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Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main
regulators involved both in different homeostatic cell functions and tumor progression.
Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional
regulators, this intracellular receptor has become a key member in differentiation,
pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of
new targets identified in the last decade. Besides this role in tissue homeostasis, one
enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor
depending on the specific organ, tissue and cell type. Together with its well-known
modulation of cell adhesion and migration in a cell-type specific manner in epithelial-
mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical
interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis
marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role
in contributing to physiological and homeostatic failures, tumor progression and
dissemination. With that firmly in mind, this review will address the remarkable
capability of AHR to exert a different function influenced by the phenotype of the
target cell and its potential consequences.
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INTRODUCTION

The intracellular dioxin receptor (AHR) has distinctive functional and structural properties among
the family of basic-helix-loop-helix (bHLH) transcriptional regulators (Roman et al., 2018).
Initially discovered as a receptor to a variety of xenobiotics compounds, the signaling pathways
leading to AHR activation by exogenous ligands, such as 2,3,7,8-Tetrachlorodibenzodioxin
(TCDD), has been extensively studied. The non-activated form of AHR is located in the
cytoplasm in a complex with several chaperones, among which are two HSP90 (Heat Shock
Protein 90), a co-chaperone p23, a XAP-molecule 2 (hepatitis B Virus X-associated protein 2)
(Larigot et al., 2018). Upon ligand binding, the receptor translocates to the nucleus and
heterodimerizes with the class II bHLH protein ARNT/HIF1β (Aryl hydrocarbon receptor
nuclear translocator/Hypoxia-inducible factor 1β) (Reyes et al., 1992; (Mulero-Navarro and
Fernandez-Salguero, 2016). After transcriptional regulation, the AHR-ARNT heterodimer is
disassembled from DNA and AHR is driven again to the cytosol for proteosomal degradation
(Davarinos and Pollenz, 1999; Ma and Baldwin, 2000; Santiago-Josefat et al., 2001). Interestingly,
the early presence of AHR in metazoans, its high degree of conservation among species and the
altered phenotypes observed in several organs, including the liver, in AHR−/− mice (Pohjanvirta
et al., 2012) demonstrated its role in tissue homeostasis. Genome-wide and cell signaling studies
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have shown that lack of AHR significantly alters gene expression
in both normal liver (Tij et al., 2006; Moreno-Marín et al., 2018)
and hepatoma cells (Sartor et al., 2009). One intriguing feature
of AHR is that its functions depend on the phenotype of the
target cell, acting as a tumor suppressor or as an oncogene upon
specific cell types, tissues or organs (Marlowe and Puga, 2005;
Barouki et al., 2007). Furthermore, AHR has a role in
reprogramming and in adjusting the rate of organ
regeneration after injury. In addition, few studies have
suggested that AHR may have a role in senescence since it
seems to attenuate lung parenchyma inflammation by
controlling senescence (Guerrina et al., 2018). Moreover,
human keratinocytes exposed to the AHR ligand TCDD
become immortalized by repressing p16 and p53 (Ray and
Swanson, 2004).

For certain organs such as the liver, physiological terminal
differentiation and proliferation exhaust of hepatocytes is
essential for its functionality (Shiojiri et al., 1991; Gentric
et al., 2012; Schoenfelder and Fox, 2015). From a functional
perspective, the adult (differentiated) liver increases the size of
hepatocytes, amplifies gene expression profiles, adjusts its
metabolism (Zielke et al., 2013; Schoenfelder and Fox, 2015)
and, importantly, gains regenerative capacity upon injury. After
exposure to damaging agents or following partial hepatectomy,
liver stem cells or primary hepatocytes enter cell cycle to
regenerate the injured tissue (Taub, 2004; Forbes and
Newsome, 2016; Yagi et al., 2020). Several works have also
identified the reprogramming and pluripotency factors OCT4-
KLF4-SOX2-MYC (OKSM) as key in the progression of different
tumors, including hepatocarcinoma (Wang and Herlyn, 2015;
Kuo et al., 2016; Zhou et al., 2016). Remarkably, cell
reprogramming appears closely linked to senescence, a
seemingly opposed cell status that represents a hallmark of
aging in response to various stress stimuli (López-Otín et al.,
2013; Chiche et al., 2020). Indeed, recent observations support
that tissue injury induces senescence and activates signaling
pathways controlling reprogramming, thus highlighting the
functional association of both processes (Mosteiro et al.,
2016a; Chiche et al., 2017; Mosteiro et al., 2018). The
reprogramming-senescence axis thus have a major role in
normal development and tissue regeneration and remodeling
in response to damage (Rhinn et al., 2019). Consequently,
AHR has been described as a tumor suppressor or an
oncogene, depending on the types of cancer and study cohorts
in the same type of cancer (Sun, 2021). Moreover, hepatocellular
carcinoma is the most malignant and with worse prognosis liver
tumor with an increasing worldwide incidence (Kim et al., 2014).
Most patients are diagnosed at advanced stages of the disease
when therapeutic opportunities are very limited (Llovet et al.,
2016). With the multikinase inhibitor Sorafenib providing a poor
increase in overall survival (Llovet et al., 2008), it is therefore
crucial to identify and characterize novel prognostic markers and
more efficient and specific therapeutic strategies.

Altogether, this review covers the main aspects of the AHR
role in tissue repair and reprogramming likely through the
control of signaling pathways in differentiation, pluripotency
and senescence.

INVOLVEMENT OF ARYL HYDROCARBON
RECEPTOR IN TISSUEHOMEOSTASIS AND
REGENERATION
Since AHR possess an important implication in different
physiological processes, alterations in its signaling pathway can
lead to homeostatic disorders, covering from development,
differentiation, pluripotence, proliferation, regeneration, tumor
progression and senescence. Those disorders can affect a variety
of organs such as liver, lung, skin and brain. A crucial regulator of
cell proliferation, viability and ploidy is the signaling network
driven by the insulin receptor (INS-R) and downstream PI3K
(phosphatidylinositol-3-phosphate kinase) pathway (Celton-
Morizur et al., 2010; Cui and Yu, 2016). It has been recently
described that the lack of AHR increases the activation of the
phospho-IRS-2 substrate, a major INS-R intermediate protein in
the liver (Moreno-Marín et al., 2018). Also, in AHR-null mice the
interaction and expression levels of phospho-IRS-2 and PI3K
were increased when compared to wild type mice (Moreno-Marín
et al., 2018). It is also known that Serine-threonine protein kinase-
B/AKT (onwards AKT) is the required PI3K signaling
intermediate in most cell types (Cui and Yu, 2016).
Furthermore, the active phospho-AKT (p-AKTSer473) form
presented an upregulation in AHR knockout mice (Moreno-
Marín et al., 2018). Both AKT phosphorylation and PI3K
activity are negatively regulated by the phosphatase and tensin
homolog (PTEN) (Bunney and Katan, 2010). Consequently, the
lack of AHR promoted a PTEN downregulation with an inverse
pattern versus phospo-AKT. For those reasons, there is a clear
association established between the lack of AHR, proliferation
and a sustained overactivation of the INS-R/PI3K pathway
(Moreno-Marín et al., 2018).

The PI3K signaling is also largely known for the inhibition the
p53 tumor suppressor to block apoptosis in proliferating cells
(Sabbatini and McCormick, 1999; Yamaguchi et al., 2001), with
recent studies showing that p53 has relevant functions in
preventing polyploidy in mature cells (Aylon and Oren, 2011;
Kurinna et al., 2013). Regarding that regulation, the p21Cip1
protein (p21Cip1), a relevant p53 target, is also involved in
repressing cell proliferation (Jung et al., 2010; Karimian et al.,
2016). The axis between PI3K and AKT is also related to Wnt/β-
Cat signaling via downstream target GSK3β, a component of the
Wnt/β-Cat degradation complex (Nusse and Clevers, 2017).

One thrilling aspect was the discovery of the simultaneous
participation of the mammalian target of rapamycin (mTOR) in
several signaling pathways controlling metabolism, cell
differentiation and proliferation, with special relevance of
those mediated by PI3K, ERK and Wnt/β-Cat, which activate
the mTORC1 complex through the guanosine triphosphate
(GTP)-binding protein RHEB (Laplante and Sabatini, 2009;
Laplante and Sabatini, 2012; Saxton and Sabatini, 2017).
Furthermore, the ribosomal S6 kinase-1 (S6K1), a major target
of the mTORC1 complex, is activated by phosphorylation
(Laplante and Sabatini, 2009; Laplante and Sabatini, 2012;
Saxton and Sabatini, 2017), but also implicated in the control
of polyploidy (Ma et al., 2009). In this regard, the activation of
INS-R/PI3K/ERK and Wnt/β-Cat signaling pathways that takes
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place during liver maturation in AHR−/− mice maintains
proliferation and inhibits differentiation-related polyploidy by
assembling the mTORC1 complex (Moreno-Marín et al., 2018).
Moreover, the use of the pharmacological inhibitors salinomycin
(Wnt/β-Cat), LY294002 (PI3K) and PD98059 (ERK) resulted in a
partial rescue of polyploidy in AHR-null mice liver (Moreno-
Marín et al., 2018). Besides, AHR acts like a greater regulator of
signalling pathways positively related to stemness such as the
hippo-YAP pathway and the Wnt-βcatenin pathway
(Procházková et al., 2011; Moreno-Marín et al., 2017). The
interplay involving AHR and those signaling pathways can be
seen in Figure 1.

Aryl Hydrocarbon Receptor in Regenerative
Processes
The fact that tissue regeneration is a necessary process to
maintain tissular homeostasis connects with some of them
having high rates of regeneration through life under normal
physiological conditions. However, this ability has a great
importance to replace body parts after injuries and/or
pathological processes of different kinds, which can damage
the organs and cause a loss of mass. This capacity differs
between species, and even in the tissues of the same organism
(Goldman and Poss, 2020). In no-mammalian species is so
effective that it can be regenerated the whole organisms from

small body fragments (Poss, 2010), while in mammalian species,
tissue regeneration is restricted to only some organs, including
skeletal muscle, liver, intestinal epithelium, skin and blood (Rafii
et al., 2016; Mokalled and Poss, 2018; Wells and Watt, 2018;
Wosczyna and Rando, 2018). To achieve the regenerative process,
a great number of molecular pathways must orchestrate the
determination of regenerative capacity; the balance between
stem cells, dedifferentiation and transdifferentiation; how
regenerative signals are initiated and targeted; and the
mechanisms that control proliferation cellular and patterning

In regenerative processes, it has been demonstrated that some
transcription factors (TF) can control cell identities and different
cellular responses. In particular, the introduction of 4TFs (OCT4,
SOX2, KLF4 and MYC) gives the necessary capacitation to revert
differentiated fibroblasts into pluripotent stem cells, providing
them with similar characteristics to embryonic stem cells
(Takahashi and Yamanaka, 2006). AHR has been presented as
another TF involved in a variety of physiologic functions
(Fernandez-Salguero et al., 1995; Fernandez-Salguero et al.,
1997; Mulero-Navarro and Fernandez-Salguero, 2016) that has
been recently related with those Yamanaka factors in the
regulation of pluripotency and differentiation state in early
mouse embryogenesis (Nacarino-Palma et al., 2021a) and
other differentiation and pluripotency processes (Morales-
Hernández et al., 2016; González-Rico et al., 2020; Rico-Leo
et al., 2021). Several studies evidence that the activation of the

FIGURE 1 | Influence of AHR in AKT, mTOR and β-Catenin signaling pathways.
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genetic programs involved in embryogenesis are both critical and
dominant in regeneration (Fausett and Goldman, 2006; Lepilina
et al., 2006; Ransom et al., 2018). In this way, it has been shown
that AHR is involved in the regulation of pluripotency markers
OCT4 and NANOG in organs like the lung (Morales-Hernández
et al., 2017) and the liver (Moreno-Marín et al., 2017), but also in
the study of regeneration models after acute toxic damage in
rodents and different cell lines (Ko et al., 2016; Ko and Puga,
2017). In addition, recent studies have associated activation of
these pluripotency factors with a stem-like phenotype
(Wagner et al., 2010; Cheung et al., 2011; Safa, 2016).
Furthermore, SOX2 and KLF4 has been found to be critical
in a stem cell population located in the olfactory epithelium
and retinal ganglion neurons during the regenerative process
(Gadye et al., 2017; Rocha-Martins et al., 2019). In a similar
manner, AHR also affects stemness capacity in different
environments; its activation impairs bone-marrow-derived
stem cells differentiation into osteoblasts (Korkalainen
et al., 2009). The lack of the receptor in AHR-null mice
increases the stem population in repairing lung and liver
(Morales-Hernández et al., 2017; Moreno-Marín et al.,
2017); while AHR activation in hematopoietic stem/
progenitor cells affects cellular proliferation, trafficking and
migration (Sakai et al., 2003; Casado et al., 2011; Singh et al.,
2011). In the KrasG12D-AHR–/– mouse model, lungs contain
increased numbers of cells expressing markers for both
progenitor clara and alveolar type II cells, and also have
elevated numbers of cells positive for pluripotent stem cells
markers (Nacarino-Palma et al., 2021b).

However, extensively proliferating stem cell and non-stem cell
populations are required to ensure restoration of damaged tissue.
In the last decades, different studies have shown that AHR group
II targets include genes involved in the control of proliferation,
pointing out the Ah receptor participation as a modulator of the
cell cycle through the regulation of G1/S phase progression. The
compound TCDD can impair liver regeneration after two-thirds
partial hepatectomy (PHx) by controlling the levels of the cyclin
kinase inhibitors p21Cip1 and p27Kip1 (Jackson et al., 2014).
Similarly, different treatments with AHR ligands can trigger its
sustained activation, causing cell cycle arrest in G1 in 5 L (Wiebel
et al., 1991; Reiners et al., 1999; Santini et al., 2001), Hepa-1c1c7
(Marlowe et al., 2004) and MCF7 cell lines (Trapani et al., 2003).
The accumulation of the AHR transcriptional target, Cyp1a1,
works as a negative feedbackmechanism to eliminate endogenous
AHR ligands ensuring correct cell proliferation (Levine-Fridman
et al., 2004). Other studies have shown that AHR forms
complexes with the RB protein (Ge and Elferink, 1998; Puga
et al., 2000; Chan et al., 2001), acting as a negative regulator of cell
cycle progression by inhibiting the dependent transcriptional
activity by E2F.

The initiation of the cell cycle may be related to acute
inflammation mediated by the innate immune system. The
AHR relevance in the regulation of the immune system is
strongly emerging, as shown by recent studies that describe
the limitation of macrophage responses to inflammatory
stimuli dependent on AHR activation (Gutiérrez-Vázquez and
Quintana, 2018). Modulation of AHR activation can potentially

redirect the immune cells toward an antitumoral phenotype,
therefore representing a novel therapeutic approach in
immuno-oncology (Sun, 2021). The formation of AHR-RelA
complexes may also help explain some of the adverse
toxicological outcomes of AHR ligands such as
immunosuppression, thymic involution, hyperkeratosis, and
carcinogenesis (Marlowe and Puga, 2005). Within the same
family, RelB exerts a role in the regulation of genes activated
in an AHR-dependent manner such as cytokines IL-17A, IL-22 in
both bone marrow-derived macrophages (BMM) and thymus,
with TCDD inducing also IDO1/IDO2 expression only in thymus
(Ishihara et al., 2019). Such cross-talk between AhR and NF-kB
pathways has also been found to regulate AhR-mediated gene
transcription of IL6 and IL8 in breast cancers (Tian et al., 1999;
Vogel et al., 2007). On the other hand, AHR activation by TCDD
in human osteosarcoma cells is associated with an increased
aggressiveness, leading to a higher expression level of receptor
activator of NF-kB ligand (RANKL) (Yang et al., 2018).
Moreover, it has been reported that AHR can bind to tumor
suppressor KLF6, unmasking a novel AhR signalling mechanism
distinct from the canonical XRE-driven process (Wilson et al.,
2013). In addition, the AHR/NF-kB axis is able to modulate Pb
(lead)-induced toxicity in human lung cancer cells (Attafi et al.,
2020).

The rising of many studies in different mammalian models
supports the direct involvement of AHR in cell regeneration by
modulating different signalling pathways essential in this process.
AHR activation inhibits regenerative hepatocyte growth
following partial hepatectomy, resulting in p21Cip1 increased
expression in mice (Mitchell et al., 2006; Jackson et al., 2014)
and AHR-mediated regulation of cell cycle progression in
hepatectomized rats (Bauman et al., 1995). AHR-null mice
improves the lungs and liver regeneration after exposition to
acute toxic compounds through the increase in stem-like cells
population (Morales-Hernández et al., 2017; Moreno-Marín
et al., 2017). Also, AHR have a main implication in bone
diseases, particularly in the role of environmental pollutants
that induce bone loss. Regarding that, AHR participates in
bone remodelling through altering the interplay between bone-
forming osteoblasts and bone-resorbing osteoclasts in human
osteosarcoma cells (Park et al., 2020); also inhibits osteogenic
differentiation in human Osteoblast-Like Cells (Yun et al., 2018);
and its inhibition leads to an increase in bone mineral density
(BMD) and bone strength in murine models (Yu T.-Y. et al.,
2014).

Regarding the use of non-mammalian animal models like
zebrafish, AHR has been confirmed to have a causal role in
regeneration. AHR activation impairs heart regeneration in adult
zebrafish reducing dysregulated expression of genes involved in
heart function, tissue regeneration, cell growth, and extracellular
matrix (Hofsteen et al., 2013). Furthermore, AHR has been
presented as a crucial regulator of restorative neurogenesis in
the zebrafish brain, controlling ependymoglia differentiation
towards post-mitotic neurons (Di Giaimo et al., 2018). Finally,
AHR activation by TCCD inhibits zebrafish fin regeneration, with
recent genomic analysis revealing a functional cross talk between
AHR and the well-established Wnt/β-catenin signal transduction
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pathway (Zodrow and Tanguay, 2003; Mathew et al., 2006;
Andreasen et al., 2007).

All these studies suggest that targeting AHR to promote tissue
regeneration could be a useful strategy to avoid disturbances of
homeostasis that can promote disease, providing a biological
foundation for potential regenerative medicine approaches.

ARYL HYDROCARBON RECEPTOR ROLE
IN PLURIPOTENCY AND
DIFFERENTIATION
The AHR role in cell differentiation has been intensively studied
during the last decades. Preliminary studies with HL60 and HEL
cell lines showed that the differentiation from monocytes to
macrophages with phorbol esters required the transcriptional
activation of AHR (Hayashi et al., 1995). Moreover, experiments
performed to differentiate AHR +/+ and AHR −/− mouse
embryonic fibroblasts (MEFs) to adipocytes revealed that AHR
deficiency impairs the differentiation process, suggesting that
AHR could be an early regulator of adipogenesis (Alexander
et al., 1998). Moreover, the accumulation of TCDD in adipose
tissue induces an effect on oxidative stress enzymes in both
adipocytes and liver, exacerbating oxidative stress (Kern et al.,
2002). Furthermore, TCCD activation of AHR in conjunction
with MEK/ERK inhibits the peroxisome proliferator-activated
receptor (PPARγ1), leading to a suppression of adipogenesis
(Cimafranca et al., 2004). On the other hand, the
administration of the AHR exogenous ligand TCDD in
pregnant female rats accelerated the differentiation process
during the organogenesis of the embryo (Blankenship et al.,
1993), suggesting the AHR role in promoting in vivo
differentiation.

Regarding mouse embryonic development, recent studies
showed that the activation of AHR by exogenous ligand in
blocks the ability of hematopoietic stem cells for long-term
self-renewal (Laiosa et al., 2016). Furthermore, sustained AHR
activation during early differentiation of mouse embryonic stem
cells compromises critical signaling for cardiac mesoderm
ontogeny and cardiomyocyte functions (Wang et al., 2016),
indicating that the receptor has a relevant function in cell
differentiation inherent in the development of the organism.
Moreover, AHR has a relevant role in the early stages of
embryonic stem cell differentiation, regulating the core
pluripotency network of transcription factors OCT4/POU5F1,
NANOG, and SOX2 at initial developmental stages. The lack of
AHR in early mouse embryos generates a delay in the expression
of such differentiation markers, resulting in a more pluripotent
state of AHR-null embryos (Nacarino-Palma et al., 2021a). Also,
other studies have shown that AHR promotes the differentiation
of human embryoid teratoma cells through inhibition of OCT4
and NANOG expression (Morales-Hernández et al., 2016;
González-Rico et al., 2020). A new molecular mechanism was
discovered involving Alu retrotransposable elements located in
the promoters of pluripotency genes OCT4 and NANOG,
containing AHR binding sites, where the Alu-derived
transcripts are processed through the miRNA pathway to

generate small noncoding RNAs, complementary to the 3′UTR
region of NANOG and OCT4. This complementarity reduces the
mRNA levels of pluripotency genes, exerting the repressive
process (Morales-Hernández et al., 2016). Furthermore, the
absence of receptor in mice causes an undifferentiated
phenotype in numerous tissues due to the overexpression of
pluripotency genes and the accumulation of stem cells
subpopulations, originating a regenerative advantage (Morales-
Hernández et al., 2016; Morales-Hernández et al., 2017; Moreno-
Marín et al., 2017). In that context, AHR-null mice developed a
faster andmore efficient repair of the lung bronchiolar epithelium
upon non-AHR-ligand toxic molecule naphthalene injury. The
AHR absence originates an earlier andmore efficient activation of
stem-like cell subpopulations, besides AHR acts as a modulator of
the expression of pluripotency-inducing factors, which are being
positively regulated upon lack of AHR. This AHR deficiency
improves the regenerative potential in response to the effects of
acute toxin exposure (Morales-Hernández et al., 2017). These
results contribute to the strong current interest in regenerative
medicine to develop modulators to improve tissue repair
requiring increased cell proliferation and the earlier activation
of progenitor populations.

Furthermore, whole-genome analysis of chromatin
immunoprecipitation assays of hepatocellular carcinoma cells
from wild-type and AHR knock-out mice allowed the
identification of several groups of genes involved in cell
differentiation and development directly regulated by AHR
(Sartor et al., 2009), together with several studies showing that
AHR is necessary for the proper differentiation of lymphocytes by
mechanisms that are both dependent and independent of their
binding to XRE elements (Quintana et al., 2008; Esser et al., 2009;
Veldhoen et al., 2009; Mezrich et al., 2010). Besides, AHR has a
crucial role in the differentiation of neuroblastoma cells in vivo,
maintaining an inverse correlation with the prognostic marker
MYCN (Wu et al., 2014). In HL60 human leukemia cells, AHR
levels increase during cell differentiation, with classic stem cell
marker OCT4 expression decreased, indicating that positive
regulation of AHR in leukemia cells could favor a cell
differentiated phenotype (Ibabao et al., 2015).

In fact, comparative transcriptomic analysis of keratinocytes
of AHR +/+ and AHR −/− mice showed a reduction in the
expression of differentiation genes in the AHR-null model (van
den Bogaard et al., 2015), while treatment of mouse primary
keratinocytes with AHR antagonists CH223191 and GNF351
compromised their terminal differentiation. Interestingly, it
has been shown that AHR cooperates with the inducible
hypoxia factor HIF-1α in the differentiation of regulatory
T cells type 1 (Tr1) through their metabolic reprogramming
(Mascanfroni et al., 2015).

Together, these studies have uncovered the involvement of
AHR in the differentiation process of several organs like the skin,
the intestinal epithelium, the lung epithelium and even the
immune system (Esser and Rannug, 2015). Although AHR
acts as a differentiating factor in most of the studied cell types,
its activation by TCDD can also inhibit the proliferation and
differentiation of murine MC3T3-E1 pre-osteoblast cells in a
concentration-dependent manner, with antagonist CH223191
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pretreatment restoring their differentiation potential (Yu H. et al.,
2014). These studies, therefore, infer that AHR may have distinct
effects in differentiation and pluripotency depending on the cell
type, in a similar way to what happens in cell proliferation and
migration (Pohjanvirta et al., 2012). Moreover, Hippo signaling
pathway, responsible for the first fate decision establishment in
morula stage mouse embryos, was also upregulated in AHR−/−

embryos, contributing to the differentiation of extra-embryonic
tissues. In this context, AHR has a pro-differentiation role in the
early mouse embryo needed to specify the different cell fates
(Nacarino-Palma et al., 2021a).

Aryl Hydrocarbon Receptor Role in
Chromatin Dynamics
Interestingly, the regulation of cell fate and differentiation is also
related with transcriptional regulation by retrotransposable
elements (Mulero-Navarro and Fernandez-Salguero, 2016).
Being part of the family of mobile elements, retrotransposons
contains the SINE (Short Interspersed Nuclear Elements), LINE
(Long Interspersed Nuclear Elements) and LTR (Long Terminal
Repeat) subtypes (Batzer and Deininger, 2002; Deininger et al.,
2003). Although these mobile elements were described several
decades ago (Vasicek et al., 1997; Kondo-Iida et al., 1999), their
role in development and pathophysiology has only become
known in the last decade, with AHR showing a strong role in
their regulation (Roman et al., 2008; Gogvadze and Buzdin, 2009;
Román et al., 2011; Morales-Hernández et al., 2016; González-
Rico et al., 2020).

In recent years, studies on the position that regulatory
elements occupy throughout the genome (promoters, repressor
elements, enhancers, and insulators, among others) have acquired
special importance. Therefore, chromatin is not positioned
randomly within the nucleus. Chromosomes can organize
themselves into topologically associated domains, with a size
of mega bases, called topological associated domains (TADs).
Long-range interactions between regulatory and promoter
elements in these domains is high (Dixon et al., 2012).
Therefore, the relationship between the position of a gene in
the context of the nuclear chromatin structure and its level of
gene expression is widely accepted (Gibcus and Dekker, 2013).
The transcriptional repressor CTCF (11-zinc finger protein or
CCCTC binding factor) actively participates in these long-range
interactions. Originally described as a c-Myc repressor in chicken
(Filippova et al., 1996), it was later found to possess enhancer-
blocking activity at said locus (Recillas-Targa et al., 2002).
Considered the insulator element by excellence, CTCF most
known function is to attract loci that are distant within the
same chromosome and even between different chromosomes
(Phillips-Cremins and Corces, 2013). It has been described
that the cooperation between CTCF and AHR is involved in
the insulating activity of the retrotransposon of the SINE-B1
family known as B1X35S, which represses the expression of target
genes such as Rtl1, Dad1 and Tbc1d1 (Román et al., 2011).
Interestingly, B1X35S has functional XRE and E-box sites to
which AHR and Slug / SNAI2 bind and whose mutation blocks its
isolating activity (Roman et al., 2008). Furthermore, while the

basal transcription of the B1X35S element is dependent on RNA
polymerase III (RNA pol III), its transcription is dependent on
the binding of AHR to its XRE site involves the recruitment of
RNA polymerase II (RNA pol II) and the release of RNA pol III
(Román et al., 2011). Regarding that, other studies have shown
that AHR was required for retinoic acid (RA)-mediated
differentiation of N-TERA2 cells, specifically RA-induced
differentiation promoted AHR binding to Alu
retrotransposons flanking pluripotency genes NANOG and
OCT4. Notably, Alu-generated transcripts in differentiated
cells were able to repress NANOG and OCT4 expression by a
mechanism involving the miRNA machinery. Interestingly, such
repressive mechanism appears to be mediated by non-coding
RNA transcripts produced by RNA pol III from the Alu elements
following AHR binding (Morales-Hernández et al., 2016). On top
of that, it was also unveiled the existence of a complex regulatory
network of proteins such as PRMT1 and CHAF1B involved in
chromatin architecture and assembly, epigenetics and chromatin
dynamics that control the formation of a chromatin loop between
two Alu retrotransposons flanking the NANOG loci. As a
consequence, NANOG expression can be downregulated
during differentiation process in human teratocarcinoma
N-TERA2 cell line in an AHR-dependent manner (González-
Rico et al., 2020).

On the other hand, regions of DNA located in the inter-
nucleosomal spaces have been described that present high
accessibility for the binding of transcription factors, which are
used as platforms for the binding of proteins responsible for
preventing chromatin relaxation. In fact, CTCF, which has
binding sites throughout the genome, could contribute to
establishing heterochromatin barriers capable of modulating
gene expression at the genomic level (genome-wide)
depending on cell types and specific physiological context (Fu
et al., 2008; González-Rico et al., 2020). Therefore, it is worth
highlighting the recent interest in studying the possible
relationship between chromatin accessibility and the
implication of AHR over the regulation of gene expression,
based on the presence of binding sites for enhancers and
insulators.

CELL REPROGRAMMING: A NEW PATH
FOR ARYL HYDROCARBON RECEPTOR

Cell reprogramming involves genetically reversing cell identity so
that a differentiated cell acquires pluripotent characteristics. Such
identity is conferred by its phenotype, lineage and state, and its
underlying molecular regulation could provide the possibility of
cell fate understanding and manipulation (Morris, 2019). Since
the first isolation of embryonic stem cells (ESCs), many efforts
have been made to understand and characterize the mechanisms
involved in the maintenance of pluripotency.

Cell differentiation was once thought to be an irreversible
process, until an initial work provided the first evidence that
certain factors can erase cell identity (Gurdon et al., 1958).
Decades later, it was revealed that the transcription factors
Oct4, Sox2, Klf4 and c-Myc (OSKM) were enough to
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reprogram a terminally differentiated cell into a pluripotent
cell, known as an induced pluripotent stem cell (iPSC)
(Takahashi and Yamanaka, 2006). Several studies
combining these factors determined that iPSCs were
functionally identical to ESCs, therefore, they could be
differentiated into adult cells of any lineage (Dimos et al.,
2008; Chambers et al., 2009; Karumbayaram et al., 2009). The
core transcriptional network OCT4, SOX2 and NANOG is also
responsible for regulating the maintenance of pluripotency in
ESCs (Jaenisch and Young, 2008; Young, 2011).

The most common criteria to determine the efficiency of iPSC
reprogramming are both the number of new colonies with
typical stem cell morphology (Cho et al., 2010; Jia et al., 2010)
and the number of clones expressing alkaline phosphatase
(Fusaki et al., 2009; Kim et al., 2009). In this way, a high
efficiency is caused by several factors such as cell senescence
and proliferation status (Zhao et al., 2008; Hanna et al., 2009;
Utikal et al., 2009), MET-related factors (Samavarchi-Tehrani
et al., 2010), expression of the NANOG transcription factor
(Takahashi and Yamanaka, 2006; Silva et al., 2009; Theunissen
et al., 2011), MAPK and GSK3 pathway inhibitors (Ying et al.,
2008) and methylation inhibitors (Mikkelsen et al., 2008;
Theunissen et al., 2011).

Lately, there are a growing number of studies who achieve cell
reprogramming with several pathways with both in vitro and in
vivomodels. Regarding in vitro ones, the adult cell can revert to a
pluripotent state and then differentiate into the desired cell type
(Brambrink et al., 2008; Stadtfeld et al., 2008). Another option is
to express specific factors to directly modify a cell with a different
identity (Aydin and Mazzoni, 2019), a method known as lineage

reprogramming (Jopling et al., 2011). In vivo, several
reprogrammable mouse models expressing Yamanaka factors
(OSKM) after induction with doxycycline treatment have been
established (Abad et al., 2013; Ohnishi et al., 2014; Ocampo et al.,
2016). Therefore, cell reprogramming is an emerging alternative
to promote tissue regeneration and self-repair in the follow-up of
diseases (Sánchez Alvarado and Yamanaka, 2014; Jessen et al.,
2015; Passier et al., 2016; Takahashi and Yamanaka, 2016).

Surprisingly, cell reprogramming appears closely linked to
senescence, a seemingly opposite cellular state that represents a
hallmark of aging in response to various stress stimuli (López-
Otín et al., 2013; Chiche et al., 2020). Recent observations support
that tissue injury can induce senescence and activates signaling
pathways that control reprogramming, thus highlighting the
functional association of both processes (Mosteiro et al.,
2016b; Chiche et al., 2017; Mosteiro et al., 2018). Therefore,
the relationship between senescence and reprogramming has
become a new trend to explore. The opposing effects of
reprogramming factors on the senescence response (between
complete reprogramming and partial reprogramming) could
be a consequence of their level of induction and duration
(Chiche et al., 2020). This leads to a challenging
understanding of the reprogramming process and its potential
clinical research application.

One of the most intriguing features of AHR is that its role in
both oncogenesis and stemness is conditioned by the cell type,
acting as a tumor suppressor or as an oncogene upon specific cell
types, tissues or organs (Marlowe and Puga, 2005; Barouki et al.,
2007). Recent studies have identified reprogramming and
pluripotency factors (OSKM) as involved in the progression of

FIGURE 2 | AHR involvement in homeostatic and cancer processes.
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different tumor types (Yin et al., 2015; Kuo et al., 2016; Zhou et al.,
2016). In turn, AHR constitutively represses the expression of the
c-Myc oncogene in mammary gland tumor lines (Yang et al.,
2005). Also, AHR induces human teratocarcinoma cells
differentiation by repressing NANOG and OCT4 expression
through an Alu retrotransposon mediated mechanism
(González-Rico et al., 2020), suggesting that AHR may activate
a mechanism that controls the expression of pluripotency genes
in both pluripotent and differentiation states. Other studies have
shown that the pro-tumor and pro-metastatic activity observed in
melanoma cells upon AHR absence is associated with the
activation of the pluripotency inducer SOX2 and the aldehyde
dehydrogenase enzyme IAI (ALDH1A1) (Contador-Troca et al.,
2015). Consequently, such deregulation of AHR activity has
important implications in cancer.

These and other evidence suggest that AHR could play a
central role in the regulation of pluripotency, and thus
reprogramming. Potential mechanisms through which AHR
modulates pluripotency are regulation of cell cycle, epigenetic
regulation through DNA methylation and interplay between
AHR and pluripotency factors in stem cells (Ko and Puga, 2017).

Being a key factor in differentiation, AHR has a relevant
implication in stemness maintenance. Its expression in
embryonic stem cells is transcriptionally repressed by signaling
pathways involving the pluripotency factors Oct4, Nanog, Sox2
and Polycomb proteins (Ko et al., 2014). Thus, the anti-allergic
drug tranilast can reverse differentiation and promote
reprogramming of mouse embryonic fibroblasts to induced
pluripotent stem cells (iPSCs) by modulation of the
microRNA miR-302 through AHR (Hu et al., 2013).
Furthermore, it has been suggested that AHR repression is
necessary to prevent premature loss of pluripotency and to
maintain mitotic progression of embryonic stem cells (Ko,
Fan, de Gannes, et al., 2016). Therefore, although AHR
expression in embryonic stem cells is under the control of the
pluripotency factor network, increased AHR expression is likely
to counteract the maintenance of pluripotency and induce exit
from the pluripotent state.

Recently, it has also been described that AHR deficiency
promotes complete tissue repair in the lung after acute
toxicity, implicating the expansion of stem cells expressing
reprogramming and pluripotency factors OCT4, NANOG and
CK14 (Morales-Hernández et al., 2017). Not limited to this tissue,
it has been additionally reported an earlier andmore efficient liver
regeneration, resulting in a response of increased proliferative
potential and expansion of cells expressing OCT4, NANOG and
TBX3 factors (Moreno-Marín et al., 2017). The use of
experimental models, in which AHR expression has been
interfered with, shows a more undifferentiated phenotype and
ultimately a more pluripotent basal state, which has consequently,
among others yet to be identified, a more effective regenerative
capacity (Morales-Hernández et al., 2017; Moreno-Marín et al.,
2017). Such enhanced regenerative capacity also appears when
major lung stem cells responsible for regeneration and repair after
injury, including type-II alveolar cells and Clara cells, are
amplified in K-RasG12D/+; AHR −/− NSCLC lesions (Nacarino-
Palma et al., 2021b). This links to the opportunity offered by

cellular reprogramming in the research of the rejuvenation
process (Mahmoudi and Brunet, 2012; Mahmoudi et al.,
2019), highlighting its relevance in the use of cell
reprogramming in iPSC-based regenerative therapies.

In conclusion, AHR presents a key involvement in numerous
critical signaling pathways for the maintenance of cellular
homeostasis, which makes its role characterization in them
a must.

FUTURE DIRECTIONS

Cellular differentiation was described decades ago and has long
been considered responsible for the irreversible loss of
proliferative capacity and the acquisition of a target defined
and terminal cell. However, seminal findings in recent years
have surprisingly revealed that a terminally differentiated cell
can reprogram their gene expression pattern and dedifferentiate
into a pluripotent state (induced Pluripotent Stem Cell, iPS) from
which a cell type different from that of departure. The intensive
research on AHR in recent years has led to the conclusion that, in
addition to its functions in detoxification, this receptor exerts
physiological and homeostatic functions in different tissues and
organs including liver, skin, heart and immune system. A notable
property of AHR is that its functions can be influenced by the
phenotype of the target cell. Thus, it can promote or inhibit cell
proliferation and tumor progression by acting as an oncogene or
as a tumor suppressor. Overall, all these new findings suggest that
dysregulation of AHR may have a causal role contributing to
tumor progression and spread. For that reasons, one plausible
hypothesis is that the AHR has a regulatory function in the
reprogramming-senescence axis that ultimately impacts tissue
regeneration. AHR would then serve as limiting factor to control
the extent of tissue reprogramming and repair as well as the
appearance of senescent cells in response to either toxic injury or
tumorigenesis. Consequently, AHR deficiency may deregulate the
reprogramming-senescence balance that, on the one hand
improves tissue regeneration while, on the other, exacerbates
tumor progression. This could be related with the fact that AHR is
relevant in controlling the reprogramming-senescence balance
that likely underlines organ regeneration. Interestingly,
senescence is closely related to reprogramming as an
increasingly number of reports are revealing, including the
increase in senescence in reprogrammed tumors of the
pancreas (Abad et al., 2013).

Recent investigation indicates the existence of a link between
those processes in normal development and in the cell response
against pathology or injury. The fact that senescence has emerged
as a cell state that probably has a major impact in tissue
homeostasis, therefore having functions beyond aging, opens
new scientific views particularly with respect to its correlation
with undifferentiation and reprogramming. It is still most
interesting that recent studies suggest that, in fact, senescence
is a determining factor in tissue repair and studies are ongoing
trying to develop novel therapeutic tools based on selenolytic
molecules able to specifically control the expansion of these cells.
Therefore, there is an increasing interest in identifying novel
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molecular intermediates with causal roles in the control of the
reprogramming-senescence-regeneration axis. Understanding
the signaling pathways controlling cellular and molecular
mechanisms which undergo organ differentiation, tissue repair,
cell reprograming, and aging will lead the way in future studies,
with AHR earning a pivotal role (Figure 2).
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