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Glucose is the main physiological stimulus of pancreatic 
β-cells. However, chronic exposure of β-cells to elevated glu-
cose concentrations induces glucotoxicity. In animal models 
of type 2 diabetes, it has been shown that several days of hy-
perglycemia impairs glucose-stimulated insulin secretion and 
increases β-cell apoptosis. In patients with type 2 diabetes, the 
multiple disorders caused by chronic hyperglycemia in β-cells 
include elevated basal insulin secretion, increased sensitivity 
to glucose, diminished response to insulinotropic stimuli and 
substantial depletion of insulin hoarding [1,2]. These defects 
associated with insulin resistance lead to a progressive loss of 
β-cell mass and function and to the onset of diabetes. It is cru-
cial to study the mechanisms by which glucotoxicity induces 
β-cell failure to develop therapeutic strategies for protecting 
and recovering a functional β-cell mass. Several mechanisms 
might explain the glucotoxicity due to prolonged hyperglyce-
mia, such as β-cell exhaustion, oxidative stress induced by free 
radical oxygen species, endoplasmic reticulum (ER) stress, in-
flammation caused by proinflammatory cytokines and che-
mokines, loss of neogenesis, proliferation of β-cells, and so on 
[3-10]. However, the precise mechanisms of glucotoxicity and 
its contribution to the pathology of type 2 diabetes mellitus 
(T2DM) are still not fully understood.
 Previous reports have shown that the over-production of 
reactive oxygen species (ROS), primarily due to hyperglyce-

mia, causes oxidative stress in various tissues. ROS are free 
radicals that are intermediate metabolites derived from oxy-
gen metabolism in mitochondria. They play an important role 
in both physiology and pathology in β-cells. ROS are continu-
ously produced by the mitochondrial electron transport sys-
tem as a byproduct of the oxidative phosphorylation pathway; 
however, normal cells have antioxidant defenses to rapidly 
neutralize ROS and maintain an optimal redox potential for 
appropriate biological cell function [2,11]. This optimal redox 
balance is impaired in T2DM because of increased ROS pro-
duction and insufficient endogenous anti-oxidant defenses of 
the β-cells. Hence, antioxidant therapy could be useful for 
treating T2DM. Antioxidants are reducing agents, such as thi-
ols, ascorbic acid, or polyphenols, and are widely used in di-
etary supplements for the prevention of diseases, such as can-
cer, coronary heart disease, and various inflammatory diseas-
es. Plants and animals have multiple types of antioxidants, 
such as glutathione, vitamin C, vitamin A, and vitamin E, as 
well as antioxidant enzymes, such as superoxide dismutase 1 
and 2 (SOD1, 2), glutathione peroxidase 1 (GPX1), and cata-
lase (CAT) [12]. Insufficient amounts of antioxidants or anti-
oxidant enzyme activities can cause oxidative stress and dam-
age or ultimately kill cells. Previous studies in β-cell lines, iso-
lated rodent islets, and diabetic animal models have shown 
that anti-oxidants can protect β-cells against the toxic effects 
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of high glucose concentrations on insulin gene expression, in-
sulin secretion and β-cell survival. Antioxidant (pre)treatment 
of diabetic animal models has demonstrated several protective 
effects against diabetic complications, including the gradual 
improvement of insulin sensitivity and the enhancement of 
β-cell function and survival [13-16].
 Tea extracts have been widely used for many centuries as a 
beverage in traditional medicine in Asia for treating various 
diseases, including urinary lithiasis, edema, eruptive fever, in-
fluenza, rheumatism, hepatitis, jaundice, and renal calculus. 
Tablets or capsules containing dried leaves are also available as 
dietary supplements. Orthosiphon stamineus (OS) is a popu-
lar medicinal plant in Southeast Asia known for its diuretic, 
uricosuric, antioxidant, hepatoprotective, anti-inflammatory, 
antidiabetic, and antihypertensive effects and for its protective 
action against menstrual disorders. Several therapeutic effects 
of OS have been ascribed to polyphenol, the most abundant 
compound in the leaf, which has been reported to reduce oxi-
dative stress by inhibiting lipid hyperoxidation [17-25].
 Previous studies have reported that tea extracts of medici-
nal plants as an alternative management of T2DM are effective 
in reducing oxidative stress. Akowuah et al. [26] showed that 
the free radical-scavenging capabilities of extracts from the 
dry leaves of OS were comparable to pure synthetic antioxi-
dant butylated hydroxy anisole. Aoshima et al. [27] ascribed 
the antioxidant effects to polyphenols in the extracts. Syiem 
and Warjri [28] reported that extracts of Ixeris gracilis exerted 
antidiabetic and antioxidant effects, which are associated with 
improved activities of GPX and superoxide dismutase in the 
liver, kidney, and brain. Kumar et al. [29] showed that the anti-
diabetic activity of Melastoma malabathricum Linn. leaves is 
associated with increased levels of SOD, CAT, and GPX.
 A portion of the beneficial effects of tea extracts might be 
explained by their action on the β-cells. Sriplang et al. [30] 
demonstrated an antidiabetic effect of aqueous extracts of OS 
and observed a direct stimulatory effect of the extract on insu-
lin secretion from the perfused rat pancreas. Mechanisms oth-
er than antioxidant effects of the extracts might contribute to 
the improved β-cell function. Ortsater et al. [31] reported that 
green tea catechin exerts profound antidiabetic effects associ-
ated with reduced insulin resistance and enhanced pancreatic 
islet function due to reduction of ER stress. In a paper pub-
lished on this issue, Lee and his colleagues [32] tested the di-
rect effect of OS extracts on INS-1 cells and evaluated the like-
lihood that OS extracts could prevent glucotoxicity. They 

showed that hexane extracts of OS dose-dependently stimu-
lated insulin secretion and insulin and Pdx-1 gene expression 
and that these effects were associated with an increased level 
of phosphorylation of phosphoinositide 3-kinase and Akt but 
not with a change in peroxide levels. Interestingly, the extracts 
reversed the glucotoxic effects elicited by a 3-day exposure to 
high glucose levels (30 mM) [32].
 According to all of these studies, tea extracts seem to exert 
multiple beneficial effects for treating diabetes. Several effects 
are due to the antioxidant action of the extracts, whereas other 
effects are attributed to a direct action on β-cells involving a 
stimulation of insulin secretion and a protection against glu-
cotoxicity. Additional studies are, however, required to deter-
mine the precise underlying mechanisms. They could help us 
better understand the therapeutic effects of various tea ex-
tracts in the treatment of diabetes.
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