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Abstract

Background: The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet
evidence suggests that this class of “silent” genetic variation plays multiple regulatory roles in both transcription and
translation. One mechanism by which synonymous codons direct and modulate the translational process is through
alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict
the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how
synonymous variants might disrupt mRNA structure are lacking. Results: We developed novel software using a parallel
processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of
any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469
million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants
globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of
incidence in the human population. Conclusions: These findings support the hypothesis that synonymous variants may
play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of
synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human
transcriptome and introduce a “Structural Predictivity Index” (SPI) to quantify structural constraint operating on any
synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant
could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single
measurement to predict the impact of secondary structure altering variants in human genetic studies.
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Background

Accurate molecular genetic diagnosis of a rare disease is essen-
tial for patient care [1], yet today’s best molecular tests and anal-

ysis strategies leave 60–75% of patients without a diagnosis [2–
6]. Current clinical practice for sequence variant interpretation
focuses primarily on missense, nonsense, or canonical splice
variants [7], with numerous computational methods for predic-
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tion of the impact of non-synonymous single-nucleotide vari-
ants (nsSNVs) on protein function [8]. By contrast, we have lim-
ited knowledge in regard to the role that synonymous single-
nucleotide variants (sSNVs) may have in health and disease.
These variants modify the codon in a transcript but leave the
protein unchanged, and for years were erroneously considered
to be “silent.” However, the past 2 decades have seen a growing
understanding that synonymous codons serve vital regulatory
functions [9–12].

One of the principal levers by which synonymous codons di-
rect the translational process is through messenger RNA (mRNA)
structure. Unlike DNA, an mRNA molecule is single stranded
and therefore capable of forming complex configurations largely
by base-pairing with itself, yielding the “secondary structure,”
which further folds through covalent attractions to form the
“tertiary structure” (Fig. 1) [13]. The secondary structure has
proven to be essential for understanding the regulatory func-
tions of RNAs, and sophisticated methods exist to predict the
ensemble of possible structures that a given mRNA strand can
adopt [14]. An important physical property of an RNA structure
is its stability, which is defined as the extent to which an RNA
molecule retains its structural integrity. RNA stability is largely
a function of G+C content of the molecule in question, although
most of the energy comes from the stacking-energy of the G = C
pairs rather than the pairs individually [15].

Studies first published in 1999 indicated that stable mRNA
secondary structures are selected for in key genomic regions
across all kingdoms of life [16–19]. Stable RNA has a longer func-
tional half-life, being more resistant to degradation or base-
catalyzed hydrolysis, and stronger coding structures can endure
more rounds of translation, ultimately resulting in more protein
[17, 20–25]. Repeated translation destabilizes an RNA, weakening
the brakes on ribosomal translational speed and producing col-
lisions that trigger decay pathways [26–31]. There are however
cases where weak structure is more desirable, most notably in
the 5′ untranslated regions (UTRs) and around the start codon,
to make it easier to commence translation [17, 32–37]. Dimin-
ished stability in stress response genes may also permit a more
dynamic response of the cell to stress [33]. The stability of an
mRNA transcript can also determine the speed of translation [16,
18, 19, 29, 38, 39] and vitally facilitate or prevent microRNAs and
RNA-binding proteins from attaching to specific structural mo-
tifs [40–44]. Studies have also strongly linked mRNA structure to
protein conformation and function, with synonymous codons
acting as a subliminal code for the protein-folding process [12,
29, 45–50]. Given all these mechanisms, when synonymous vari-
ants are ignored, we are almost certainly missing novel plausible
explanations for genetic disease.

The growing understanding of the importance of RNA struc-
ture has inspired a rich literature of in silico secondary structure
prediction methods. One culminating study looked at predicted
structures across the genomes of 17 vertebrates and found
516,000 structurally conserved elements across species, with the
most conserved structures lying in coding regions [51]. An analo-
gous work focusing on 23 drosophilids and 4 other insect species
found 345,000 structurally conserved elements [52], and recently
a study on the whole Tree of Life found comparable conservation
[53]. As we have done in the present work, all 3 of these previ-
ous studies used the ViennaRNA package [14] (or tools built to
utilize it, such as CMFinder [54] and RNAz [55]). In an alternative
approach, 1 group trained a machine-learning algorithm called
RNAsnap on both single and multiple-aligned sequences to pre-
dict solvent accessibility in protein-bound RNA tertiary struc-
tures [56]. Anticipating our study, the authors found decreased

minor allele frequencies (MAFs) in the 1000 Genomes database
[57] at structurally significant positions (Supplementary Fig. S7
shows that the pattern of constraint observed with P(MAF) > 0
is maintained when using the log(MAF) statistic used by Yang
et al. [56]). In a study similar to ours but more limited in scope,
the authors compared wild-type and mutated predicted struc-
tures to identify “RiboSNitches” or structurally disruptive SNVs
in 5′ UTRs [58, 59]. However, the authors were limited by the com-
putational cost of computing folding statistics for every SNV of
interest.

Despite the widespread scientific interest in mRNA struc-
ture, its role in human health and disease remains poorly com-
prehended, and relatively few pathogenic synonymous variants
affecting mRNA folding have been described [20, 21, 23, 25]. A
structure-altering sSNV in the dopamine receptor DRD2 inhib-
ited protein synthesis and accelerated mRNA degradation [60].
An sSNV in the COMT gene, implicated in cognitive impairment
and pain sensitivity, was shown in vitro to constrain enzymatic
activity and protein expression [61]. An sSNV in the OPTC gene
of a patient with glaucoma resulted in decreased protein ex-
pression in vivo [62]. In patients with cystic fibrosis, an sSNV in
CFTR was linked to decreased expression [63], and an mRNA-
secondary-structure–altering silent codon change contributed
to CFTR dysfunction by altering the dynamics of translation,
leading to protein misfolding [22, 24]. Two sSNVs in NKX2-5,
identified in patients with congenital heart disease, decreased
the mRNA’s transactivation potential [64]. In hemophilia B, an
sSNV in the factor IX gene affected the transcript’s secondary
structure and reduced extracellular protein levels [65], and both
synonymous and nonsynonymous variants were shown more
likely be deleterious when occurring in stable regions of F8 and
DMD mRNAs [66]. Our understanding of the role of synony-
mous variants in cancer is rapidly expanding, with recent stud-
ies demonstrating that they may act as drivers of the disease
[67–69], altering the function of oncogenes such as RET [70] and
KRAS[71].

While there are numerous methods to predict the impact of
amino acid altering and regulatory variation, relatively few ap-
proaches have been developed to identify functional sSNVs. Of
the 5 synonymous variant metrics we found in the literature,
only 2 use RNA-folding statistics—SiLVA [72] and DDIG-SN [73]—
and in each case the authors emphasize that the structural fea-
tures make almost no difference to the model. These scores pri-
marily excel at identifying splicing defects, and the same is true
for other synonymous scores such as IDSV [74], regSNPs-splicing
[75], and Syntool [76]. There are, in contrast, tools that measure
disruptions of RNA folding, albeit not exclusively in synonymous
variants—the 3 most prominent are the webservers RNAsnp [77],
SNPfold [59], and MutaRNA [78]. These 3 webservers perform
largely the same task, comparing predicted wild-type and mu-
tated structures and returning the change in base-pairing proba-
bilities and or/visualizations of the structures themselves. How-
ever, the 3 tools are limited to the assessment of a single vari-
ant, requiring an on-the-fly calculation for every SNV under con-
sideration, making them unsuitable for scoring sSNVs in the 4–
6 million variants typically identified from genome sequencing
of a single individual. To the best of our knowledge there are
no precalculated transcriptome-wide scores well equipped to
model sSNVs that specifically alter RNA structure.

Given the established importance of RNA structure, we hy-
pothesize that there may be many more as yet to be identi-
fied sSNVs that can provoke genetic disorders through their dis-
ruption of RNA structural elements. As such, the aims of this
study were the creation of RNA-structural metrics for every pos-
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Figure 1: A synonymous variant introduces a marked change in local minimum free energy of the mRNA secondary structures in the DRD2 gene. Using a known
synonymous variant of pharmacogenomic significance in the dopamine receptor, DRD2 ( NM 000795.4: c.957C>T (p.Pro319 = )), this figure demonstrates how the
101-bp window used in our analysis captures the variant’s impact on RNA secondary structure. Wild-type (A) and mutant (B and C) sequences (RefSeq transcript

NM 000795.4, coding positions 907–1008) are identical except for a synonymous C→T mutation at position 51 (major “C” allele is indicated by the black arrow; minor
“T” allele is indicated by the red arrow). (A) Wild-type optimal and centroid structures (which coincide) demonstrate a relatively stable secondary structure with a
minimum free energy of −12.5 kcal/mol. In the ensemble of possible structures arising from the sSNV at position 51, there is a significant reduction in stability of
the molecule in terms of both the (B) mutant optimal structure (−11.5 kcal/mol) and (C) mutant centroid structure (−5.1 kcal/mol). The synonymous variant results

in a less stable mRNA molecule, which laboratory studies demonstrate reduces the half-life of the transcript, ultimately reducing protein expression of the dopamine
receptor, DRD2. Nucleotides are colored according to the type of structure in which they occur: green: stems (canonical helices); red: multiloops (junctions); yellow:
internal loops; blue: hairpin loops; orange: 5′ and 3′ unpaired region.

sible single-nucleotide variant (SNV) and to evaluate whether
structure-disrupting sSNVs are constrained in the human popu-
lation. Through developing methods to predict whether an SNV
is “structurally pathogenic,” we hope to drive the discovery of
novel genetic etiologies in both monogenic genetic disorders
and more complex human disease.

Data Description
Raw dataset

To obtain all human mRNA transcripts we downloaded the
NCBI RefSeq Release 81 from an online repository [79]. Tran-
script sequences corresponded to human reference genome
build GRCh38.

Massively parallel generation of RNA stability metrics

To assess the impact of synonymous mutations on mRNA struc-
ture, we carried out a genome-wide computation in which fold-
ing statistics were calculated for every possible variant in the
human transcriptome (RefSeq Release 81, GRCh38). For each po-
sition in all transcripts, we built a 101-base window centered
around the reference and 3 alternate sequences with the alter-
nate allele substituted at the 51st position. We applied the Vi-
ennaRNA software package to the wild-type and mutated se-
quences to obtain 10 folding metrics quantifying the struc-
tural disruption caused by all 3 possible SNVs at the position
(see Supplementary Table S1 for metric details). Computing this
dataset of structural predictions for nearly half a billion SNVs
was truly a “big data” computational task. We relied heavily on
the parallelizability of the Apache Spark framework and custom
wrappers that adapted the ViennaRNA software package to run
within the Hadoop framework (Fig. 2). Details of the calculation
and subsequent assignment of variants into classes are given in
Methods.

Of the 10 mRNA-structural metrics output by our Vienna im-
plementation, we adopted 3 as central to our analysis: � min-

imum free energy (�MFE), centroid edge distance (CED), and �

centroid distance (�CD). The metric �MFE measures the change
in mRNA free energy or “stability” caused by the sSNV, while CED
gives the number of base pairs that vary between the mutant
and wild-type centroid structures. The metric �CD measures
the sSNV’s effect on the diversity of the mRNA’s structural en-
semble, which is the collection of various structures that a given
sequence can exhibit. Distributions of these metrics, along with
the other 7 mRNA-structural metrics output by our RNA struc-
ture pipeline, are presented in Supplementary Fig. S1.

To test whether certain sSNVs are under constraint due to
their effect on mRNA structure, we used population frequencies
from the Genome Aggregation Database (gnomAD) containing
aggregate genome and exome sequencing data from a total of
201,904 unrelated human individuals (gnomAD v2.1 dataset con-
tains data from 125,748 exomes mapped to the GRCh37/hg19 ref-
erence sequence and lifted over the GRCh38; the gnomAD v3.1
dataset contains 76,156 whole genomes [and no exomes], all
mapped to the GRCh38 reference sequence) [80]. Our expecta-
tion was that SNVs with disruptive structural properties would
be found less frequently in human populations. We defined a
variant to be constrained if it was absent from both gnomAD
v2.1 and v3.1 datasets and unconstrained if it had a MAF > 0 in
either set, a strategy similar to that used by other groups [81, 82].

Analysis
Global constraint to maintain stability

Our study reveals a striking connection between a given SNV’s
impact on mRNA structure and its frequency in the gno-
mAD database. This central finding is summarized in Fig. 3,
which depicts the proportion of SNVs with gnomAD MAF >

0 at every value of our stability-metric �MFE. All 4 variant
classifications—synonymous, 5′ UTR, 3′ UTR, and missense—
show a bi-directional constraint to maintain the wild-type
mRNA structure. When the SNV either weakens the mRNA
structure (high �MFE) or strengthens it (low �MFE) the SNV is
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Figure 2: Graphical depiction of computational workflow used to generate ViennaRNA-folding metrics for the entire transcriptome. The entire analysis workflow was
parallelized using Apache Spark and the Amazon Elastic Map Reduce (EMR) service, generating 5 billion ViennaRNA metrics over the course of 2 days. Using a custom
pipeline developed for the process that was executed across 47 Amazon Elastic Cloud Compute (EC2) spot instances, input data were retrieved from an Amazon Simple
Storage Solution (S3) bucket and processed through the pipeline consisting of 8 steps. We first obtained the 101-base sequence centered around an SNV in a transcript

and generated 3 alternate sequences (with the ALT rather than the REF at position 51) (Step 1). We next applied ViennaRNA modules to sequence to obtain structural
metrics (Step 2). Results were then mapped to chromosomal coordinates (Step 3) and annotated with SnpEff to identify splice variants (Step 4), annotated with gnomAD
population frequencies (Step 5) and coverage information (Step 6), and finally annotated with metrics from dbNSFP (Step 7). Final dataset was written to Amazon S3
in Parquet columnar file format for further analysis and interpretation.

depleted in the population roughly in proportion to the level of
disruption. While this pattern of constraint was observed across
all 4 variant classes, Fig. 3 indicates that it is strongest for syn-
onymous variants..

Figure 4 summarizes constraint in the synonymous case,
showing the relationship of our 3 main structural metrics with
gnomAD frequency. Figure 4A recapitulates the pattern of green
circles in Fig. 3, revealing that disrupting mRNA stability de-
creases the chance of a synonymous SNV’s appearing in hu-
man mRNA transcripts. The global peak at �MFE = 2 reflects
the dominant contribution of CpG transitions, which tend to
be destabilizing—see Analysis: CpG transitions have constraint
against destabilization of their mRNA structures. The effect of
removing or creating new base-pairings, quantified by the met-
ric CED, is shown in Fig. 4B (see Supplementary Fig. S2 for an
illustration of how CED is calculated). This figure validates our
basic hypothesis that structurally disruptive sSNVs should ap-
pear less frequently in the population. We see that sSNVs that
leave the centroid structure unchanged (i.e., CED = 0) are ∼15%
more common than those sSNVs predicted to alter it, and SNVs
with large CED values are constrained in proportion. Our third
metric �CD measures change in the diversity of the mRNA en-
semble (i.e., collection of all the structures formed by millions of
in vivo mRNAs) and is shown in Fig. 4C. This figure illustrates that
changes in diversity—towards either more or less—are also con-

strained in gnomAD. The symmetry in depletion between over-
and under-diversifying sSNVs is surprisingly regular. Analogous
plots for the remaining 7 structural metrics can be viewed in
Supplementary Fig. S3.

The color coding in Fig. 4 illuminates the relationship be-
tween the 3 structural metrics. Changes in stability are corre-
lated with changes in base-pairing and vice versa, as demon-
strated by the red values at the extremes of each distribution.
Fig. 4C depicts a clear relationship between diversity and stabil-
ity, with those sSNVs that diversify the ensemble (high �CD) also
tending to weaken it (red). This diversity-instability relationship
is intuitive, as a destabilizing mutation “frees up” portions of the
mRNA to assume new shapes.

Variation of constraint with REF>ALT context

We next set out to determine whether the constraint demon-
strated in Fig. 4 holds uniformly for all synonymous nucleotides
or whether it varies in different REF>ALT contexts. We would
expect the latter because the bases C and G form much stronger
structural bonds than do A and T. To probe this question we di-
vide our sSNVs into 14 classes (Table 1): 12 classes based on their
reference and alternate mRNA alleles (e.g., A>C, C>G, T>C) and
2 additional classes based on potential loss of methylated cyto-
sine (CpG>TpG or CpG>CpA, the latter of which results from a
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Figure 3: Exonic SNVs predicted to affect mRNA structure are constrained in the human population. Population frequency of SNVs was plotted against predicted
impact on mRNA structure. Circles show proportion of SNVs with nonzero gnomAD exonic frequency at each value of the RNA stability metric �MFE. The bell-shaped
pattern of constraint was observed across all classes of SNVs, with constraint appearing to be greatest in sSNVs (red), followed by SNVs in the 5′ UTR (orange), then

SNVs in the 3′ UTR (blue), and finally nsSNVs (green). Values of �MFE with <2,000 (synonymous), 200 (UTRs), or 5,000 (missense) positive-MAF sSNVs are excluded.
Only SNVs passing all filters for both WGS and WES data are represented (see Methods for details).

deamination on an antisense strand). For consistency and clar-
ity, we treat thymine as an mRNA base, even though it is actually
replaced by uracil in mRNA. Then within each REF>ALT context
we reconstruct the 3 plots of Fig. 4 and also perform weighted
linear (or quadratic, for �CD) regressions between the 3 differ-
ent stability metrics and the probability that the gnomAD MAF
> 0 (see Methods for details and Supplementary Table S2 for full
regression statistics).

We observe that constraint for mRNA structure is highly de-
pendent on mutational context (Table 1). Some REF>ALT con-
texts show constraint in 1 direction only (e.g., against weak-
ening of their structures), while other contexts show no sig-
nificant constraint at all. The metric �MFE, which measures
changes to mRNA energy or stability, shows a striking context
dependence (Table 1). All significant REF>ALT changes are con-
strained unidirectionally, with 1 direction showing a depletion
in population frequencies while the other shows an enrich-
ment (the direction of constraint is obtained by a weighted lin-
ear regression; see Methods for details). In line with our under-
standing of the structural biochemistry of RNA folding, muta-
tions from “strong” REFs (C and G, so called because they form
strong Watson-Crick bonds) to “weak” ALTs A and T are con-
strained against high values of �MFE, i.e., against the weaken-
ing of structure. Conversely, mutations from weak to strong nu-
cleotides are constrained against the strengthening of structure
(low �MFE). The exception to this rule is the context G>A (see
section Constraint for mRNA stability in non-CpG-transitional
contexts).

Evaluation of the base-pair metric CED demonstrates that
some contexts are constrained against large changes in mRNA
base-pairing, while in others, SNVs altering base pairs are actu-
ally enriched (Table 1). This result reflects the fact that in some
contexts small base-pairing changes are enriched over no base-
pairing changes. In keeping with our main hypothesis, large
changes of base-pairing are still uniformly constrained. As was

the case with �MFE, we again observe that the context G>A is
the exception.

Finally, the bottom section of Table 1 shows mutational con-
texts that exhibit significant constraint against changes to en-
semble diversity as measured by �CD. We see that only a few
contexts exhibit this constraint. In the 2 CpG-transitional con-
texts, the bell-shaped pattern of Fig. 4C is faithfully reproduced,
with both decreases and increases to ensemble diversity be-
ing equally harmful. However, the context G>A is enriched for
changes in diversity—this context is strangely aberrant when
assessed with all 3 metrics.

CpG transitions have constraint against destabilization
of their mRNA structures

The data in Table 1 show that our observed constraint for mRNA
structure is greatest in the case of CpG transitions. Because these
variants (and their suppression) are crucial to the story of mRNA
stability, it is important to have an appreciation of their role in a
biochemical context. The dinucleotide CG (usually denoted CpG
to distinguish this linear sequence from the CG base-pairing of
cytosine and guanine) is capable of becoming methylated and
then mutating by a process called “deamination” into a TG dinu-
cleotide; deaminations are also possible in unmethylated CpGs,
but these result in a uracil that is quickly identified as a for-
eign base and repaired. In mammals 70–80% of CpGs are methy-
lated, which makes a CpG transition ∼4× more common than
any other mutation type among mammals (see Supplementary
Table S3) [83]. The nucleotides C and G also form foundational
bonds in mRNA secondary structures. Most of the energy of an
mRNA structure lies in its “stacks” of nucleotides, with the av-
erage energy of a C-G pair in a stack ∼65% stronger than that of
any other base-pairing [84].

We find strong evidence that CpG transitions are constrained
against weakening of their mRNA structures. This striking trend
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Figure 4: Synonymous variants predicted to affect mRNA structure are constrained in the human population. Population frequency of sSNVs was plotted against the
predicted impact on mRNA structure. Synonymous variants that disrupt structure tend to be absent from the gnomAD database, while those with limited impact on

structure appear at least once in the gnomAD database. (A) Proportion of sSNVs with nonzero gnomAD frequency at each value of the RNA stability metric �MFE.
Color represents average CED value, to highlight the relationship between minimum free energy and edit distance. (B) Analogous plot for metric CED measuring edge
differences between mutant/wild-type centroid structures. Color represents |�MFE|, measuring absolute change in stability. (C) Analogous plot for diversity-metric
�CD measuring change in structural ensemble diversity due to sSNV. Color is by �MFE measuring change in stability. Metric values with <2,500 (�MFE), 7,500 (CED),

or 3,500 (�CD) positive-MAF sSNVs excluded.
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Table 1: Structural metrics correlate with gnomAD frequency in most REF>ALT contexts

Context Constrained against R2 P-value Mediator

Proportion of
variance

explained by
mediator

�MFE—Structural stability constraint

CpG>CpA Weaker structure 0.683 5.23e−69 −CpG content 0.769
CpG>TpG Weaker structure 0.482 2.43e−45 −CpG content 0.746
C>G Weaker structure 0.154 1.72e−29 +Trailing G 0.156
G>T Weaker structure 0.136 4.02e−22 +Leading C 0.317
C>T Weaker structure 0.125 1.67e−20 −Leading G 0.134
T>C Both 0.117∗ 5.97e−18∗ +Leading A 0.343
C>A Weaker structure 0.087 1.73e−16 +Trailing G 0.332
G>A Stronger structure 0.035 1.64e−06 −Trailing A 0.241
A>G Stronger structure 0.030 1.11e−05 +Trailing T 0.335
G>C Weaker structure 0.018 0.000286 +Leading C 0.227
A>C Stronger structure 0.011 0.00296 +Leading C 0.064

CED—Base-pairing constraint

CpG>CpA Base-pair alteration 0.606 5.56e−15 −CpG content 0.787
C>A Base-pair retention 0.396 2.51e−09 +CodonBase2 = G 0.506
G>A Base-pair retention 0.352 3.2e−08 −Trailing A 0.607
CpG>TpG Both 0.388∗ 3.79e−08∗ −CpG content 0.563
T>C Base-pair alteration 0.240 8.33e−06 +CodonBase2 = A 0.666
C>T Base-pair alteration 0.196 9.8e−05 +C content 0.414
G>C Base-pair alteration 0.161 0.000444 +Leading C 0.386

�CD—Diversity Constraint

CpG>CpA Diversity changes 0.650 1.57e−14 −CpG content 0.849
G>A Diversity maintenance 0.482 1.07e−09 −Trailing A 0.621
CpG>TpG Diversity changes 0.336 3.81e−06 +A content 0.418
C>A Diversity maintenance 0.278 6.71e−06 +Trailing G 0.443

Correlation between structural metrics �MFE, CED, and integer-rounded �CD on the one hand, and the quantity P(MAF > 0) on the other, over all sSNVs in a given
context. The R2 and P-values are obtained from a weighted least-squares linear regression, with the P-value corresponding to the linear coefficient; a quadratic

regression was also performed, but only the P-value was retained as denoted by an asterisk. Only context-metric pairs with P < 0.005 are included. “Normalized
slope” was obtained by dividing slope of regression line by average P(MAF > 0) in the context and then multiplying by range covered by metric in its central 90% of
sSNVs. “Mediator” is raw sequence variable that explains largest proportion of structural trend in this context, with sign adjusted to correlate positively with gnomAD
frequency. “Mediator R2” gives proportion of variance explained by the mediator (see Mediator variables in Results for details).

is largely explained (in a statistical sense) by CpG content,
i.e., number of CpG dinucleotides in the vicinity (see “Propor-
tion of variance explained by Mediator” in Table 1). Figure 5
shows the populational constraint for our 3 main metrics in
CpG-transitional contexts. Most strikingly, we find that synony-
mous CpG>CpA and CpG>TpG mutations both show a steady
constraint against weakening of mRNA structure (high �MFE)
(Fig. 5A and B). Fascinatingly, both contexts exhibit a cluster of
outliers in the most destructive (i.e., most destabilizing) region,
suggestive of extreme constraint borne of significant structural
disruption.

The behavior of the edge metric CED in these contexts is also
clear-cut. In Fig. 5C and D we see a clear constraint against mu-
tations with high CED values, and the red coloring shows that
such changes are, on average, destabilizing. We also observe a
depletion at CED = 0 in the CpG>TpG case; this is responsible
for the bidirectional constraint reported in Table 1. Finally, Fig. 5E
and F show that the basic pattern of constraint for diversity in
Fig. 4C is reproduced and is essentially unchanged for both types
of CpG transition. The coloring of Fig. 5 indicates that mutations
CpG>CpA are more weakening on average than their CpG>TpG
counterparts, despite being largely produced by the same bio-

chemical mechanism (a CpG>TpG deamination on either the
sense or anti-sense strand). We speculate on this disparity in
the Discussion.

Constraint for mRNA stability in non-CpG-transitional
contexts

We observe a constraint for mRNA structure in most REF>ALT
contexts (as indicated by Table 1). We can classify the remaining
contexts on the basis of whether they are constrained against
weakening or strengthening of their structures (as reported in
the top section of Table 1). Supplementary Fig. S4 shows plots
of contexts where �MFE and gnomAD frequency are nega-
tively correlated, i.e., where structure-weakening sSNVs are un-
der constraint. Notably, all these contexts are strong>weak (or
strong>strong in the case of C<>G), consistent with the prin-
ciple that 1 purpose of such nucleotides is to maintain stabil-
ity. In Supplementary Fig. S5 we show the contexts where �MFE
and gnomAD frequency vary positively, which amounts to con-
straint against structure-strengthening sSNVs. Correspondingly,
we note that 2 out of 3 of these contexts are weak>strong (and
the third is the consistently aberrant context G>A).
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Figure 5: Synonymous CpG transitions are markedly constrained against destabilization of their mRNA structures. Population frequency of sSNV vs effect on mRNA

structure in synonymous CpG transitions was examined. Proportion of synonymous CpG transitions with nonzero MAF at each value of �MFE were determined for
(A) CpG>CpA and (B) CpG>TpG synonymous mutations. �MFE values with <75 nonzero-MAF sSNVs are excluded. Color gives average CED in each context, ranging
from 15 (blue) to 50 (red). Similarly, proportion of synonymous CpG transitions with nonzero MAF at each value of CED were determined for (C) CpG>CpA sSNVs and
(D) CpG>TpG sSNVs. Color represents average �MFE and ranges from −0.8 (blue) to 1.85 (red). CED values with <40 (CpG>CpA) or 75 (CpG>TpG) nonzero-MAF sSNVs

are excluded. Finally, proportions of synonymous CpG transitions with nonzero MAF at each value of �CD (after rounding to nearest integer) were determined for (E)
CpG>CpA and (F) CpG>TpG sSNVs. Color represents average �MFE and ranges from −3 (blue) to 4 (red). Rounded �CD values with <250 (CpG>CpA) or 20 (CpG>TpG)
nonzero-MAF sSNVs are excluded.
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Mediator variables

In Table 1 we provide a “Mediator” variable for the connection
between our RNA-folding metrics and gnomAD frequencies in
each mutational context. The name “Mediator” signifies that the
variable explains some of the connection between the structural
metric and gnomAD (details on how the Mediator and percent
variance explained are calculated are given in Methods.) These
Mediators can explain large portions of the trends in Fig. 5 and
Supplementary Figs S4 and S5. The striking trend between �MFE
and gnomAD frequency in CpG-transitional contexts, for exam-
ple, is largely driven by the local CpG content. CpG content is also
the most powerful feature for CED and �CD in these contexts,
with high CpG content consistently correlating with depletion.
A plausible inference is that an abundance of CpGs signifies im-
portant mRNA structure whose disruption could be harmful.

In non-CpG-transitional contexts, the Mediator almost al-
ways proves to be a nucleotide upstream or downstream of the
sSNV. In the context C>A we can recover 28% of the relation-
ship between �MFE and gnomAD frequency simply by looking
at whether the C is followed by a G. The power of CpG dinu-
cleotides in recovering our structural trends emphasizes the ef-
fect of these dinucleotides on mRNA structure.

Global quantification of mRNA constraint

Our analysis shows that variants predicted to disrupt mRNA sec-
ondary structures are constrained in the population. However,
the complexity of mRNA structure means that focusing on 1 sin-
gle metric will surely lead to loss of information. To overcome
this potential limitation of our RNA-folding metrics, we set out
to devise a more comprehensive method for predicting possi-
ble pathogenicity due to mRNA structure. Our strategy is to con-
sider the additional statistical power bestowed by mRNA struc-
ture. In each context from Table 1 we use RNA-sequence features
(such as nearby bases and transcript position) to construct 2 sep-
arate models to estimate the probability that an sSNV will ap-
pear in gnomAD: an “active” model that incorporates our mRNA-
structural metrics (Ps) and a null model that only uses sequence
features (Pn). These models give us 2 separate estimates for the
quantity P(MAF > 0). Then we define the Structural Predictivity
Index (SPI) to be the log-quotient of the 2 probabilities:

SPI = log10

(
Ps

Pn

)
.

The metric SPI thus measures the predictive power bestowed
by mRNA-structural variables. When it varies from 0, mRNA-
structural metrics yield new insight about an SNV’s potential to
play a functional role in mRNA secondary structure. The varia-
tion of gnomAD MAF with respect to SPI can be seen in Fig. 6. We
observe uniform constraint in SPI, validating the structural score
Ps: when Ps is relatively low, SNVs are depleted; when it is rela-
tively high, SNVs are enriched. This global relationship between
SPI and constraint is also evident across all 14 sequence contexts
(Supplementary Fig. S6). We show the power of SPI in each se-
quence context (given by its area under the curve in predicting
whether gnomAD nonzero frequency is >0) in Supplementary
Table S4.

Finally, to simplify use of our RNA stability dataset we calcu-
lated SUmmarized RNA Folding (SURF) metrics. For each of the
10 RNA-folding metrics and SPI, scores were percentile ranked
and Phred-scaled [−10 × log10(Percentile Rank)], such that the
larger the Phred-scaled value the greater the predicted change in

RNA structure. For each SNV in our dataset, the maximum Phred
score was calculated either across all 11 metrics (SURF), across
the 4 stability metrics (SURF Stability), across the 4 edge distance
metrics (SURF Edit Distance), or across the 2 diversity metrics
(SURF Diversity). Across all 4 summarized metrics, a clear cor-
relation between global constraint and increasing score can be
observed (Fig. 7).

Clinical examples of structural pathogenicity

The literature reveals only a few examples of synonymous SNVs
unequivocally shown to be pathogenic through their effects on
mRNA structure. These sSNVs, with accompanying values of our
3 ViennaRNA metrics, SPI, and SURF, are listed in Table 2. This
set of known pathogenic sSNVs show a clear enrichment for
our structural metrics, with each exhibiting a value of �MFE,
CED, �CD, or SPI that is in the third quartile of distribution for
the given score. All 9 SNVs had a damaging SURF score, rang-
ing from 9.5 to 18.6 (the 89th to 99th percentile). For example,
1 pathogenic sSNV in NKX2–5 (rs2277923), linked to congenital
heart disease, has a SURF score in the 90th percentile [64]. It
should be noted that none of these clinical sSNVs qualifies as
a truly exceptional outlier for any of our ViennaRNA metrics or
SPI; while all have SURF scores above the 89th percentile, none
exceed the 99th percentile (see Discussion for suggested score
cut-off values).

Discussion

We developed novel software to enable efficient generation of
billions of RNA-folding metrics for any species. This software
allowed us to calculate RNA-folding metrics for every base in
the human transcriptome (∼0.5 billion SNVs). The RNA stability
scores generated by this approach enable global assessment of
synonymous variants and their potential role in human health
and disease. We focused our analysis on the ∼21 million syn-
onymous variants found in the transcriptome, avoiding those
sSNVs that could affect canonical splice sites and confound our
analysis. Our study revealed that there is significant selection
against sSNVs predicted to disrupt the given transcript’s local
mRNA secondary structure, supporting our hypothesis that RNA
structure itself plays a critical role in human health and disease.

Multiple arguments support a true causal relationship be-
hind RNA stability and the observed correlation with constraint
in the human population. First, we tested our hypothesis us-
ing 3 qualitatively distinct measures of structural disruption:
change in stability (�MFE), change in base-pairing (CED), and
change in ensemble diversity (�CD). All 3 metrics showed that
SNVs that alter mRNA structure are constrained in human
populations.

Second, our study revealed some patterns that can be ele-
gantly explained in terms of mRNA structure. We showed that
strong>weak mutations such as C>A are only depleted when
they weaken mRNA structure, while weak>strong mutations are
only depleted when they strengthen it. We also found that sS-
NVs with extreme �MFE and CED values are constrained even
beyond the general trends (Fig. 5), suggesting that this severe
disruption is more-than-linearly unviable. Furthermore, Fig. 4B
highlights a pattern in CED values that alternates between high
and low on successive values (CED can only take on even val-
ues because the destruction/creation of a base pair always re-
quires 2 edits): the sSNVs with CED values that were multi-
ples of 4 (4, 8, 12. . . ) were shown to be enriched over those
that were only multiples of 2 (2, 6, 10. . . ). Such CED values are
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Figure 6: SPI score correlates with constraint in synonymous variants. Variants are grouped by Phred-scaled SPI integer values into 33 bins, with the number of sSNVs
per bin ranging from ∼1,000,000 (large circles) to ∼5,000 SNVs (small circles). The corresponding value of P(MAF > 0) was plotted against the Phred-scaled SPI score
of each bin (red circles) and fitted with a smoothed loess curve (red line). A clear correlation between global constraint and increasing score can be observed, with

all scores ≥5 (our suggested minimum cut-off, dashed arrow) demonstrating constraint in P(MAF > 0) below that of the average seen in sSNVs globally (grey line). To
assess the power of this correlation as compared to random chance, SPI scores were randomly shuffled and the MAF distribution of the shuffled SPI scores plotted
(grey circles). Across all Phred-scaled SPI bins, the P(MAF > 0) for the shuffled data remains at or close to the expected global average of 13.8%, calculated for all 17
million sSNVs that had sufficient coverage in gnomAD to determine MAF. This clearly demonstrates that sSNVs’ high Phred-scaled SPI scores are constrained (red

arrow), while those with a low score demonstrate greater plasticity (green arrow), with an increased probability of MAF > 0. Shaded area represents 90th percentile
confidence intervals for both SPI (red) and shuffled SPI (grey).

required if the total number of base pairs is to be conserved,
supporting that the constraint is needed to maintain overall
base-pairing.

Third, the structural constraint that we observe is not just
restricted in Watson-Crick base pairs, but also in nucleotides
where wobble base-pairing occurs. Wobble base-pairing takes
place between 2 nucleotides such as guanine-uracil (G-U) that
are not canonical Watson-Crick base pairs but have compara-
ble thermodynamic stabilities. We observed bidirectional con-
straint for �MFE in the context T>C, viewable in Supplementary
Fig. S5. We conjecture that the dual constraint in this context
might be due to guanine’s unique ability to wobble base-pair.
Thus, the dual constraint from mutations T>C could be related
to the transformation of T = G wobble base pairs into stronger C
= G Watson-Crick base pairs.

Finally, our SPI, created specifically to control for all con-
founding factors, demonstrates a clear relationship between
mRNA structure and constraint. When structural metrics de-
crease the model score, the gnomAD MAF is lower, whereas
when structural metrics increase the model score, gnomAD MAF
is higher (Fig. 6). This strongly suggests that our trends are di-
rect and causal. This “proof of non-spuriousness” justifies our
decision to regard sequence variables that contribute to mRNA

structure—such as adjacent nucleotides and GC/CpG content—
as Mediators (Table 1).

That many of the Mediators are adjacent nucleotides—
“leading C,” “trailing G,” and so on—suggests that the reference
and Mediator are set next to one another in a stable “stack,” such
stacks being the principal feature of mRNA structures. Our data
show that these stacks are more likely to be enriched for muta-
tions, not depleted; suggesting that a strong structure has more
tolerance to be destabilized, whereas a weak structure cannot.
The trend operates in the other direction too, with weak features
like “leading A” and “trailing T” featuring mainly in W (A or T) >

S (G or C) contexts—as if the less existing structure, the less the
danger of being overstabilized. Relatedly, several of the Media-
tors simply create a CpG—in view of the hyper-mutability and
structural sturdiness of CpG dinucleotides, it seems inevitable
that they should explain some of our trends. However, CpGs do
not explain the appearance of Mediator As and Ts in the W>S
contexts, nor do they account for the bidirectional constraint
that we observe in �MFE and �CD in Figs 3 and 4. Regardless,
in view of the deep connections linking CpG status and all the
other Mediators to both mutability and RNA structure, an en-
semble approach such as SPI is perhaps the best way of isolating
the structural contribution of any given SNV.
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Figure 7: SUmmarized RNA Folding (SURF) metrics correlate with constraint in synonymous variants. SPI and each of the 10 RNA-folding metrics were percentile ranked
and Phred-scaled [−10 × log10(rank)], such that the larger the Phred-scaled value the greater the predicted change in RNA structure. For each SNV in our dataset, the

maximum Phred score was determined across (A) all 11 metrics—SURF, (B) the 4 stability metrics (�MFE, �CFE, �MEAFE, and �EFE)—SURF Stability, (C) the 4 edge
distance metrics (MFEED, CED, MEAED, and EED)—SURF Edit Distance, or (D)—the 2 diversity metrics (�CD and �END)—SURF Diversity. For each plot, variants are
grouped by integer values into 36 bins (ranging from 0 to 40, i.e., the 99.99th percentile). The corresponding value of P(MAF > 0) was plotted against the SURF metric
for each bin (red circles) and fitted with a smoothed loess curve (red line). Shaded area represents 90th percentile confidence intervals for the given summary metric.

Dashed red line indicates the average P(MAF > 0) value of 13.8% seen in sSNVs globally. The dashed arrow indicates our suggested minimum cut-off of 5 for any given
metric. Across all 4 summarized metrics, a clear correlation between global constraint and increasing score can be observed.

Successful identification of structurally disruptive
sSNVs in known pathogenic synonymous variants

Over the past decade numerous studies have demonstrated that
synonymous variants play essential molecular roles in regulat-
ing both mRNA structure and processing, including regulation of
protein expression, folding, and function [reviewed in 9, 85, 86].
However, the potential for pathogenic synonymous variants that
affect RNA folding in human genetic disease is not universally
appreciated and this class of genetic variation is widely ignored
in the practice of clinical variant interpretation. Current Ameri-
can College of Medical Genetics guidelines for the assessment of

clinically relevant genetic variants focus primarily on missense,
nonsense, or canonical splice variants and suggest that synony-
mous “silent” variants should be classified as likely benign if the
nucleotide position is not conserved and they are not implicated
by splicing assessment tools [7].

The variant assessment community has numerous computa-
tional tools to systematically assess the pathogenicity of amino
acid–altering nsSNVs. These algorithms are primarily based
upon the high conservation of protein sequences and as such are
not equipped to assess pathogenicity in synonymous variants,
which are under different constraints [87]. Given the scarcity of
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Table 2: Known sSNVs clinically implicated for structural pathogenicity are successfully predicted to be pathogenic by our structural metrics.

Phred score [raw value] (percentile value)

Gene Condition SNP (hg38 / GRCh38) Context SURF SPI �MFE CED �CD

COMT Pain Sensitivity

rs4633
NC 000022.11:g.19962712C>T
M 000754.3:c.186C>T
NP 000745.1:p.His62=

CpG>TpG 9.7(CED) 3.8 [0.28] (58%) 2.9[-0.5](31%) 9.7[66](89%) 4.6[-4.0](19%)

COMT Pain Sensitivity

rs4818
NC 000022.11:g.19963684C>G
NM 000754.3:c.408C>G
NP 000745.1:p.Leu136=

C>G 10.1(�MFE) 4.0[-0.16](60%) 10.1[-3.0](6%) 5.0[38](68%) 7.4[-7.0](10%)

DRD2
Schizophrenia,
substance
abuse

rs6277
NC 000011.10:g.113412737G>A
NM 000795.4:c.957C>T
NP 000786.1:p.Pro319=

CpG>TpG 18.6(�MEAFE) 3.1[0.35](51%) 4.0[1.0](75%) 8.4[60](86%) 9.8[9.5](94%)

F2 Thrombosis

rs72554028
NC 000011.10:g.46739363C>T
NM 000506.4:c.1824C>T
NP 000497.1:p.Arg608=

C>T 15.9(MFEED) 1.4[0.61](28%) 5.9[-1.7](15%) 11.2[72](92%) 5.1[-4.5](17%)

KRAS Cancer

NA
NC 000012.12:g.25245355T>G
NM 033360.3:c.30A>C
NP 203524.1:p.Gly10=

A>C 10.2(EED) 2.8[0.11](48%) 0.5[0](49%) 5.2[40](70%) 3.3[2.5](74%)

NKX2-5
Congenital
heart disease

rs72554028
NC 000005.10:g.173233001C>T
NM 004387.4:c.543G>A
NP 004378.1:p.Gln181

G>A 12.6(�EFE) 4.0[-0.18](60%) 11.5[3.5](96%) 1.1[4](22%) 0.2[0.0](50%)

NKX2-5
Congenital
heart disease

rs2277923
NC 000005.10:g.173235021T>C
NM 004387.3:c.63A>G
NP 004378.1:p.Glu21=

A>G 9.8(�END) 1.9[0.41](36%) 0.5[0.0](49%) 2.9[20](49%) 9.3[9.0](94%)

OPTC
Primary open
angle glaucoma

rs559635109
NC 000001.11:g.203498796C>T
NM 014359.3:c.486C>T
NP 055174.1:p.Phe162=

C>T 9.5(�CFE) 5.7[-0.57](73%) 0.5[0.0](49%) 4.3[32](63%) 3.3[2.5](74%)

TP53 Cancer

rs748527030
NC 000017.11:7676528:T>C
NM 000546.5:c.66A>G
NP 000537.3:p.Leu22=

A>G 13.1(�CD) 0.1[1.95](2%) 2.2[-0.2](36%) 2.9[20](49%) 13.1[12.5](97%)

dbSNP RS number and standardized SNV annotations are provided, along with the gene’s official symbol and disease the sSNV has been associated with. SURF scores
are shown, along with the metric that produced that score (i.e., for the first sSNV in the table, the highest Phred-scaled value across all 11 metrics was of 9.7, observed
with the CED metric). PPhred scores for SPI, �MFE, CED and �CD are also provided, along with the metrics raw value [middle] and percentile value (bottom). For
all scores, the greater the Phred-scaled value, the greater the predicted change to the RNA structure. All clinically implicated sSNVs were predicted to be damaging
according to SURF score, and had one or more individual stability metrics with a score greater than 5 (our suggested minimum cutoff, representing the 3rd quartile for
the metric).

RNA structure–specific tools that would aid in the simultaneous
assessment of both nsSNVs and functional sSNVs in a given pa-
tient’s genome, we are almost certainly missing novel disease
etiologies that have their molecular underpinnings in patholog-
ical alterations to mRNA structure.

One of the primary goals of the present study was to ad-
dress this critical need by creating metrics to enable system-
atic assessment of all sSNVs in a given individual’s genome.
While our structural metrics and SPI are not the first attempt to
quantify pathogenicity due to mRNA-structural distortion, cur-
rent methods are limited in their application for genome-wide
variant assessment. For example, the RNAsnp Web Server pre-
dicts the change in optimal mRNA structure and base-pairing
probabilities due to an SNV [77], and the command line tool
remuRNA calculates the relative entropy between the mutant
and wild-type mRNA-structural ensembles [88]. However, while
these tools predict disruptions to mRNA structure, they do not
attempt to predict pathogenicity and must be executed manu-
ally on each variant of interest.

Both RNAsnp and remuRNA were recently used to create a
database of synonymous mutations in cancer (SynMICdb), using

data from COSMIC across 88 tumor types [71]. For constitutional
genetic disease, a related resource is the Database of Deleterious
Synonymous Mutation (dbDSM), which manually curates sSNVs
reported to be pathogenic in the literature and in databases like
ClinVar [89]. These resources represent an important step to-
wards evaluating sSNVs in disease. However, outside of those
synonymous variants known to affect splicing, relatively few
sSNVs have well-supported evidence of their pathogenicity. As
such, to evaluate our metrics, we focused on a set of 9 sSNVs
that we believe the authors unequivocally demonstrated to be
pathogenic through their effects on mRNA structure (Table 2).
This dataset included 1 variant in OPTC associated with glau-
coma [62], 2 variants in NKX2-5 associated with congenital heart
defects [64], 1 variant in DRD2 associated with post-traumatic
stress disorder [60], 2 variants in COMT associated with pain sen-
sitivity [61], 1 variant in F2 (prothrombin) associated with throm-
bosis [90], and 2 variants linked to cancer in KRAS [71] and TP53
[91].

All 9 sSNVs demonstrated definite enrichment for our struc-
tural metrics, by stability, edge distance, diversity, or SPI, with
the summary metric, SURF, having values in the 90th percentile
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range for all 9 sSNVs. For example, the synonymous variant in
F2 (NM 000506.4: c.1824C>T; p.Arg608=) had a SURF score in the
97th percentile (driven by a high MFEED value), indicating that
the variant introduced a high number of base-pair changes in
the F2 mRNA. Moreover, the negative �MFE and �CD values
that we report for this variant indicate that it results in a more
stable mRNA with reduced diversity in the structural ensem-
ble. This fits with the observations of Pruner et al. [90], who
demonstrated that the variant increased F2 mRNA levels, carri-
ers of the variant had increased concentrations of F2 in plasma,
and the frequency of the variant was significantly higher in
patients with venous thromboembolism and cerebrovascular
insult.

Notably, none of these clinically relevant sSNVs qualifies as
a truly exceptional outlier for any of our ViennaRNA metrics or
SPI, with all percentiles being <99. It is plausible that such ex-
treme outliers are not biologically tenable, making them less
likely to appear in the human population. Another possibility
is that these sSNVs occupy important regulatory positions and
that an sSNV deleterious to mRNA secondary structure may ex-
hibit pathogenicity when it distorts structure in a key region of
the transcript. At any rate, the moderateness of our structural
metrics in putative SNVs indicates that a 70th-percentile cut-off
(Phred value ≥ 5) for pathogenicity would be reasonable.

Molecular mechanisms underlying constraint of sSNVs

Synonymous variants that affect mRNA secondary structure
could confer pathogenicity in numerous ways. Foremost of these
mechanisms is that an unstable RNA has a shorter functional
half-life and so produces less overall protein [20, 22, 24]. RNA
structure modulates the movement of the ribosome along the
mRNA molecule, dictating the length of pauses in ribosomal
elongation and translocation, both critical for appropriate pro-
tein folding and ensuring that a safe distance is maintained be-
tween adjacent ribosomes [31]. Stronger structures may snap
quickly back together after translation, reducing the possible
time window for ribosomal collisions [27], while weaker sec-
ondary structures may disappear between ribosomes operating
close to one another [92], demonstrating how precisely riboso-
mal positioning can be regulated through the folding of RNA. Ri-
bosomal collisions essentially end the RNA’s life, activating the
no-go decay (NGD) pathway, and are also known to cause frame-
shifts [26, 30, 92, 93]. In support of all these hypotheses, we note
that the majority of our observed constraint is to preserve sta-
bility.

Another potential consequence of RNA misfolding is that a
more stable mRNA may not be able to initiate translation, also
resulting in lower protein levels [16, 18, 29, 39]. Nearly all species
exhibit a reduction in mRNA stability near the start codon; how-
ever, for mammals and birds this trend in mainly seen in GC-
rich genes [17]. Some studies suggest that by making the mRNA
structure too difficult, or too easy, for the ribosome to process,
synonymous codons can act to promote or frustrate proper pro-
tein folding [49]. RNA stability limits the growth rate of the pep-
tide chain and thereby provides time for the core of the protein
to establish itself [94, 95]. These findings emphasize the central-
ity of mRNA structure in regulation of ribosomal speed.

sSNVs also play roles in other processes that could affect our
observations. While the stability of an mRNA transcript can de-
termine how quickly it is translated [19, 29, 38], protein synthe-
sis is regulated by both the abundance [96] and recruitment of
transfer RNAs (tRNAs) through synonymous codon utilization
(codon bias) [97–99]. However, there are 2 reasons we expect

codon optimality to be a secondary factor in our study. First, we
do not observe a depletion in mutations from optimal to sub-
optimal codons (see Supplementary Fig. S8). Second, the opti-
mal reference codons tend to be those ending in G or C, so our
REF>ALT contexts should largely account for changes in codon
optimality. This assumption is consistent with an earlier study
that clearly separated the 2 factors’ contributions to gene ex-
pression [27]. Yet it is worth remarking that optimal to subop-
timal mutations (i.e., G/C to A/T) do show sharper constraint
throughout our work. Regardless, to give proper weight to tRNA
we include the tRNA Adaptivity Index (tAI), a measure of codon
optimality, in our null model for SPI [100]. Our understanding of
the role of bicodon bias in human disease is limited, yet pair-
ing of consecutive codons is another mechanism by which the
translational process is regulated [12, 47].

Finally, it is important to consider the essential role of syn-
onymous codons in RNA splicing. While we took care to exclude
sSNVs affecting the canonical splice sites from our constraint
analysis, exonic variants beyond the canonical splice site can
disrupt splice enhancers [101], or they may also activate cryptic
splice sites, leading to loss of coding sequence (CDS) [102]. Given
the diversity of molecular roles that synonymous codons have,
it will be important for future studies to create scores that would
allow assessment of sSNV pathogenicity through any these pos-
sible mechanisms.

Potential Implications

We have shown that sSNVs that disrupt mRNA structure are sig-
nificantly constrained in the human population, thereby sup-
porting a growing understanding that previously assumed that
“silent” polymorphisms actually play important roles in regula-
tion of gene expression and protein function. We have demon-
strated that this connection is rich, complex, and biologically in-
tuitive. Given that there are multiple mechanisms by which sS-
NVs influence biological function, we are almost certainly miss-
ing undiscovered disease etiologies when these variants are ig-
nored.

In addition to providing the community with a dataset of
10 ViennaRNA structural metrics for every known variant, our
SPI represents a comprehensive method for predicting possible
pathogenicity due specifically to changes in mRNA secondary
structure. Because no single metric is capable of capturing all as-
pects by which a variant can alter structure, our summary met-
ric SURF provides a single measurement to predict the impact of
mRNA-structural variables in human genetic studies. We hope
that these metrics will be used to accurately assess and prior-
itize an underrepresented class of genetic variation that may
be playing a significant and as-yet-to-be-realized role in human
health and disease.

Methods
RNA structure prediction process

Global assessment of sSNVs is truly a big data problem because
it requires generation and evaluation of several raw values for
each of hundreds of millions of positions within the genome.
To address this challenge and successfully predict the mRNA-
structural effects of every possible sSNV, we developed novel
software built upon the Apache Spark framework (Fig. 2). Apache
Spark is a distributed, open source compute engine that drasti-
cally reduces the bottleneck of disk I/O by processing its data in
memory whenever possible [103]. This leads to a 100× increase
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in speed and allows for more flexible software design than can
be achieved in the traditional Hadoop MapReduce paradigm.
Spark is well suited to address many of the challenges faced in
analyzing big genomics data in a highly scalable manner, and
adoption is growing steadily, with applications such as Spark-
Seq [104] for general processing, SparkBWA [105] for alignment,
and VariantSpark for variant clustering [106]. By developing a
solution within this framework, we eliminate significant com-
putational hurdles standing in the way of large-scale analysis of
sSNVs.

We used the NCBI RefSeq database (Release 81, GRCh38) as
the source for all known human coding transcript sequences. At
each position within a given transcript, 4 sequence windows of
101 bases were built, differing only in their central nucleotide,
which was set to the reference nucleotide or 1 of the 3 possi-
ble alternate bases. If the nucleotide lay within 50 bases of the
transcript boundary, the window was simply taken to be the
leading/trailing 101 nucleotides of the transcript. Using Apache
Spark in the Amazon Web Services (AWS) Elastic Map Reduce
(EMR) service, we developed a massively parallel implementa-
tion of the ViennaRNA Package to analyze the 4 possible se-
quences. ViennaRNA is a secondary structure prediction pack-
age that has been extensively used and continuously developed
for nearly 25 years, and uses the standard partition-function
paradigm of RNA structural prediction [107].

Our Spark implementation of Vienna enabled us to examine
changes in mRNA folding that result from any given polymor-
phism and thereby obtain 10 metrics that quantified the SNV’s
effect on mRNA secondary structure (see Supplementary Table
S1). First, we used RNAfold to obtain predicted free energies for
both mutant and wild-type sequences, which we compared di-
rectly to obtain 4 metrics describing the sSNV’s effect on mRNA
stability (�MFE, �CFE, �EFE, and �MEAFE). Next, we fed the pre-
dicted structures from RNAfold into the ViennaRNA programs
RNApdist and RNAdistance to obtain 6 additional metrics quan-
tifying the change in base-pairing (CED, MFEED, EED, MEAD) and
ensemble diversity (�CD, �END) due to each SNV. (See the doc-
umentation of [14] for detailed descriptions of these concepts.)
We performed this procedure for all 470 million possible SNVs
in 45,800 transcripts. After building our fasta files, we were able
to run the whole computation in <24 hours using 51 c4.8xlarge
AWS EMR computing nodes.

Classification of variants

A common difficulty in variant classification is that an SNV may
have different effects in different transcripts. To address this
challenge, we annotated every SNV using the program snpEff
[108], whose source code was modified to allow record-by-record
calling via Spark. This snpEff analysis produced multiple anno-
tations including the effect and location of the variant, e.g., mis-
sense, synonymous, canonical splice site, and so forth. To val-
idate these snpEff predictions we also manually predicted the
coding effect of each SNV using start and stop codon informa-
tion from RefSeq [109]. The small number of sSNVs where our
predicted biotype disagreed with snpEff’s were discarded. After
computing variant effect and location, we assigned each SNV a
classification based on the most deleterious role it played in any
transcript. In decreasing order of deleteriousness, these roles
were start loss, stop gain, start gain, stop loss, missense, syn-
onymous, 5′ UTR, 3′ UTR.

Having completed the annotation process we had a total of
470,606,772 SNVs in all known transcripts. Because exonic lo-

cations can share the same genomic coordinates for multiple
transcripts, we next collapsed the data to 184,810,596 unique
chromosome positions, assigning each variant a canonical tran-
script. Canonical transcripts were selected by (i) representation
in the Matched Annotation from NCBI and EMBL-EBI (MANE)
database (v0.9); or if the given gene was not in MANE, we chose
either (ii) the transcript with the longest CDS or, when CDS
length was the same across multiple transcripts for a given gene,
(iii) the longest transcript. After filtering out variants implicated
in splicing or lacking annotations needed in future steps, we ob-
tained a dataset of 22.9 million synonymous variants, 70 million
missense variants, 73 million variants in the 3′ UTR, and 13 mil-
lion variants in the 5′ UTR. See Fig. 2 for a summary of our com-
putational pipeline and Supplementary Table S5 for a record of
the number of SNVs filtered at each stage.

Determination of population minor allele frequencies

To measure constraint operating on an SNV we used popula-
tion frequencies obtained from the gnomAD database. We com-
bined both the exome variant calls from release v2.1.1 (originally
mapped to GRCh37 and lifted over to GRCh38 coordinates by the
gnomAD group) and genome sequencing variant calls from v3.1
(mapped and called using GRCh38). Quality filtering was applied
using gnomAD recommendations, removing ∼1 million SNVs
that failed random forest filtering (thresholds of 0.055 for gno-
mAD 2.1.1 exome data) and removing ∼3,000 SNVs with an in-
breeding coefficient < 0.3. Approximately 22,000 were filtered
out with a MAF ≥ 0.5 (indicative of sites where the reference
allele represented a minor allele in the population). Finally, be-
cause the majority (∼90%) of SNVs have a gnomAD frequency 0,
it was important to identify SNVs marked zero purely through a
lack of coverage. To achieve this, we flagged and removed all sS-
NVs where <70% of samples had ≥20× coverage. Approximately
7.6 million SNVs failed these quality and coverage metrics, leav-
ing a core dataset of 21.4 million synonymous variants, 68 mil-
lion missense variants, 69 million variants in the 3′ UTR, and 12
million variants in the 5′ UTR (Supplementary Table S5). When
combining the gnomAD data from whole-genome sequencing
(WGS) and whole-exome sequencing (WES) sets, we used only
those SNVs that passed all our filters in both sets. An SNV with
MAF > 0 in only 1 of the sets was considered to have MAF > 0 in
the joint set.

Further variant annotations and data partitioning

We estimated the local nucleotide content around each sSNV
by dividing each transcript into windows of 40 bases and in
each window calculated the proportion of A’s, C’s, G’s, T’s, CpG’s,
and AT’s in the surrounding 3 windows; these annotations were
used in constructing SPI and identifying Mediator variables. Fi-
nally, we joined multiple additional annotations (including con-
servation metrics such as PhyloP) from the dbNSFP dataset [110].
Again, this heavy task was greatly facilitated by our Spark frame-
work.

We carried out most of the analysis separately on subsets of
data defined by a common mRNA reference and alternate allele,
e.g., those sSNVs of form C>A. The reference and alternate alle-
les exert such a huge influence on gnomAD frequency that the
best solution seemed to be to control for them explicitly. The
number of sSNVs in each context and the proportion appearing
in gnomAD are given in Supplementary Table S3.
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Identification of significant contexts

Table 1, which describes the correlation between our structural
metrics and gnomAD frequency in each REF>ALT context, is
an abbreviated version of the more complete description given
in Supplementary Table S2. In each context we ran linear and
quadratic regressions between our structural metric and the
value P(MAF > 0) at each value of the metric, weighted by the
number of sSNVs for which the metric attained that value. An
asterisk denotes that quadratic R2 and P-values are reported in-
stead of linear; this was done if quadratic pseudo-R2 exceeded
the linear by a factor of ≥5. The normalized slope was com-
puted by dividing the slope of the regression line by the average
P(MAF > 0) in the context and then multiplying by the range cov-
ered by the metric in its central 90% of sSNVs. The “Constrained
Against” field simply states whether the normalized slope (or
the quadratic coefficient, in quadratic cases) is positive or nega-
tive.

Mediator variables

Mediator variables (so called because they explain some of the
connection between our mRNA-structural metrics and gnomAD
frequency) are given in Table 1. They were chosen to be the se-
quence feature that explained the greatest portion of the con-
nection between a structural metric (e.g., �MFE) and the propor-
tion of nucleotides with MAF > 0 in a context. Possible Mediator
variables that we considered were local nucleotide content and
the specific nucleotides upstream/downstream of the sSNV.

To compute the proportion of correlation between a struc-
tural metric (e.g., �MFE) and MAF that is explained by a se-
quence feature such as CpG content in a particular REF-ALT con-
text, we first built a simple logistic regression model to estimate
the quantity P (MAF > 0 | CpG content). We then plug the result-
ing estimate Pest(MAF > 0 | CpG content) into the expression

VCpG content =
∑

x
nx × {

E [ Pest(MAF > 0 | CpG content) |

�MFE = x] − P (MAF > 0 | �MFE = x)
}2

,

where the sum is over all values of �MFE and nx is number of
sSNVs in the context with �MFE = x. Comparing this quantity
VCpG content to the null variance

Vnull =
∑

x
nx × [ P (MAF > 0) − P (MAF > 0 | �MFE = x)]2

allows us to compute the proportion of the variation explained
by CpG content:

R2
CpG content = 1 − VCpG content

Vnull
.

The “Mediator” for a given structural metric in a given con-
text is chosen as the variable with the highest R2

. Finally, the
correlation between the Mediator and the event that MAF > 0
was checked, and the Mediator given a sign (+/-) so that it cor-
related positively with MAF > 0.

Construction of SPI

To construct SPI scores we built 2 separate models over each of
our 14 contexts to predict the event MAF > 0. The “null” model
used multiple natural features—the 9 nucleotides in the SNV’s
home and adjacent codons, the proportion of A/C/G/T/CpG/AT’s

in the surrounding 120 nucleotides, the sSNV’s position in its
codon, its transcript and the transcript’s length, and the tAI (ob-
tained from a supplement of [111] from [112]) of the wild-type
and mutant codons. The second, “active” model used all these
features plus our 10 ViennaRNA metrics and the binding sta-
tuses of the reference and alternate bases in the predicted MFE
structures generated by Vienna.

Both sets of variables were then used to predict whether MAF
> 0 using a weighted general linear model as implemented in
the LogisticRegression module of the Python scikit-learn pack-
age [113]. We then defined the SPI score for an sSNV to be the
base-10 logarithm of the active model’s predicted P(MAF > 0) di-
vided by the null model’s predicted P(MAF > 0). Context-wise
plots for SPI are given in Supplementary Fig. S6.

We trained our SPIs using a 5-fold cross-validation in each
SNV context, with the final assigned prediction being the av-
erage of all 5 predicted probabilities for a variant. When train-
ing SPI we used 6 separate schemes for partitioning the gno-
mAD data: WGS only, WES only, their union but throw away
SNVs present in only 1 dataset, the union but count such SNVs
as having MAF > 0, and analogously for intersections. Then in
each SNV context we use the SPI score that yields the high-
est area under the curve. We also tried 3 different model styles
for computing the raw predictions that comprise SPI—general
logistic as implemented in Python’s sklearn LogisticRegression
module, random forest as implemented in sklearn’s Random-
ForestClassifier, and gradient-boosted trees as implemented in
the extreme gradient boosting Python package XGBoost [114].
The performance of each SPI “flavor” is given in Supplemen-
tary Table S4. We settled on the general logistic model, ow-
ing to its simplicity and also owing to the generally poor per-
formance of the 2 tree-based models. SPI scores were z-score
normalized (subtracted the mean and divided by the s.d.) and
percentile ranked within each context. Finally, these context-
specific percentile rankings were converted to a Phred-scaled
score [−10 × log10(1 − SPI Context Percentile)] prior to building
Fig. 6.

Construction of SURF

To construct our final SUmmarized RNA Folding (SURF) metrics
(Fig. 7), each of the 10 RNA-folding metrics was percentile ranked
and Phred-scaled, such that the larger the Phred-scaled value
the greater the predicted change in RNA structure. For scores
measuring a � in the given metric, negative stability and di-
versity values were ranked separately from positive values, us-
ing the formula −10 × log10(1 − Percentile Rank). For edge dis-
tance, positive stability and positive diversity metrics results
were Phred-scaled using the same formula. Finally, any Phred
score >50 (i.e., a metric in the 99.999th percentile or above) was
set to a value of 50, resulting in all Phred-scaled scores ranging
from 0 to 50. For each SNV in our dataset, maximum Phred score
was determined across the 4 stability metrics (�MFE, �CFE,
�MEAFE, and �EFE) to generate the SURF Stability score, across
the 4 edge distance metrics (CED, MFEED, EED, and MEAED) to
generate SURF Edit Distance score, or across the 2 diversity met-
rics (�CD and �END) to generate the SURF Diversity score. Fi-
nally, the single summary metric, SURF, was generated by choos-
ing the maximum Phred score across any of the 10 RNA stability
metrics and SPI.

Availability of Source Code and Requirements

Project name: rna-stability
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Project home page: https://github.com/nch-igm/rna-stability
Operating system: Linux
Programming language: Scala
Other requirements: Apache Spark 2.4+
License: FreeBSD
Biotools ID: bio.tools/rna-stability
RRID: https://scicrunch.org/scicrunch/Resources/record/nlx 144
509-1/SCR 019259/resolver

Data Availability

The software we developed and structural scores are available
on GitHub [115] and via the GigaScience database GigaDB [116].

Additional Files

Supplementary Table S1. Vienna RNA metrics
Supplementary Table S2. Constraint across sequence contexts
Supplementary Table S3. sSNV contexts across the human tran-
scriptome
Supplementary Table S4. Modeling structural constraint with
SPI score
Supplementary Table S5. Data pre-processing steps
Supplementary Figure S1. Distribution of structural metrics
Supplementary Figure S2. Calculation of edit distance
Supplementary Figure S3. Structural metrics over all synony-
mous SNVs
Supplementary Figure S4. Structural metrics in contexts con-
strained against destabilization
Supplementary Figure S5. Structural metrics in contexts con-
strained against overstabilization
Supplementary Figure S6. Sequence context and SPI
Supplementary Figure S7. Structural metrics vs log(MAF)
Supplementary Figure S8. Change in codon optimality vs muta-
tion rate
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