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Abstract: This study demonstrates liquid crystal (LC) alignment behaviors on the surface of phytochemical-
based and renewable chavicol-modified polystyrene (PCHA#, # = 20, 40, 60, 80, and 100, where #
represent the molar content of chavicol moiety in the side group) via polymer modification reactions.
Generally, a LC cell fabricated with a polymer film containing a high molar content of the chavicol
side group exhibited a vertical LC alignment property. There is a correlation between the vertical
alignment of LC molecules and the polar surface energy value of the polymer films. Therefore,
vertical LC alignment was observed when the polar surface energy values of these polymer films
were smaller than about 1.3 mJ/m2, induced by the nonpolar chavicol moiety having long and bulky
carbon groups. Aligning stability under harsh conditions such as ultraviolet (UV) irradiation of about
5 J/cm2 was observed in the LC cells fabricated from PCHA100 film. Therefore, it was found that the
plant-based chavicol-substituted polymer system can produce an eco-friendly and sustainable LC
alignment layer for next-generation applications.

Keywords: liquid crystal; alignment; phytochemical; renewable; chavicol

1. Introduction

Liquid crystal (LC) molecules are beneficial organic materials with an intermediate
phase between crystalline solids and isotropic liquids because of their crystal-like ordering
and fluidity [1]. LC molecules are readily responsive to external stimuli such as electric,
magnetic fields, and surface interaction, contributing to their rheological behaviors and
anisotropic physical properties [2,3]. Their interesting features allow them to be used in nu-
merous applications such as electro-optical components, responsive sensors, and biological
applications [4–19]. For example, LC molecules can be used in several electronic products
such as color filters [4], smart glasses [5], and display applications [6,7] owing to their
susceptibility to electric fields. Moreover, changes in the optical properties of LCs induced
by ordering transitions under external stimuli are visible to the naked eye without addi-
tional labels or instruments. Therefore, LCs can be employed as simple monitoring sensors
under external stimuli and environments such as temperature [8], gases [9], humidity [10],
and indoor residential dust [11]. LC molecules are also studied for utilization as biosensors
to detect the presence of proteins [12,13], surfactants [14,15], lipids [16,17], bacteria and
virus [18,19]. Control of the alignment behaviors of LC molecules is essential in diverse sci-
entific and technical fields [4–23]. LC alignment methods related to controlling the aligning
abilities of LC molecules, such as pretilt angle and anchoring strength, have received atten-
tion by other researchers [24–27]. For example, contact methods such as a rubbing process
use aromatic polymers having a rigid backbone such as polyimide derivatives. Most widely
used as conventional LC alignment layers because they exhibit strong interaction through
π–π and dipole–dipole interactions between polymers and LC molecules and are suitable
for providing stable LC alignment [28–37]. Moreover, polyimide derivatives having long
alkyl side groups have been developed as LC alignment layers [38–41]. However, reliable
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polyimide films are commonly produced by baking processes using high temperatures
over 200 ◦C, but this is too high to be practical for several applications. Therefore, long
alkyl or fluoroalkyl group modified polystyrene derivatives have been developed as an
alternative to polyimide derivatives to produce LC alignment layers without the need for
baking processes [42]. The long alkyl or fluoroalkyl groups on polystyrene layers with
good solubility in many medium-polarity solvents using low boiling points can produce
low surface energy values because of the steric effect from the alkyl or fluoroalkyl groups
on the surface of polymer films [42].

Chavicol has phenol derivatives with a phenylpropene structure and is extracted
from various plants such as Piper betle [43,44]. Piper betle essential oil containing chavicol
plays a vital role in antifungal, antibacterial, and antioxidant activities, preventing vari-
ous diseases [44–48]. For example, chavicol extracted from Piper betle exhibited effective
inhibition of bacterial growth against Gram-positive bacteria such as Staphylococcus aureus
in conjunctivitis patients [45]. The redox properties of phenolic compounds extracted
from natural product can exhibit antioxidant activities by the neutralization or binding
of free radicals, restraint of singlet and triplet oxygen, and decomposition of peroxides,
as previously reported by researchers [48–52]. Furthermore, phenylpropene structure of
chavicol has a floral fragrance and can provide specific signals to pollinators. Therefore,
essential oil of chavicol has been used extensively in the cosmetics industry, including as
an odorant in perfumes, soaps, and food flavorings [53,54].

In this study, comb-like plant-based chavicol-substituted polystyrene (PCHA#) was
synthesized to obtain the vertical LC alignment and study the long alkyl group effects of
chavicol unit on the LC alignment performances. The optical and electrical properties of
the LC cells fabricated from the polymer films were also determined.

2. Materials and Methods
2.1. Materials

4-Chloromethylstyrene, chavicol, potassium carbonate, and a nematic LC, 4′–pentyl–
4–biphenylcarbonitrile (5CB) (ne = 1.7074, no = 1.5343, and ∆ε = 14.5, where ne, no,
and ∆ε represent extraordinary refractive indexes, ordinary refractive indexes, and di-
electric anisotropy, respectively), were purchased from Aldrich Chemical Co. N,N′-
Dimethylacetamide (DMAc) was dried using molecular sieves (4 Å). Tetrahydrofuran
(THF) was dried by refluxing with benzophenone and sodium, followed by distillation.
4-Chloromethylstyrene was purified by column chromatography on silica gel using hexane
as an eluent to eliminate any impurities and inhibitors (tert-butylcatechol and nitroparaf-
fin). Poly(4-chloromethylstyrene) (PCMS) was synthesized via conventional free radical
polymerization of the 4-chloromethylstyrene with 2,2′-azobisisobutyronitrile (AIBN) under
a nitrogen atmosphere. AIBN (Junsei Chemical Co., Ltd., Tokyo, Japan) was used as an
initiator. The AIBN was purified from crystallization using methanol. All other reagents
and solvents were used as received.

2.2. Synthesis of Chavicol-Modified Polystyrene

PCHA#, chavicol–substituted polystyrene, where # represents the molar content
(%) of the chavicol moiety in the side group, was synthesized by the following proce-
dure. The synthesis of the chavicol–substituted polystyrene PCHA100 is presented as an
example. Poly(4-chloromethylstyrene) (PCMS, 0.3 g, 1.97 mmol) was dissolved in N,N′–
dimethylacetamide (DMAc, 50 mL). Chavicol (0.396 g, 2.95 mmol, 150 mol% compared with
PCMS) and potassium carbonate (0.475 g, 2.99 mmol) were added to the PCMS solution.
The solution mixture was magnetically stirred at 70 ◦C for 24 h under a nitrogen atmo-
sphere. The synthesized solution mixture was poured into ethanol after cooling to room
temperature to obtain a white precipitate. The precipitate was further purified over several
reprecipitations from DMAc solution into ethanol and then washed with hot ethanol to
eliminate potassium carbonate and any residue. The PCHA100 has obtained yields above
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80% after drying in a vacuum overnight. The degree (%) of substitution of the chloromethyl
to the chavicyl group was confirmed to be approximately 100% within experimental error.

PCHA100 1H NMR (CDCl3): δ = 0.54–2.09 (m, 3H, –CH2–CH–Ph–), 3.15–3.36 (m, 2H,
CH2–CH=CH2), 4.64–4.94 (s, 2H, –Ph–CH2–O–), 4.94–6.03 (d, 3H, CH2–CH=CH2), 6.20–7.23
(m, 8H, –CH2–CH–PhH–CH2–O–PhH–CH2).

Other polystyrene derivatives containing chavicol side groups were synthesized by
a similar procedure used to prepare PCHA100 except for differing amounts of chavicol
in the reaction. For example, PCHA80, PCHA60, PCHA40, and PCHA20 were prepared
with chavicol of 0.211 g (1.57 mmol), 0.158 g (1.18 mmol), 0.106 g (0.79 mmol), and 0.053g
(0.39 mmol), respectively, using slight excess amounts of potassium carbonate (120 mol%
compared with chavicol).

2.3. Film Preparation and LC Cell Assembly

Solutions of each PCHA# in chloroform (1.0 wt.%) were prepared. These solutions
were filtered using a poly(tetrafluoroethylene) (PTFE) membrane with a pore size of
0.45 µm. The thin films of the polymer were made by spin–coating (1st step at 700 rpm
and 5 s, 2nd step at 1800 rpm and 90 s) onto glass substrates. LC cells were produced by
assembling the polymer films using spacers with a thickness of 4.25 µm. The cells were
filled with nematic liquid crystal, 5CB, and were sealed with epoxy glue. The alignments
of the LC molecules onto the PCHA# films were observed with naked eyes and using
the polarized optical microscopy (POM) after heat treatment at 50 ◦C above the clearing
temperature (Tc) of 5CB (Tc = 35 ◦C) and cooling back to the room temperature.

2.4. Instrumentation

Proton nuclear magnetic resonance (1H NMR) measurement was carried out on
a Bruker AVANCE spectrometer at 300 MHz. Differential scanning calorimetry (DSC)
measurements were carried out on a TA instruments Q-10 (New Castle, DE, USA) at
heating and cooling rates of 10 ◦C min−1 under a nitrogen atmosphere. The contact angles
of distilled water and diiodomethane on the polymer films were measured using a Krüss
DSA10 (KRÜSS scientific instruments Inc., Hamburg, Germany) contact angle analyzer
equipped with drop shape analysis software. The surface energy value was calculated with
Owens–Wendt’s equation:

γsl = γs + γl − 2(γs
dγl

d)
1/2 − 2(γs

pγl
p)1/2 (1)

Here, γl is the surface energy of the liquid, γsl is the interfacial energy of the solid/liquid
interface, γs is the surface energy of the solid, the superscripts d and p represent the disper-
sion and polar components of the surface energy. γl

d and γl
p are known for the test liquids,

and γs
d and γs

p can be calculated from the measured static contact angles [55]. Polarized
optical microscopy (POM) images of the LC cell were taken by an optical microscope
(Nikon, ECLIPSE E600 POL, Tokyo, Japan) equipped with a polarizer and digital camera
(Nikon, COOLPIX995, Tokyo, Japan).

3. Results
3.1. Synthesis and Characterization of Chavicol-Modified Plystyrene

The synthetic routes for chavicol–substituted polystyrene PCHA100 and copolymers
PCHA80, PCHA60, PCHA40, and PCHA20, where # is the molar content (%) of chavicol
side groups, are shown in Figure 1. The copolymers with different substitution ratios (%)
were obtained by changing the chavicol amounts in the reaction. Almost 100% conversions
from chloromethyl to chavicyl group were obtained when 150 mol% of chavicol was used
at 70 ◦C for 24 h, as shown in the assignment of the respective proton peaks of the chavicol–
substituted polystyrene PCHA100. The chemical compositions of monomeric units in
the obtained polymers were confirmed by 1H NMR spectroscopy. 1H NMR spectrum of
PCHA100 indicates the presence of protons from the phenyl ring of the styrene backbone
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(δ = 6.2–7.2 ppm [peak a]) (Figure 2). The proton peaks from chavicol side chains
(δ = 3.2–3.4 [peak c], 4.9–6.0 ppm [peak d]) indicate the inclusion of chavicol moieties
in the polymer. The chavicol content was calculated by analyzing the integration value of
proton peaks of the chavicol (δ = 3.2–3.4 and 4.9–6.0 ppm, [peak c and d]) and chloromethyl
(δ = 4.6–4.9 ppm, [peak b]). Similar integrations and calculations for PCHA80, PCHA60,
PCHA40, and PCHA20 were performed and were typically within ± 10% of the predicted
values of synthesis. These copolymers are soluble in medium–polarity solvents using low
boiling points, such as chloroform. All samples have good solubility for various solvents
to make thin-film materials for next-generation applications based on wet processes.
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The thermal properties of these polymers, PCHA#, were examined using differential
scanning calorimetry (DSC). All the polymers were amorphous because only one glass
transition was observed from their DSC thermogram (Figure 3). As the molar content
of chavicol side group increased from 20 to 100, the Tg value decreased from 98.4 ◦C for
PCHA20 to 53.2 ◦C for PCHA100. The Tg value of the polystyrene derivatives decreased
according to an increased molar content of the bulky side groups. It was ascribed to the
increase of the sizeable steric volume in the polymer because polymers having larger
steric volumes of substituents affect the flexibility of the polymer and lead to lower Tg
values [56–59].
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3.2. LC Alignment Behavior of the LC Cell Fabricated with Chavicol-Modified Polystyrene Film

Conoscopic polarized optical microscopy (POM) images of the LC cells fabricated with
PCHA100 films onto glass substrates under the weight concentrations of the PCHA100
of 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, and 2.0 wt.% are shown in Figure 4. At first, random planar
alignment was observed in the PCHA100 weight ratios of less than 0.1 wt.% (Figure 4a–c).
In the cases when the PCHA100 weight ratios were more than 0.5 wt.%, vertical alignments
were observed as shown in the Maltese cross pattern of Figure 4d–g. The distinguishable
differences in vertical LC alignment in the LC cells fabricated with PCHA100 of 1.0, 1.5,
and 2.0 wt.% were not observed in Maltese cross pattern in the conoscopic images, as shown
in Figure 4e–g. Therefore, 1.0 wt.% was selected as the coating concentration of the solution
to fabricate LC cells made from these copolymers (PCHA#).
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PCHA100 films under the following a weight ratio of the PCHA100; 0.01 (a), 0.05 (b), 0.1 (c), 0.5 (d),
1.0 (e), 1.5 (f), and 2.0 wt.% (g); scale bar: 100 µm, all scale bars are the same.

Photographic images of LC cells made from these copolymers (PCHA#) are shown
in Figure 5. The LC cells fabricated using the PCHA# films with chavicol side group
content of 20 mol% (PCHA20) shows a random planar LC alignment, while random planar
and/or tilted LC alignment is observed for the LC cells fabricated using PCHA40 polymer
films. The vertical LC alignment behavior was examined for the LC cells made from the
polymer films having chavicol side group content larger than 60 mol% (PCHA60, PCHA80,
and PCHA100). PCHA60, PCHA80, and PCHA100 films were maintained for at least
several months after fabricating the LC cells from these polymers. Therefore, as the molar
content of chavicol side group in PCHA# increases, the vertical LC alignment also increases.
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content of chavicol moiety.

As shown in Figure 6, the LC alignment behaviors on PCHA# films were investigated
by observing the POM images. Random planar LC alignment behaviors were observed for
the LC cells fabricated from the PCMS film (figure not shown). When the molar fraction of
the chavicol containing monomeric unit in the PCHA# was 20 mol%, the LC cells fabricated
from the PCHA# film exhibited planar LC alignment by the conoscopic POM images.
On the other hand, the partial random planar and the partial vertical LC alignment was
observed simultaneously in the conoscopic POM image of the LC cell fabricated with the
PCHA40 film. However, the uniform vertical LC alignment of the LC cells made from the
polymer films (PCHA60, PCHA80, and PCHA100) was observed by Maltese cross pattern
in conoscopic POM images.
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3.3. Surface Properties of Chavicol-Modified Polystyrene Films

Based on the LC alignment results, this study obtained a consistent trend that the
polymers with higher molar content of chavicol side groups prefer vertical LC alignment.
It is known that the vertical alignment behavior is related to either or both the low surface
energy on the alignment layer surfaces and the large steric repulsions between LCs and
the alignment layers [60,61]. For instance, polyimide derivatives incorporate nonpolar
and bulky side groups featuring vertical alignment behavior such as pentylcyclohexyl-
benzene [60] and 4-(n-octyloxy)phenyloxy [61]. Therefore, this research demonstrated the
LC alignment performances on the PCHA# films via surface characterization techniques
such as surface energy value measurements. Surface energy values of the polymer films
calculated from the measured static contact angles of water and diiodomethane are shown
in Figure 7 and Table 1. The total surface energy was calculated with the Owens–Wendt’s
equation, and this is a summation of the polar and dispersion contributions. The critical
surface energy value of the polymer films to give vertical LC alignment performances
was also obtained. The vertical LC alignment was exhibited from the PCHA60, PCHA80,
and PCHA100 films. The total surface energy values of PCHA# films following the mo-
lar content of the chavicol moiety in the side groups increased to 44.5, 45.4, 46.7, 48.2,
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and 48.6 mJ m−2. The dispersion surface energy values per the molar content of the chav-
icol moiety also increased, to 40.1, 43.3, 45.4, 47.2, and 47.7 mJ m−2. On the other hand,
the polar surface energy values of PCHA# films according to the molar content of the
chavicol moiety in the side groups decreased to 4.4, 2.1, 1.3, 1.0, and 0.9 mJ m−2. This
study observed the correlation between the vertical LC alignment and the polar surface
energy value of the copolymer films. Other researchers have reported that polar surface
energy of polymer film can influence the LC alignment performances [62–64]. Chavicol
has a nonpolar and bulky group, such as an allyl group attached to the phenyl group in
the para position, and not only a phenyl group. Thus, the increase in the molar content of
chavicol leads to a decrease in the polar surface energy value, in which vertical alignment
can be formed. Therefore, it is reasonable to suggest that the vertical LC alignment perfor-
mances of PCHA100, PCHA80, and PCHA60 are induced by the increased steric repulsions
between the LCs and the polymer surfaces. These repulsions result from the nonpolar and
bulky chavicol moieties into the side group of the polystyrene and the low polar surface
energy emerging from the unique chemical structures.
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Table 1. Surface energy values and LC alignment properties.

Polymer
Designation

Contact Angle (◦) a Surface Eergy (mJ m−2) b
LC Aligning

Ability c
Water Diiodomethane Polar Dispersion Total

PCHA20 79.7 31.6 4.4 40.1 44.5 X
PCHA40 83.9 29.1 2.1 43.3 45.4 X
PCHA60 87.9 20.8 1.3 45.4 46.7 O
PCHA80 88.5 20.7 1.0 47.2 48.2 O

PCHA100 88.7 18.8 0.9 47.7 48.6 O
a Measured from static contact angles. b Calculated from Owens–Wendt’s equation. c Circle (O) and cross (X) indicate polymer film have
vertical and random planar LC aligning ability, respectively.
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3.4. Reliability and Electro-Optical Performance of the LC Cells Fabricated with Chavicol-Modified
Polystyrene Films

The reliabilities of LC cells made from the polymer films were confirmed by a stability
test of the LC alignment behavior under harsh conditions and ultraviolet (UV) irradiation.
The UV stability of the LC cells fabricated with the PCHA100 film was demonstrated
from the POM image after UV irradiation at 0.1, 0.5, 1, and 5 J/cm2. No distinguishable
difference of the Maltese cross pattern in the conoscopic POM images on PCHA100 film
having vertical LC aligning ability could be observed (Figure 8), indicating that the vertical
LC aligning ability of the PCHA100 LC cell was found to be maintained even at high
UV energy.
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Therefore, using plant-based and renewable resources, PCHA# can be considered
next-generation LC alignment layers for eco–friendly 4th industrial revolution applications.

4. Conclusions

A series of plant-based chavicol-modified polystyrene (PCHA#) was synthesized in
order to investigate the alignment behavior of LC molecules as an anisotropic material
on polymer films. The LC cells fabricated with the polymer films having chavicol units
larger than 60 mol% (PCHA60, PCHA80, and PCHA100) showed vertical LC alignment.
However, the LC cells fabricated with PCHA# films having chavicol smaller than 40 mol%
exhibited random planar LC alignment behavior. The vertical LC alignment was exhibited
by the steric repulsions between the LCs and the polymer surface because of a nonpolar
and bulky chavicol moiety into the side chain. There is a good correlation between the
vertical alignment behavior of LC molecules and the polar surface energy values of these
copolymer films having smaller than approximately 1.3 mJ/m2, induced by the long alkyl
groups. These results show the basic idea for the advanced research of eco–friendly and
sustainable LC alignment layers based on renewable and phytochemical-based chavicol
containing polymer films.
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paper. All authors participated in discussions of the research and provided feedback for the paper.
All authors have read and agreed to the published version of the manuscript.
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