimulant or catecholaminergic agent consid-
ered for its utility as a cognitive enhancer. Amphetamine has been 
shown to improve consolidation and recall. However, it is associ-
ated with a variety of neurotoxic negative effects, including synaptic 
terminal degradation and neuronal chromatolysis in cortex and 
striatum, and permanent loss of DA uptake sites in striatum and 
nucleus accumbens (69–74). Furthermore, AMPH can induce a 
schizophrenia-like psychosis marked by hallucinations, paranoia, 
panic, and hyperactivity (75–77). AMPH produces more rapid 
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TAble 1 | Summary of psychostimulants and compounds affecting catecholamine reuptake considered for cognitive enhancement abilities.

Chemical brand name(s) Mechanism of 
action

neurotransmitters systems 
affected

Abuse potential

Methylphenidate Concerta© and 
Ritalin©

NET and DAT 
inhibitor

Norepinephrine and dopamine Moderate. Does not produce addiction, but is commonly sold off-label 
and taken by adolescents and young adults for nootropic effects

Amphetamine Adderall© and 
Adzenys XR-ODT

NET, DAT, and SET 
inhibitor

Norepinephrine, dopamine, and 
serotonin

High. Addictive, produces subjective “high.” Commonly abused and 
readily available

Atomoxetine Strattera© NET inhibitor Norepinephrine (potentially 
serotonin)

Low. Does not produce addiction, no stimulant actions, but is readily 
available

AHN 2-005 N/A DAT inhibitor Dopamine Negligible. Not commercially available

DAT, dopamine transporter; NET, norepinephrine transporter; SET, serotonin transporter.
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sensitization than MPH and induces a robust subjective “high” 
through its actions on serotonin, making it more addictive than 
MPH and less popularly used as a nootropic (78). In the PFC, 
both NE and DA are taken up by the NET due to limited expres-
sion of the DAT (79) and the relatively high affinity of DA for 
NET as compared with DAT (80, 81). Therefore, the transporter 
selectivity of a compound may influence its utility as a cognitive 
enhancer and its abuse potential. AHN 2-005, a DAT-selective 
compound, significantly increased extracellular levels of both NE 
and DA in the PFC at a cognition-enhancing dose that lacked 
locomotor activating effects, similar to MPH (82). However, 
AHN 2-005 produced a larger increase in extracellular DA in the 
nucleus accumbens than PFC. Although MPH selectively affected 
DA and NE levels in PFC (18, 82), it has yet to be considered a 
cognitive enhancer, largely due to its unavailability in the market.

Another important ADHD medication is atomoxetine 
(Strattera©), which is a non-stimulant and is also rarely considered 
a cognitive enhancer despite its nootropic and abuse potential. 
While there are far fewer peer-reviewed studies of atomoxetine 
as a cognitive enhancer, Internet searches reveal multiple forums 
and discussions of its efficacy and safety among individuals tak-
ing this drug illicitly. Atomoxetine selectively inhibits NET, with 
no appreciable actions on the DAT or other systems associated 
with abuse potential (83–85). Therefore, atomoxetine lacks the 
central nervous system stimulant effects of MPH and AMPH, 
reducing the risk of cardiovascular events (86). However, atom-
oxetine has been shown to bind to serotonin transporters, which 
may blunt its nootropic effects, as extrasynaptic serotonin can 
impair episodic memory and recall and may be anxiogenic (87). 
See Table  1 for a summary of relevant psychostimulants and 
ADHD medications considered for cognitive enhancing usage 
in healthy adolescents and young adults.

Despite these studies, it is still unclear how NET and DAT 
individually influence catecholamine balance in PFC; however, 
at least some evidence suggests that both are important (88). 
Furthermore, how low doses of psychostimulants preferentially 
target catecholamines in PFC without affecting other brain 
regions is unknown, and it may be unfeasible to elucidate 
potential mechanisms in vivo due to the common ligands and 
overlapping functions of the NET and DAT, as well as the fact 
that most compounds have at least some reactivity with both. 
How can NET control reuptake of both catecholamines in PFC if 
it is dominant to DAT? Furthermore, it is important to elucidate 

the contributions of DAT and NET to the uptake of NE and 
DA across development. Specifically, is PFC DAT expression 
already low compared to NET at birth, or does the expression 
of DAT progressively decrease during development? Since MPH 
induces opposite effects on neuronal activity, synaptic transmis-
sion, and plasticity in the juvenile versus adult animal PFC in 
a clinically relevant dose for adult (66, 89), it is important to 
explore the developmental expression and function of NET and 
DAT in the PFC.

What do our results and the results of similar studies mean 
for the adolescent taking MPH or similar psychostimulants? 
How does this differ from the consequences for an adult taking 
psychostimulants? MPH and other psychostimulants are thought 
to exert their therapeutic effect by raising levels of DA and NE 
specifically in the PFC; this leads to increases in neuronal activity 
and enhanced prefrontal cortical top–down control of executive 
functions (17). However, DA and NE exert an “inverted-U” curve 
of effects in the PFC: too little and the PFC is not able to function, 
resulting in impulsiveness, inattentiveness, locomotor hyperactiv-
ity, and poor decision-making, too much and the signal-to-noise 
ratio of neuronal firing is lost, resulting in scattered attention, 
stereotypic movements, hyperactivity, and impulsiveness (10, 90). 
In individuals with ADHD, and low levels of DA and NE, psy-
chostimulants would raise the levels into the optimal range, and 
in healthy adults, it appears that low-dose psychostimulants may 
further optimize catecholamine levels and provide improvements 
in executive function (91–98). Thus, psychostimulants given 
at low doses similar to those used to treat ADHD may indeed 
provide an effective and largely safe cognitive enhancement, as 
the PFC of adults has finished maturing (11, 12, 99).

However, in the adolescent brain, levels of DA and NE are 
naturally higher, as the PFC development is ongoing and synaptic 
pruning has not been completed; thus, adding psychostimulants 
likely pushes the levels of DA and NE beyond the optimal range 
and into excessive levels (12). This is consistent with impairments 
in pattern learning and object-memory, reduced pyramidal 
neuron activity, and reduced NR2B-containing NMDA recep-
tor levels seen in our studies (66, 67). The precise function of 
LTP in the PFC has not been elucidated; however, it has been 
hypothesized that if persistent firing and short-term facilitation 
are a measure of working memory, then LTP might be a neuronal 
correlate of sustained attention and memory consolidation/
learning. If this is the case, we can predict that psychostimulant 
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abuse by adolescents and juveniles could result in impairments 
in working memory and behavioral flexibility, but enhanced 
sustained attention. Thus, in a scholastic setting, adolescents 
taking MPH off-label or in abusing the drug may appear to be 
improving; however, rigid testing of working memory and cogni-
tive flexibility might reveal impairments that could negatively 
impact their lives. For example, the ability to quickly redirect 
attention is critical for sports and driving: on the road, one must 
be able to notice approaching cars and quickly determine the 
optimal response, shifting gaze from the road to one’s dashboard, 
and back again. In a work setting, especially in jobs that require 
management of subordinates or teamwork, the roles of individu-
als may change, and one must be able to evaluate quickly one’s 
performance. Inability to approach problems from different paths 
could lead to poor performance at work, leading to reduced pay 
or termination of employment. Finally, behavioral rigidity could 
potentially raise the risk of drug addiction, as inability to termi-
nate behaviors associated with the taking of drugs is a common 
obstacle to recovery and impaired flexibility has been shown in 
multiple addiction phenotypes in humans (100–102).

While it is currently unclear if the impacts of low-dose 
MPH on the juvenile PFC are permanent, our research suggests 
that recovery depends on dose; neuronal activity and synaptic 
transmission recovered to control levels within 1 week follow-
ing 1 mg/kg but did not recover even 10 weeks after 3 or 9 mg/
kg treatment in the rat (66). Individuals abusing stimulants on 
college and high-school campuses are often exposing themselves 

to much higher doses than are typically clinically prescribed, and 
doing so without the benefit of building tolerance; thus, they 
may be particularly vulnerable to long-lasting alterations in 
prefrontal cortical function. The desire for cognitive enhance-
ment, particularly with rising costs of education and increas-
ingly competitive nature of scholarship programs, is unlikely to 
diminish in the near future; therefore, it is crucial for the scien-
tific community to thoroughly examine the efficacy and safety of 
each candidate substance. The current dearth of knowledge on 
the dose–response curve, metabolism, and cognitive outcomes 
in juveniles and adolescents following MPH or other psycho-
stimulant exposure may be perpetuating a perception of these 
drugs as “safe” for any age when that might not be true. Until the 
research is completed to give us a more thorough understand-
ing of the drugs’ actions in the developing PFC, off-label use of 
psychostimulants and nootropics may present more risk than 
reward for adolescents.
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