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Differential network analysis reveals the key
role of the ECM-receptor pathway
in a-particle-induced malignant transformation
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Space particle radiation is a major environmental factor in
spaceflight, and it is known to cause body damage and even
trigger cancer, but with unknown molecular etiologies. To
examine these causes, we developed a systems biology approach
by focusing on the co-expression network analysis of transcrip-
tomics profiles obtained from single high-dose (SE) and multi-
ple low-dose (ME) a-particle radiation exposures of BEAS-2B
human bronchial epithelial cells. First, the differential network
and pathway analysis based on the global network and the core
modules showed that genes in the ME group had higher enrich-
ment for the extracellular matrix (ECM)-receptor interaction
pathway. Then, collagen gene COL1A1 was screened as an
important gene in the ME group assessed by network parame-
ters and an expression study of lung adenocarcinoma samples.
COL1A1 was found to promote the emergence of the neoplastic
characteristics of BEAS-2B cells by both in vitro experimental
analyses and in vivo immunohistochemical staining. These
findings suggested that the degree of malignant transformation
of cells in the ME group was greater than that of the SE, which
may be caused by the dysregulation of the ECM-receptor
pathway.
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INTRODUCTION
Spaceflight imposes a unique suite of environmental effects on
biology.1 With the expansion of spaceflight, the space environment
includes unique hazards such as radiation exposure, which can
adversely affect biological systems.2,3 The main effect of radiation
exposure is damage to DNA, including base damage, single-strand
breaks, double-strand breaks, chromosomal aberrations, micronu-
clei, and genomic instability.4–7 At the phenotypic level, radiation
exposure leads to physical damage, including muscle and bone
loss, neurological damage, and impaired immunity.8 Space radiation
exposure can also result in defects in mitochondrial physiology,
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leading to numerous pathological conditions, including bone loss9

and accelerated aging.10 The primary concern for radiation exposure
is the risk of developing tumors and/or cancer,11 and the
known increased cancer risk is caused by chronic low doses of radi-
ation exposure.12,13 However, the mechanism underlying the carci-
nogenic potential of radiation exposure is not fully understood,
especially after chronic low doses of radiation exposure, which is
the situation that astronauts must confront in long-term deep space
missions.14

Knowledge of spaceflight injury has grown immensely in recent years,
benefiting from large-scale “omics” technologies,15 making an under-
standing of molecular mechanisms at the systems level possible.
In 2020, Gertz et al.16 integrated transcriptomic and proteomic data
to study how spaceflight affects innate immunity through mitochon-
drial processes. This study, together with data from NASA’s GeneLab
(https://genelab.nasa.gov/),17 opened the door to the study of
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spaceflight in the big data era.18–21 Multiomics cancer models inte-
grating genomics, genome conformation, transcriptomics, and epige-
nomics have been used to predict how mutations from spaceflight ra-
diation and cytoskeletal remodeling/DNA modification aberrations
due to microgravity affect astronauts.22 Due to the complexity of
spaceflight biology, including different environmental factors such
as particle radiation exposure and microgravity, systems biology ap-
proaches leveraging network modeling are required to characterize
these components in a holistic fashion.8

Gene function is not isolated but forms protein-protein interaction
networks (PPINs) governed by universal laws, and the network ef-
fect of genes is the driving force moving from the normal to the
exposure group in response to environmental changes.23 Thus,
elucidating the changes in individual nodes and edges, distinct mod-
ules, and the entire network as a whole in terms of several network
centrality parameters may provide functional information to
describe such biological processes.24 Differential network analysis
can capture changes between conditions in the interplay between
molecules, rather than changes in single molecules, and has many
applications, including illuminating the molecular basis of tissue-se-
lective processes or disease-specific genes,25 and identifying critical
signaling pathways altered during tumor transformation and pro-
gression,26,27 or between different cancer subtypes.28 On the other
hand, biological networks, including PPINs, are intrinsically
modular, with proteins belonging to the same module usually
sharing common functions.29,30 The identification of network clus-
ters not only helps us to reveal the modular organization of cell
signaling networks,31 but also identifies functional modules in
different conditions and in radiation biology.

In this work, employing transcriptome data associated with two
different a-particle radiation methods (single high-dose irradiation
[SE] andmultiple low-dose irradiations [ME]) on human lung epithe-
lial cells, we applied an unbiased multiple-level differential network
analysis framework for systematically investigating the network
changes that mimic the spaceflight environment (Figure 1). First,
two weighted PPINs were constructed for two different a-particle ra-
diation groups. Second, the difference between these networks was
investigated through module differential analysis to identify the func-
tional modules. Third, the functional enrichment and topological an-
alyses were performed for the functional module, aiming to reveal key
pathways and genes. Finally, the biological functionality of the iden-
tified hub genes was validated through experimental verification.

RESULTS
Data comparison of exposure groupswith the control group and

The Cancer Genome Atlas lung samples

The expression profiles of nine SE samples, nine ME samples, and
three controls were obtained from RNA-sequencing (RNA-seq) (Fig-
ure 2A). Initially, we performed principal-component analyses
(PCAs) on the expression profiles, and the results showed differences
between the control groups and exposure groups (Figure 2B). All the
control groups clustered close together, while the SE and ME samples
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clustered into two groups, indicating a relatively high degree of sim-
ilarity of the exposure groups, and this expression pattern changed af-
ter exposure, regardless of the exposure methods.

The risk model of lung cancer from a-particle radiation has been
primarily established based on BEAS-2B cells.32 To evaluate the
different exposure methods on BEAS-2B cells, we also performed
correlation analysis between SE groups with normal lung samples
and ME groups with normal lung samples. As shown in Figure 2C,
both groups were significantly correlated with normal lung samples,
but the correlation coefficients for the former comparison were
significantly larger than those for the latter comparison, indicating
that the SE groups were more similar to the control than the ME
group; in other words, the cells under multiple exposures departed
more from normality. Moreover, correlation analysis between
R1_05_50 and lung cancer stage I samples, as well as between
R25_05_50 and lung cancer stage I samples was performed (Fig-
ure 2D). The 50th passage samples were significantly correlated
with the stage I samples, but the correlation coefficients for the
former comparison were significantly smaller than that for the latter
comparison, indicating that the ME groups were more similar to the
stage I samples than the SE group.

Multiple exposures reveal genetic information and

tumorigenesis-related pathways

Network theory provides new insights to study the disturbances of
systems from global and local interactions. Here, we employed
WGCNA and STRING to construct exposure way-specific PPINs
(SENet and MENet) to compare the effects of single and multiple ex-
posures on the cells (Figure 3A). As a result, SENet and MENet share
the same network structure and topology (15,541 nodes and
4,385,019 links) but with different link weights. Then, we measured
the consistency of the two networks by link weight distributions
and RMSIP. As shown in Figure 3B, the weight distribution patterns
of links in SENet andMENet were almost the same. However, the per-
centage of links with weights larger than 0.8 in SENet was larger than
in MENet. In the RMSIP plot (Figure 3C), the RMSIP achieved 0.55,
whichmeans that SENet andMENet have a relatively high topological
overlap rate. All the results indicated that SE groups were very similar
to ME groups at the whole network level, but they still have their own
respective characteristics.

We next calculated the topological centralities for genes in SENet and
MENet to compare exposure effects from network features. As shown
in Figures 3D and 3E, although the percentage of links with high
weights in MENet was smaller than that in SENet, genes in MENet
had significantly higher K and EC than those in SENet, which means
that genes in MENet had more interactions and their neighbors also
had more interactions. The results indicated that larger network wir-
ing occurred with more perturbed genes and interactions induced by
multiple exposures. Then, we investigated the function of hub genes
with the top 5% degree in two networks using enrichment analysis
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
There were 171 and 167 pathways that were significantly enriched



Figure 1. The differential network analysis framework
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by the hub genes in SENet and MENet, respectively, and 153 of them
were common pathways (Figure 3F), that is, enriched by the genes
from both networks, which indicated that most hub genes in both net-
works have similar functions. However, they also have different path-
ways (Figure 3G). For hub genes in SENet, 18 pathways were signif-
icantly enriched, and two of them, the Fanconi anemia pathway and
Homologous recombination, were related to DNA damage repair.
When compared with SENet, MENet hub genes were specifically en-
riched in 14 pathways, which involved more genetic information pro-
cessing-related pathways including Proteasome, Protein processing in
the endoplasmic reticulum, DNA replication, as well as pathways
associated with tumorigenesis, such as ECM-receptor interaction33

and Ferroptosis.34 All the results indicated that multiple exposures
can cause more information exchange and that these interactions
were related to tumorigenesis.
Comparison of single andmultiple exposure effects on BEAS-2B

cells from the network core

Important information always flows in the key interactions, which
are always involved in the network core.35 Therefore, we con-
structed the core network of SENet and MENet and compared
their differences to characterize the single and multiple exposure
effects on cells. First, we selected the interactions with weights
larger than 0.40 and 0.45 in SENet and MENet as their core
network, named SENetCore and MENetCore, respectively, to
reflect the main important information flows among genes that
were affected by different exposure conditions. SENetCore consists
of 2,123 nodes and 9,847 interactions, while MENetCore consists
of 2,129 nodes and 9,395 interactions. Then, the topological pa-
rameters were calculated for both network cores (Figure 4A; Fig-
ure S1). Similar to the whole network, the eigenvector centrality
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 3
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Figure 2. Experimental design and sample information

(A) RNA-seq of BEAS-2B cells after two types of irradiation. Three replicate controls were BEAS-2B cells without any treatment. SE: BEAS-2B cells after a single dose of

0.5 Gy and then sub-cultured to the 10th passage, 30th passage, or 50th passage. ME: BEAS-2B cells after 25 exposures of 0.02 Gy and then sub-cultured to the 10th

passage, 30th passage, and 50th passage. (B) PCA plot depicting gene expression profiles for the control, SE, and ME groups. (C) Expression correlation of SE groups with

normal lung samples, and ME groups with normal lung samples. (D) Expression correlation of R1_05_50 samples with lung cancer stage I samples and R25_05_50 samples

with lung cancer stage I samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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(EC) values of nodes in MENetCore were significantly larger than
those in SENetCore, and they distinguished the control groups
from both SE and ME groups (Figure 4B). The results indicated
that in MENetCore, not only hub genes are important, but their
neighbors also play important roles in the network, which indicates
that multiple exposures may induce interactions among genes with
a high information flow context.

To explore the functional differences between SENetCore and
MENetCore, pathway enrichment analysis was performed, and the
results demonstrated that both were enriched in the neuroactive
ligand-receptor interaction, cytokine-cytokine receptor interaction,
cAMP signaling pathway, and others (Figure 4C), indicating that
both network cores also have similar biological functions. However,
more importantly, some specific biological pathways were high-
lighted. In particular, the ECM-receptor interaction was significantly
enriched in the ME groups at the network core level, again playing
an important role in the ME group. Consistent with the whole
4 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
network findings, all the network core results indicate that
MENetCore genes were more closely associated with tumors than
SENetCore genes.

Network analysis reveals the conservation of the ECM-receptor

pathway and hub genes in the ME group

We next performed module analysis for SENetCore and
MENetCore to organize the exposure type-related changes in an
unbiased manner. The Girvan-Newman and label propagation
analysis algorithms were used together to find the robust modules
in both networks. With a similar number of genes, SENetCore
and MENetCore were divided into 98 and 76 modules, respec-
tively. As shown in Figure 5A, there were more modules whose
sizes were less than 100 in SENetCore than in MENetCore, and
both networks had three modules with more than 100 genes.
The results indicated that modules in MENetCore are more robust,
which may suggest the biological importance of its functional
modules.



Figure 3. SENet and MENet

(A) Construction of exposure way-specific SENet and MENet PPINs. (B) Edge weight distribution in SENet and MENet. (C) Consistency between SENet and MENet. (D)

Degree and (E) eigenvector centrality were significantly larger inMENet than in SENet. (F) Venn diagram showing overlap of significantly enriched pathways for the top 5% high

degree in SENet (blue) and MENet (pink). (G) The significantly enriched pathways specific to the SE group (blue) and ME group (red). *p < 0.05, **p < 0.01, ***p < 0.001.
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We also applied pathway enrichment analysis to analyze the func-
tional enrichment of the three largest modules in SENetCore and
MENetCore (Figure 5B). The results revealed that the largest mod-
ule in both network cores significantly enriched several of the
same pathways, such as axon guidance, basal cell carcinoma and
Wnt signaling pathways. Nevertheless, as previously mentioned,
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 5
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Figure 4. Network cores for SENet and MENet

(A) Boxplot representation of eigenvector centrality for SENetCore and MENetCore. (B) Heatmap representing the expression of genes in SENetCore and MENetCore. The

color bar on the left represents the high and low (cutoff: median) EC values of genes that are matched, the right colored bar represents the expression level, and the upper

colored bar represents the group. (C) Significantly enriched pathways for genes in SENetCore and MENetCore. *p < 0.05, **p < 0.01, ***p < 0.001.
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the ECM-receptor interaction was again enriched by the
largest module from the ME group, which indicated that multiple
exposures might indeed affect the ECM-receptor interaction
pathways.
6 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
To further explore the effect of exposure types on the modules, we
mapped the differentially expressed genes (DEGs) between the SE
group and control group, as well as the ME group and the control
group, on the corresponding large modules (Figure 5C). In the SE



(legend on next page)

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 35 September 2024 7

http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
group, 682 DEGs were found in the largest module, but no DEGs and
only one DEG was found in the second and third largest modules.
Similarly, in the ME group, 883 DEGs were mapped in the largest
module and no DEGs were mapped in the second and third largest
modules. The results indicated that the largest module was the key
module in the exposure-affected network, which captured most of
the genes associated with expression changes. Moreover, we also
calculated the intra-module topological parameters for the largest
modules, and the results showed that the module in MENetCore
had a significantly higher average degree than the module in
SENetCore (Figure 5D). Other parameters for the largest three mod-
ules are listed in Table S1.

Owing to the conservation of ECM-receptor pathways at different
network levels, we then focused on 14 genes in the largest module
of MENetCore that are involved in this pathway (Figure 5E). Among
them, five genes, THBS2, COL1A1, COL4A1, COL1A2, and LAMC2,
were hub genes in the module (Figure 5F; Table S2). Although THBS2
has the largest centrality measures in the network level, COL1A1 is
involved in more ECM-related pathways (Figure 5G), serving as a
pathway crosstalk. In addition, most of the ECM-receptor pathway-
mapped genes were up-regulated in the exposure groups compared
with the controls (Figure 5H), among which COL1A1 was signifi-
cantly up-regulated. Of note, the high degree in network and pathway
levels (Figure S2), as well as the high expression of COL1A1 may sug-
gest its important biological role, which needs further experimental
investigation.

COL1A1 promotes the emergence of neoplastic characteristics

in BEAS-2B cells

To further confirm which genes were driving the malignant transfor-
mation process, we examined each key gene in the ECM-receptor
pathway and found that the mRNA level of COL1A1 was most signif-
icantly increased after single and multiple exposures (Figure S3).
Then, the exposure effects of COL1A1 were further validated by bio-
informatics through big data analysis, as well as through experimental
expression data at both the RNA and protein levels. First, the expres-
sion level of COL1A1 was significantly higher in lung adenocarci-
noma and lung squamous cell carcinoma cancer subtypes than in
normal tissues, and its high expression was associated with poor sur-
vival outcomes (Figures S4A–S4C). Moreover, its expression level was
also significantly increased in TNM stage samples, T1-4 samples, N0-3

samples, and M0-1 samples, when compared with normal samples
(Figures S4D–S4G). Then, we measured COL1A1 expression levels
in BEAS-2B cells and in the lung cancer cell lines Calu-1, and also
in BEAS-2B cells after single and multiple exposures using qRT-
PCR. As shown in Figures S5 and 6A, the expression of COL1A1
was significantly lower in BEAS-2B cells than in Calu-1 cells and
Figure 5. Network modules in SENetCore and MENetCore

(A) Module size distribution in the SE andME groups. (B) The top 10 significantly enriched

(red). (C) Venn diagram showing the overlap of genes in the largest module with dysregu

largest module in SENetCore (blue) and MENetCore (red). (E) Module genes involved in

module. (G) Four pathways in ME-Module 1 that COL1A1 are involved. (H) Expression
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was significantly increased in BEAS-2B cells after single and multiple
exposures. The results indicated that both single and multiple expo-
sures can induce tumor-like high expression of COL1A1. In partic-
ular, COL1A1 was also up-regulated in the multiple exposure group
R25_05_50 compared with the single exposure group R1_05_50,
which indicated that the effects of multiple exposure were greater
than those of single exposure on COL1A1 expression.

At the protein level, we evaluated the COL1A1 expression in SE and
ME groups by western blot and found that the COL1A1 level was also
significantly higher in the exposure compared with the control group
(Figures 6B and 6C). In addition, COL1A1 protein was mainly local-
ized to the cytoplasm of BEAS-2B cell lines (Figure 6D). Next, we con-
ducted immunohistochemical analysis using a tissue microarray
comprising 32 pairs of lung cancer and adjacent normal tissues and
found that the ratio of COL1A1-positive cells in lung cancer tissue
was significantly larger than in adjacent normal tissue (Figures 6E
and 6F; Figure S6).

Finally, to examine the biological role of COL1A1 in the process of
irradiation-induced cell transformation, we knocked down the
expression of COL1A1 in normal, single, and multiple irradiated
BEAS-2B cells by small interfering RNA (siRNA), respectively. The
cells with COL1A1 knockdown were established via transfection
and screening (Figure S6). We employed a loss-of-function approach
using siRNA specifically targeting COL1A1. Following transfection of
COL1A1-specific siRNA into the cells, the efficacy of gene silencing
was assessed at both mRNA and protein levels (Figure S7). From
the results, cells irradiated with single and multiple exposures of
a-particles showed higher migration and invasion capacity, and in
the COL1A1 knockdown cells, each group with COL1A1 knockdown
exhibited significant decreases in migration and invasion abilities
compared with the corresponding control group, especially in the
irradiated group (Figures 6G and 6H; Figure S8). To elucidate the
functional significance of COL1A1 in cellular transformation, we es-
tablished a stable knockdown cell line using lentiviral-mediated short
hairpin RNA (shRNA) specifically targeting COL1A1. The effective-
ness of this knockdown strategy was rigorously assessed at both tran-
scriptional and translational levels (Figure S9), and we also find that
in the COL1A1 knockdown cell line, the number of soft agar colony
formation was significantly reduced (Figures 6I and 6J).

The above results confirmed that irradiation could increase the
expression level of COL1A1 at both RNA and protein levels regardless
of the irradiation type, and the COL1A1 level was higher in the mul-
tiple exposure group. Therefore, we proposed that COL1A1 may be
the key factor for irradiation-induced tumorigenesis, especially under
multiple exposure conditions.
pathways of genes in the three largest modules in SENetCore (blue) andMENetCore

lated genes in the SE and ME groups. (D) Boxplot representation of the degree in the

ECM-receptor pathways. (F) Degree of ECM-receptor pathway-related genes in the

of ECM-receptor pathway-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.



Figure 6. COL1A1 promotes the emergence of the neoplastic characteristics of BEAS-2B cells

(A) qRT-PCR of COL1A1 transcripts in SE and ME groups. (B) Western blots of COL1A1 in the SE and ME groups. (C) Quantitative analysis results of western blot. (D) BEAS-

2B cells were fixed, stained for COL1A1 (green) and DAPI (blue) and imaged with phase and confocal microscopy. (E) Zoom in of stained tissue microarrays. (F) The ratio of

possible cells in immunohistochemistry of tissuemicroarrays. (G) Transwell invasion assays of BEAS-2B cells, R1_05_P50 cells and R25_05_P50 cells transfected with NC or

siCOL1A1. (H) Quantitative analysis of transwell invasion assay. I. soft agar colony formation assay in BEAS-2B cells and COL1A1 knockdown cell lines. (J) Quantitative

analysis of soft agar colony number. *p < 0.05, ****p < 0.0001.
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DISCUSSION
Utilizing the transcriptomics induced by a-particle radiation and
protein-protein interaction data, we have proposed a network-
based method to try to answer the fundamental question in radia-
tion biology, namely, which effects are induced by high- and low-
dose radiation exposure and how this affects the assessment of
low-dose cancer risk. First, two exposure-specific networks were
constructed by combining gene expression and protein-protein
interaction data. Then, a comparison analysis of exposure-specific
networks at the global, core network, and module levels was per-
formed to elucidate the molecular mechanisms underlying
different irradiation types at the systems level. In addition, we
found surprising links between network topology and a-particle
exposure phenotypes. Although the two global PPINs of SENet
and MENet share similar organizational landscapes, two network
parameters, degree and EC, could capture special biological indica-
tors. Several studies suggest that nodes with a high degree are likely
to be encoded by essential genes, a phenomenon termed the cen-
trality-lethality rule.36 In contrast to the degree, EC takes into ac-
count the influence of a node’s neighbors, which is also a good in-
dicator to identify hub biological pathways and genes.37 According
to its mathematical definition, the higher EC in MENetCore sug-
gests that the network has more robust modules, which are
involved in more signal transduction processes. The network re-
sults also suggest that multiple low doses of radiation exert a stron-
ger pathogenic effect, especially via the ECM-receptor interaction
pathway to affect cancer risk.

Research on astronaut health and model organisms has revealed
six fundamental biological features resulting from radiation
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 9
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Figure 7. Model of the impact of a-particle radiation on human bronchial epithelial cells

High expression of COL1A1 remodels the ECM organization, increasing ECM density and disorder after multiple low doses of radiation.
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exposure, including oxidative stress, DNA damage, mitochondrial
dysregulation, epigenetic changes, telomere length alterations,
and microbiome shifts.11 Here, we found that the ECM-receptor
pathway was conserved from the whole network to the core
network and was the largest module in the ME group. The bio-
physical characteristics of the ECM strongly regulate cellular
responses and are used as indicators of cancer progression and
metastasis38; hence, it is vital to research the effect of the ECM
on tumor development.39 We thus suggest that the ECM, as
a novel cancer hallmark, may be an additional biological
feature for multiple low-dose radiation exposures. However,
other studies have found that ECM-related pathways are affected
by spaceflight16 and particle radiation.40 Illa-Bochaca et al.41

found that particle radiation induces more aggressive tumors and
that its carcinogenic effect is mediated by stromal remodeling as
well as some signaling pathways in the microenvironment,
such as Notch signaling. Yet, how ECM-related pathways
contribute to the carcinogenic effect of particle radiation
remains unclear. The present work is the first to systematically
investigate the transcriptomic effects induced by particle radiation
delivered by differential exposure methods, and the results suggest
that multiple radiation exposures may affect the expression of
collagens, resulting in ECM remodeling in human bronchial
epithelial cells.

Collagen is the primary constituent of lung tissue proteins andmay be
responsible for a plethora of severe lung diseases.42 Among collagens,
type I is the most prominent within the ECM and has a crucial role in
sustaining the lung’s overall structure43; furthermore, COL1A1 serves
10 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
as a potential prognostic marker and therapeutic target in lung can-
cer.44 In our work, the biological role of COL1A1 in multiple low-
dose radiation exposures was further validated by the bioinformatics
analyses of lung cancer public databases, a series of biological exper-
iments, and clinical sample research.

Based on our data and observations, we propose possible molecular
etiologies of a-particle radiation. As shown in Figure 7, in cells af-
ter multiple exposures of low-dose radiation, the expression of
COL1A1 was higher, was associated with wider fibers, and caused
collagen protein fibers to gradually thicken and change to a linear
shape compared with cells with a single exposure of high-dose ra-
diation. The linearized collagen fibers are harder than their coiled
counterparts, resulting in an increase in ECM stiffness. This stiff-
ening can significantly enhance ECM density and disorder after
irradiation, leading to malignant cell transformation. Due to the
pathophysiological and therapeutic potential of both the ECM-
related pathway33 and collagens45 in cancer, we suggest that
COL1A1 may serve as a cancer biomarker in multiple low-dose ra-
diation exposure.

Overall, our work highlights the power of using the differential
network method with “omics” data to understand the fundamental
biological problem in radiation biology.We found that ECM-receptor
pathway dysregulation is a central hub for the effect of low-dose radi-
ation. This new biological feature not only highlights the ECM-recep-
tor pathway together with COL1A1 as a cancer risk in spaceflight, but
also suggests a possible approach for pharmaceutical interventions
and studies in space biology.
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MATERIALS AND METHODS
Cell line

The human bronchial epithelial cell line BEAS-2B was purchased
from the American Type Culture Collection (CRL-9609; Rockville,
MD, USA) and maintained in DMEM (Gibco, Grand Island, NY,
USA) containing 10% fetal bovine serum (FBS) (Gibco Invitrogen,
Carlsbad, CA, USA), penicillin (100 U/mL) and streptomycin
(100 mg/mL) in a fully humidified incubator with 5% CO2 at 37�C.
a-particle irradiation

The a-irradiator that we used in this study consisted of a 241Am
source, a rotating radiation source holder, a sample holder, and other
necessary parts.46 The 241Am source emitted a-particles at a dose rate
of 0.14 Gy/min. The BEAS-2B cells were irradiated either with a single
dose of 0.5 Gy one time or were irradiated with 0.02 Gy (9 s of irra-
diation time) once every 3 days for 25 exposures. Meanwhile, a blank
control was set up, which was sub-cultured together with the irradi-
ated group. Thus, the three groups of cells were labeled as the Ctrl
(blank control) group, the single exposure (SE) group (0.5 Gy), and
the multiple exposures (ME) group (25 single-dose exposures of
0.02 Gy). After all exposures were completed, the cells were continu-
ously sub-cultured to the 10th passage (approximately 3 weeks), 30th

passage (approximately 9 weeks), or 50th passage (approximately
15 weeks) and harvested for RNA-seq at various passages. Thus,
the SE groups included R1_05_10, R1_05_30, and R1_05_50, and
the ME group included R25_05_10, R25_05_30, and R25_05_50.
RNA-seq data profiling and analysis

All cells were harvested in TRIzol reagent (Invitrogen). Total RNAs
were reverse-transcribed using the PrimeScript RT Reagent Kit (Ta-
kara, Kusatsu, Shiga, Japan). Then, transcriptomics profiling was per-
formed by RNA-seq analysis using an Illumina Novaseq 6000 system
by OE Biotech (Shanghai, China). The count level RNA-seq data was
used and genes with low expression (count = 0 across more than 80%
of samples) were filtered out. rlog normalization and DEG analysis
were performed on filtered data using the R package “DESeq2.”Genes
with an adjusted p value <0.05 and |fold change| >2 were selected as
significant DEGs. PCA was performed on the expressional matrix,
and all samples were projected onto the two dimensions determined
by the first two PCs.
Exposure way-specific PPIN construction

To compare the effects of different exposure methods on the cell
ecosystem, we constructed two exposure way-specific PPINs for the
SE group and ME group, by integrating the gene co-expression
network constructed by WGCNA47 and the PPIN downloaded
from STRING.48 First, the topological overlap matrix (TOM) was
calculated, and a weighted gene co-expression network was con-
structed using the R package WGCNA based on the gene expression
profile of the control group and one of the exposure groups with a soft
threshold of 16 for the SE group and eight for theME group. Next, the
network was combined with the human PPIN downloaded from
STRING to gain the final exposure way-specific PPIN for the SE
group and the ME group, named SENet and MENet, respectively.

Network consistency computation

Tomeasure the consistency of SENet andMENet networks, we calcu-
lated the root-mean-square inner product (RMSIP), which measures
similarity in the subspace spanned by given eigenvectors, for the
TOMs of the two networks.49 As shown in Equation 1, RMSIP was
calculated from the eigenvectors of TOMs.

RMSIP =

 
1
n

 Xn
i = 1

Xn
j = 1

�
Vi:Uj

�2!1=2

(Equation 1)

where n is the number of vectors of the matrix, and Vi and Uj are the
ith and jth eigenvectors of the TOMSE and TOMME, respectively. We
traversed the first 600 eigenvectors of the TOM to calculate the cor-
responding RMSIP.
Exposure way-specific PPIN core construction and analysis

To reveal the efficient interactions among genes in SENet andMENet,
we filtered out the edges with low weight values to keep the high-
weighted links and construct the core networks of SENet and MENet,
namely, SENetCore and MENetCore. Here, we kept the links with
weights larger than 0.4 and 0.45 to construct SENetCore and
MENetCore, respectively. The R package “igraph” was employed to
calculate the topological parameters degree (K), betweenness (B),
closeness (C), and eigenvector centrality (EC) for each node.50 Their
definitions are listed in the supplemental methods.

Robust network module identification

Since the implementation of important biological functions is always
in the form of a “module,” we identified the robust module in the
exposure way-specific PPIN core to indicate the biological function
of the network by combining the top-down and bottom-up module
discovery methods.51 Specifically, the weighted Girvan-Newman al-
gorithm and label propagation analysis were used to generate the
modules for the network core, and then a hypergeometric test was
performed for each pair of modules to find the similarity in the two
model results. The overlapping modules with p values <0.05 were
considered as robust modules.

Functional enrichment and survival analysis

Functional enrichment analysis and visualization were performed us-
ing the R package “clusterProfiler”.52,53 Gene Ontology terms with
adjusted p values <0.01 were considered significantly enriched, while
the KEGG pathways with p values <0.05 were considered significantly
enriched pathways. The survival analysis was conducted by the R
packages “survival” and “survminer” based on The Cancer Genome
Atlas (TCGA) data.

siRNA mediated COL1A1 gene knockdown

BEAS-2B cells were seeded at 60%–70% confluence prior to transfec-
tion. COL1A1-specific siRNA and scrambled siRNA (negative
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 11
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control) were purchased from Sangon Biotech (Shanghai). Transfec-
tions were carried out using Lipofectamine RNAiMAX (Thermo
Fisher Scientific) according to the manufacturer’s protocol. Cells
were harvested 48 h post-transfection for downstream analyses.
The target sequences for COL1A1 were as follows: siRNA-1 GGC
AAGACAGTGATTGAATAC, siRNA-2 CAAAGGAGACACTGGT
GCTAA, siRNA-3 AACCGGAGAACTTACAATAC.
Construction of COL1A1 knockdown cell line using shRNA

A lentiviral vector expressing shRNA targeting COL1A1 was designed
and synthesized by Sangon Biotech (Shanghai). The shRNA sequence
was selected based on its efficiency in silencing COL1A1 without off-
target effects, the TargetSeq of sh-COL1A1-1 is ACAGGGCG
ACAGAGGCATAAA, the TargetSeq of sh-COL1A1-2 is CGATGG
ATTCCAGTTCGAGTA. The construct contained a GFP marker
for selection. Virus production and infection HEK293T cells were
transfected with the lentiviral packaging plasmids (pMD2.G and
psPAX2) along with the COL1A1-shRNA or scrambled shRNA vec-
tor using calcium phosphate transfection. After 48 h, viral superna-
tants were collected, filtered, and used to infect BEAS-2B cells in
the presence of polybrene. Stable transductants were screened by pu-
romycin resistance and verified for GFP expression.
qRT-PCR analysis

A PCR analysis was performed using PowerUp SYBR Green Master
Mix (Life Technologies, Grand Island, NY, USA), and amplified
PCR products were quantified and normalized with GAPDH. The
PCR amplification was carried out using a Life Technologies system
(Vii7A) and initiated by 2 min at 95�C before 40 thermal cycles,
each consisting of 30 s at 95�C and 40 s at 62�C, with a final extension
of 10 min at 72�C. Data were analyzed by Ct value comparison
method and normalized by control expression in each sample. The
primer sets are listed in Table S3.
Western blotting

Cells were harvested and lysed using RIPA buffer (Beyotime,
Shanghai, China). Samples were sonicated and centrifuged at
12,000 � g for 15 min at 4�C. The concentration of total protein
was determined using the DC Protein Assay Kit I (Bio-Rad, Rich-
mond, CA, USA). The samples were then denatured at 100�C for
5 min. Total proteins were separated by 12% SDS-PAGE and trans-
ferred to Hybond nitrocellulose membranes (Amersham, Piscataway,
NJ, USA). The membranes were blocked with 5% nonfat milk powder
in Tris-buffered saline (pH 7.5) and hybridized overnight with pri-
mary antibodies against COL1A1 and b-actin (Cell Signaling Tech-
nology, Danvers, MA, USA). Finally, the membranes were incubated
with horseradish peroxidase-conjugated anti-immunoglobulin (Ig)G
for 1 h at room temperature and visualized with an ECL kit (Milli-
pore, Billerica, MA, USA). Protein expression levels were normalized
to the loading controls based on their intensity analyzed with ImageJ
(National Institutes of Health, Bethesda, MD, USA).
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Immunofluorescence

BEAS-2B cells were seeded on coverslips in 12-well plates. After irra-
diation, cells were fixed with 4% formaldehyde in PBS at room tem-
perature for 10 min and then in methanol at �20�C for 20 min, then
were permeabilized in 0.1% Triton X-100 in PBS for 10 min and
blocked with 5% skim milk for 1 h. Cells were then incubated at
room temperature for 2 h with anti-COL1A1 before staining with
Alexa Fluor 555 anti-rabbit antibody (Molecular Probes, Eugene,
OR, USA) at 37�C for 1 h. Following extensive washing in PBS, the
cells were mounted on slides using DAPI mounting medium (Molec-
ular Probes). The stained cells were observed under an Olympus IX71
microscope (Olympus, Tokyo, Japan) and also under a laser scanning
confocal microscope (Olympus FV1200, Tokyo, Japan) at Soochow
University (Suzhou, China).

Immunohistochemistry of clinical tissue

Non-small cell lung cancer tissue microarrays and patient patholog-
ical information were provided by the Department of Pathology of
the Second Affiliated Hospital of Soochow University. These lung
cancer tissues and matched adjacent normal tissues were reviewed
and approved by the Department of Pathology of the Second Affili-
ated Hospital of Soochow University. All staining was assessed by a
quantitative imaging method, and the percentage of positive immu-
nostaining and the staining intensity were recorded. The H-score
was calculated using the following formula: H-score = (percentage
of cells of weak intensity � 1) + (percentage of cells of moderate in-
tensity � 2) + (percentage of cells of strong intensity � 3).

Cell migration and invasion assays

BEAS-2B cells were plated into 6-well plates and infection was per-
formed when the confluence reached 30%. Briefly, the culture me-
dium was replaced with a mixture of 1 mL of fresh medium and
1 mL of lentivirus suspension. After infection for 24 h, the cells
were screened using medium containing 2 mg/mL puromycin (Invi-
trogen, Carlsbad, CA, USA) for 1 week to establish the cell line
with stable COL1A1 knockdown. The lentivirus for COL1A1 knock-
down was designed and packed by RiboBio Biotechnology (Guangz-
hou, China). The stable COL1A1 knockdown was verified by western
blot analysis.

The migratory capacity of cells was evaluated using a wound-healing
assay. Exposed cells were seeded at a density of 5 � 105 cells/mL/well
in a six-well plate. When the cells reached confluence, a scratch was
made using a 200-mL pipette tip. Detached cells were washed off
and the remaining cells were treated with fresh media without FBS
for 48 h. Pictures were taken under a light microscope and the gap
width was quantified by using ImageJ software. To evaluate the inva-
siveness of control and irradiated cells, commercial transwell cham-
bers (24-well plates, 8-mm pore size; BD Biosciences, Franklin Lakes,
NY, USA) were used. Briefly, the upper surface of the chambers was
coated with 10 mL of matrigel (Corning, Corning, NY, USA). The
cells, suspended in serum-free medium, were seeded at a density of
5 � 104 cells/mL/well in the upper chamber, and the lower chamber
contained 10% FBS-DMEM. After 48 h of incubation, non-invading
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cells were scraped from the upper surface with a cotton swab, and the
invading cells at the bottom surface were stained with crystal violet.
Stained cells were extracted with 0.5 mL of extraction solution
(50:49:1 of ethanol:distilled water:1 M HCl) per well for 10 min
with shaking. The optical density of each well was measured at
540 nm.

Lung cancer data collection and analysis

A dataset containing gene expression profiles of 492 patients with
lung cancer and 59 normal samples from TCGA was employed for
the comparison study. A total of 286 patients with stage I, 122 patients
with stage II, and 84 patients with stage III were included in this data-
set. The count RNA-seq data were directly used for further analysis.

Statistics

All experiments were independently repeated at least three times, and
all data are presented as means ± standard error. Student’s t tests were
employed for statistical analysis, and a probability (p) value less than
0.05 was considered statistically significant.

DATA AND CODE AVAILABILITY
The a-particle irradiation-induced RNA-seq data have been depos-
ited in NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) under the accession number GSE235882; lung adeno-
carcinoma and lung squamous cell carcinoma TNM sample data
were downloaded from TCGA. Deposited data and all code are avail-
able at GitHub (https://github.com/CSB-SUDA/RDNA).
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Supplemental information can be found online at https://doi.org/10.
1016/j.omtn.2024.102260.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation
of China (32271292, 31872723, 32071243, 82103786, 82192883),
Aerospace Science and Technology Collaborative Innovation Center
Project (BSAUEA5740600223), the Project of MOE Key Laboratory
of Geriatric Diseases and Immunology (JYN202404), Jiangsu Post-
doctoral Science Foundation (7112851420), Foundation of Suzhou
Medical College of Soochow University (MP13405423) and a project
funded by the Priority Academic Program Development (PAPD) of
Jiangsu Higher Education Institutions.

AUTHOR CONTRIBUTIONS
Conceptualization, W.P., G.Z., G.H.; data curation, W.Y., W.H., Y.S.,
andW.P.; formal analysis, W.Y., W.H., Y.S., andW.P.; funding acqui-
sition, G.H.; investigation, W.Y., Y.S., and W.P.; methodology, W.Y.,
X.L.; project administration, G.Z. and G.H.; resources, G.Z. and G.H.;
software, X.L. and W.L.; supervision, W.P., G.Z., G.H.; validation,
Z.Z., W.L., and Z.C.; visualization, W.Y. and Z.Z.; writing – original
draft, W.Y. and G.H.

DECLARATION OF INTERESTS
The authors declare no competing interests.
REFERENCES
1. Garrett-Bakelman, F.E., Darshi, M., Green, S.J., Gur, R.C., Lin, L., Macias, B.R.,

McKenna, M.J., Meydan, C., Mishra, T., Nasrini, J., et al. (2019). The NASA Twins
Study: A multidimensional analysis of a year-long human spaceflight. Science 364,
eaau8650.

2. Walls, S., Diop, S., Birse, R., Elmen, L., Gan, Z., Kalvakuri, S., Pineda, S., Reddy, C.,
Taylor, E., Trinh, B., et al. (2020). Prolonged Exposure to Microgravity Reduces
Cardiac Contractility and Initiates Remodeling in Drosophila. Cell Rep. 33, 108445.

3. Yatagai, F., Honma, M., Dohmae, N., and Ishioka, N. (2019). Biological effects of
space environmental factors: A possible interaction between space radiation and
microgravity. Life Sci. Space Res. 20, 113–123.

4. Moreno-Villanueva, M.,Wong, M., Lu, T., Zhang, Y., andWu, H. (2017). Interplay of
space radiation and microgravity in DNA damage and DNA damage response. NPJ
microgravity 3, 14.

5. Pariset, E., Bertucci, A., Petay, M., Malkani, S., Lopez Macha, A., Paulino Lima, I.G.,
Gomez Gonzalez, V., Tin, A.S., Tang, J., Plante, I., et al. (2020). DNA Damage
Baseline Predicts Resilience to Space Radiation and Radiotherapy. Cell Rep. 33,
108434.

6. Luxton, J.J., McKenna, M.J., Taylor, L.E., George, K.A., Zwart, S.R., Crucian, B.E.,
Drel, V.R., Garrett-Bakelman, F.E., Mackay, M.J., Butler, D., et al. (2020).
Temporal Telomere and DNA Damage Responses in the Space Radiation
Environment. Cell Rep. 33, 108435.

7. Luxton, J.J., McKenna, M.J., Lewis, A., Taylor, L.E., George, K.A., Dixit, S.M., Moniz,
M., Benegas, W., Mackay, M.J., Mozsary, C., et al. (2020). Telomere Length Dynamics
and DNA Damage Responses Associated with Long-Duration Spaceflight. Cell Rep.
33, 108457.

8. Millar-Wilson, A., Ward, Ó., Duffy, E., and Hardiman, G. (2022). Multiscale
modeling in the framework of biological systems and its potential for spaceflight
biology studies. iScience 25, 105421.

9. Xu, D., Zhao, X., Li, Y., Ji, Y., Zhang, J., Wang, J., Xie, X., and Zhou, G. (2014). The
combined effects of X-ray radiation and hindlimb suspension on bone loss. J. Radiat.
Res. 55, 720–725.

10. Azzam, E.I., Jay-Gerin, J.P., and Pain, D. (2012). Ionizing radiation-induced meta-
bolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60.

11. Afshinnekoo, E., Scott, R.T., MacKay, M.J., Pariset, E., Cekanaviciute, E., Barker, R.,
Gilroy, S., Hassane, D., Smith, S.M., Zwart, S.R., et al. (2020). Fundamental Biological
Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell
183, 1162–1184.

12. Durante, M., and Cucinotta, F.A. (2008). Heavy ion carcinogenesis and human space
exploration. Nat. Rev. Cancer 8, 465–472.

13. Hauptmann, M., Daniels, R.D., Cardis, E., Cullings, H.M., Kendall, G., Laurier, D.,
Linet, M.S., Little, M.P., Lubin, J.H., Preston, D.L., et al. (2020). Epidemiological
Studies of Low-Dose Ionizing Radiation and Cancer: Summary Bias Assessment
and Meta-Analysis. J. Natl. Cancer Inst. Monogr. 2020, 188–200.

14. Mullenders, L., Atkinson, M., Paretzke, H., Sabatier, L., and Bouffler, S. (2009).
Assessing cancer risks of low-dose radiation. Nat. Rev. Cancer 9, 596–604.

15. Hao, Y., Lu, L., Liu, A., Lin, X., Xiao, L., Kong, X., Li, K., Liang, F., Xiong, J., Qu, L.,
et al. (2022). Integrating bioinformatic strategies in spatial life science research.
Briefings Bioinf. 23, bbac415.

16. da Silveira, W.A., Fazelinia, H., Rosenthal, S.B., Laiakis, E.C., Kim, M.S., Meydan, C.,
Kidane, Y., Rathi, K.S., Smith, S.M., Stear, B., et al. (2020). Comprehensive Multi-
omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for
Spaceflight Impact. Cell 183, 1185–1201.e20.

17. Ray, S., Gebre, S., Fogle, H., Berrios, D.C., Tran, P.B., Galazka, J.M., and Costes, S.V.
(2019). GeneLab: Omics database for spaceflight experiments. Bioinformatics 35,
1753–1759.

18. Trinchant, N.M., MacKay, M.J., Chin, C., Afshinnekoo, E., Foox, J., Meydan, C.,
Butler, D., Mozsary, C., Vernice, N.A., Darby, C., et al. (2020). Clonal
Hematopoiesis Before, During, and After Human Spaceflight. Cell Rep. 33, 108740.

19. Malkani, S., Chin, C.R., Cekanaviciute, E., Mortreux, M., Okinula, H., Tarbier, M.,
Schreurs, A.S., Shirazi-Fard, Y., Tahimic, C.G.T., Rodriguez, D.N., et al. (2020).
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 13

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/CSB-SUDA/RDNA
https://doi.org/10.1016/j.omtn.2024.102260
https://doi.org/10.1016/j.omtn.2024.102260
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref1
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref1
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref1
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref1
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref2
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref2
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref2
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref3
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref3
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref3
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref4
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref4
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref4
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref5
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref5
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref5
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref5
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref6
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref6
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref6
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref6
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref7
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref7
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref7
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref7
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref8
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref8
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref8
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref9
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref9
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref9
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref10
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref10
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref11
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref11
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref11
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref11
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref12
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref12
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref13
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref13
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref13
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref13
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref14
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref14
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref15
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref15
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref15
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref16
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref16
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref16
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref16
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref17
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref17
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref17
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref18
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref18
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref18
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref19
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref19
http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure
Development. Cell Rep. 33, 108448.

20. Gertz, M.L., Chin, C.R., Tomoiaga, D., MacKay, M., Chang, C., Butler, D.,
Afshinnekoo, E., Bezdan, D., Schmidt, M.A., Mozsary, C., et al. (2020). Multi-omic,
Single-Cell, and Biochemical Profiles of Astronauts Guide Pharmacological
Strategies for Returning to Gravity. Cell Rep. 33, 108429.

21. Manian, V., Orozco-Sandoval, J., and Diaz-Martinez, V. (2021). An Integrative
Network Science and Artificial Intelligence Drug Repurposing Approach for
Muscle Atrophy in Spaceflight Microgravity. Front. Cell Dev. Biol. 9, 732370.

22. Yang, C., Deng, Y., Ren, H., Wang, R., and Li, X. (2020). A multi-channel polymerase
chain reaction lab-on-a-chip and its application in spaceflight experiment for the
study of gene mutation. Acta Astronaut. 166, 590–598.

23. Lichtblau, Y., Zimmermann, K., Haldemann, B., Lenze, D., Hummel, M., and Leser,
U. (2017). Comparative assessment of differential network analysis methods.
Briefings Bioinf. 18, 837–850.

24. Leng, J., and Wu, L.Y. (2022). Interaction-based transcriptome analysis via differen-
tial network inference. Briefings Bioinf. 23, bbac466.

25. Basha, O., Argov, C.M., Artzy, R., Zoabi, Y., Hekselman, I., Alfandari, L., Chalifa-
Caspi, V., and Yeger-Lotem, E. (2020). Differential network analysis of multiple hu-
man tissue interactomes highlights tissue-selective processes and genetic disorder
genes. Bioinformatics 36, 2821–2828.

26. Savino, A., Provero, P., and Poli, V. (2020). Differential Co-Expression Analyses
Allow the Identification of Critical Signalling Pathways Altered during Tumour
Transformation and Progression. Int. J. Mol. Sci. 21, 9461.

27. Liu, X., Yang, B., Huang, X., Yan, W., Zhang, Y., and Hu, G. (2023). Identifying
Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential
Modular and Mutational Structural Analysis. Interdiscip. Sci. 15, 525–541.

28. Gulfidan, G., Turanli, B., Beklen, H., Sinha, R., and Arga, K.Y. (2020). Pan-cancer
mapping of differential protein-protein interactions. Sci. Rep. 10, 3272.

29. Huttlin, E.L., Bruckner, R.J., Paulo, J.A., Cannon, J.R., Ting, L., Baltier, K., Colby, G.,
Gebreab, F., Gygi, M.P., Parzen, H., et al. (2017). Architecture of the human interac-
tome defines protein communities and disease networks. Nature 545, 505–509.

30. Zhou, Z., Lu, Y., Gu, Z., Sun, Q., Fang, W., Yan, W., Ku, X., Liang, Z., and Hu, G.
(2023). HNRNPA2B1 as a potential therapeutic target for thymic epithelial tumor
recurrence: An integrative network analysis. Comput. Biol. Med. 155, 106665.

31. Ruiz, C., Zitnik, M., and Leskovec, J. (2021). Identification of disease treatment mech-
anisms through the multiscale interactome. Nat. Commun. 12, 1796.

32. Dang, X., Lin, H., Li, Y., Guo, X., Yuan, Y., Zhang, R., Li, X., Chai, D., and Zuo, Y.
(2020). MicroRNA profiling in BEAS-2B cells exposed to alpha radiation reveals po-
tential biomarkers for malignant cellular transformation. Toxicol. Res. 9, 834–844.

33. Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., and Qiao, Y. (2021).
Extracellular matrix and its therapeutic potential for cancer treatment. Signal
Transduct. Targeted Ther. 6, 153.

34. Koren, E., and Fuchs, Y. (2021). Modes of Regulated Cell Death in Cancer. Cancer
Discov. 11, 245–265.

35. Missiuro, P.V., Liu, K., Zou, L., Ross, B.C., Zhao, G., Liu, J.S., and Ge, H. (2009).
Information Flow Analysis of Interactome Networks. PLoS Comput. Biol. 5,
e1000350.

36. Ahmed, H., Howton, T.C., Sun, Y., Weinberger, N., Belkhadir, Y., and Mukhtar, M.S.
(2018). Network biology discovers pathogen contact points in host protein-protein
interactomes. Nat. Commun. 9, 2312.
14 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
37. Negre, C.F.A., Morzan, U.N., Hendrickson, H.P., Pal, R., Lisi, G.P., Loria, J.P., Rivalta,
I., Ho, J., and Batista, V.S. (2018). Eigenvector centrality for characterization of pro-
tein allosteric pathways. P Natl Acad Sci USA 115, E12201–E12208.

38. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J., and Werb, Z. (2020). Concepts of
extracellular matrix remodelling in tumour progression and metastasis. Nat.
Commun. 11, 5120.

39. Pickup, M.W., Mouw, J.K., and Weaver, V.M. (2014). The extracellular matrix mod-
ulates the hallmarks of cancer. EMBO Rep. 15, 1243–1253.

40. Chang, P.Y., Bjornstad, K.A., Rosen, C.J., Lin, S., and Blakely, E.A. (2007). Particle ra-
diation alters expression of matrix metalloproteases resulting in ECM remodeling in
human lens cells. Radiat. Environ. Biophys. 46, 187–194.

41. Illa-Bochaca, I., Ouyang, H., Tang, J., Sebastiano, C., Mao, J.H., Costes, S.V., Demaria,
S., and Barcellos-Hoff, M.H. (2014). Densely ionizing radiation acts via the microen-
vironment to promote aggressive Trp53-null mammary carcinomas. Cancer Res. 74,
7137–7148.

42. Yuan, Z., Li, Y., Zhang, S., Wang, X., Dou, H., Yu, X., Zhang, Z., Yang, S., and Xiao, M.
(2023). Extracellular matrix remodeling in tumor progression and immune escape:
from mechanisms to treatments. Mol. Cancer 22, 48.

43. Hou, L., Lin, T.,Wang, Y., Liu, B., andWang,M. (2021). Collagen type 1 alpha 1 chain
is a novel predictive biomarker of poor progression-free survival and chemoresistance
in metastatic lung cancer. J. Cancer 12, 5723–5731.

44. Pan, B., Huang, C., Xia, Y., Zhang, C., Li, B., Wang, L., Fang, S., Liu, L., and Yan, S.
(2022). COL1A1 as a Potential Prognostic Marker and Therapeutic Target in Non-
small Cell Lung Cancer. Curr. Bioinf. 17, 909–923.

45. Xu, S., Xu, H., Wang, W., Li, S., Li, H., Li, T., Zhang, W., Yu, X., and Liu, L. (2019).
The role of collagen in cancer: from bench to bedside. J. Transl. Med. 17, 309.

46. Ji, W., Tian, W., Yin, X., Yang, H., andWang, J. (2015). The building and validation of
a novel a-irradiation equipment used for cultured cell study. J. Radiat. Res. Radiat.
Process. 33.

47. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correla-
tion network analysis. BMC Bioinf. 9, 559.

48. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11:
protein-protein association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613.

49. Mishra, S.K., and Jernigan, R.L. (2018). Protein dynamic communities from elastic
network models align closely to the communities defined by molecular dynamics.
PLoS One 13, e0199225.

50. Liu, C., Ma, Y., Zhao, J., Nussinov, R., Zhang, Y.C., Cheng, F., and Zhang, Z.K. (2020).
Computational network biology: Data, models, and applications. Phys. Rep.
846, 1–66.

51. Wang, F., Han, S., Yang, J., Yan, W., and Hu, G. (2021). Knowledge-Guided
"Community Network" Analysis Reveals the Functional Modules and Candidate
Targets in Non-Small-Cell Lung Cancer. Cells 10, 402.

52. Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 16,
284–287.

53. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan,
L., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics
data. Innovation 2, 100141.

http://refhub.elsevier.com/S2162-2531(24)00147-1/sref19
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref19
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref20
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref20
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref20
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref20
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref21
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref21
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref21
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref22
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref22
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref22
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref23
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref23
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref23
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref24
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref24
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref25
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref25
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref25
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref25
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref26
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref26
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref26
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref27
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref27
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref27
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref28
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref28
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref29
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref29
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref29
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref30
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref30
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref30
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref31
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref31
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref32
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref32
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref32
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref33
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref33
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref33
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref34
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref34
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref35
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref35
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref35
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref36
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref36
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref36
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref37
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref37
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref37
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref38
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref38
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref38
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref39
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref39
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref40
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref40
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref40
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref41
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref41
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref41
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref41
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref42
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref42
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref42
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref43
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref43
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref43
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref44
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref44
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref44
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref45
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref45
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref46
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref46
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref46
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref47
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref47
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref48
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref48
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref48
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref48
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref49
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref49
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref49
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref50
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref50
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref50
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref51
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref51
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref51
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref52
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref52
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref52
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref53
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref53
http://refhub.elsevier.com/S2162-2531(24)00147-1/sref53

	Differential network analysis reveals the key role of the ECM-receptor pathway in α-particle-induced malignant transformation
	Introduction
	Results
	Data comparison of exposure groups with the control group and The Cancer Genome Atlas lung samples
	Multiple exposures reveal genetic information and tumorigenesis-related pathways
	Comparison of single and multiple exposure effects on BEAS-2B cells from the network core
	Network analysis reveals the conservation of the ECM-receptor pathway and hub genes in the ME group
	COL1A1 promotes the emergence of neoplastic characteristics in BEAS-2B cells

	Discussion
	Materials and methods
	Cell line
	α-particle irradiation
	RNA-seq data profiling and analysis
	Exposure way-specific PPIN construction
	Network consistency computation
	Exposure way-specific PPIN core construction and analysis
	Robust network module identification
	Functional enrichment and survival analysis
	siRNA mediated COL1A1 gene knockdown
	Construction of COL1A1 knockdown cell line using shRNA
	qRT-PCR analysis
	Western blotting
	Immunofluorescence
	Immunohistochemistry of clinical tissue
	Cell migration and invasion assays
	Lung cancer data collection and analysis
	Statistics

	Data and code availability
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


