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Abstract

Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a
global scale. The large number of variations and mutations found in these projects requires high-throughput tools to
identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which
mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation
or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant) algorithm that utilizes
protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness.
We show that this bi-directional SIFT (B-SIFT) is capable of identifying experimentally verified activating mutants from
multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of
which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in
protein engineering as well as in identification of functional mutations in cancer.
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Introduction

The growing amount of mutation and polymorphism data being

generated has created a need for computational tools to

systematically analyze large sets of mutations and filter them for

those that have the greatest potential functional impact. Several sets

of tools have become available that attempt to predict the functional

impact of amino acid substitutions, thus providing a valuable

arsenal for identifying mutations that should be the subject of

further investigations [1–6]. The SIFT (Sorting Intolerant from

Tolerant) algorithm [3], is arguably the most commonly used tool

for detecting deleterious amino acid substitutions due to its easy

application towards large numbers of mutations. However, SIFT

and other tools like it only attempt to distinguish between two classes

of mutations, often categorized as deleterious and tolerated [3] or

non-neutral and neutral [6]. It has been shown that many important

mutations, in cancer for example, are a result of activating or gain-

of-function mutations. Most current tools do not make an effort to

specifically identify such mutations and distinguish them from

functionally deleterious substitutions. We hypothesize that there are

at least three categories of activating mutations: mutations that

destabilize the inactive form of a molecule thereby resulting in

constitutive activation (e.g. EGFR L858R), mutations that mimic

the activated state (e.g. phosphorylated) of a protein (e.g. BRAF

V600E), and mutations that introduce an evolutionarily more

common residue which enhances proteins activities. Our focus is on

the latter form of activating mutations. These mutations may simply

increase enzymatic activity or substrate binding through more

beneficial biochemical interactions.

Here we present a modified version of SIFT called Bi-

directional SIFT (B-SIFT) which is able to identify both

deleterious and a subset of activating mutations given a protein

sequence and a query mutation within that sequence. The SIFT

algorithm relies upon evolutionary conservation to find mutations

that have the greatest potential for negative functional impact and

B-SIFT uses the same idea to find mutations with increased fitness.

Intuitively, the concept is that mutating from an evolutionarily

uncommon allele to one that is more commonly present in protein

homologues could result in optimized protein activity. Rather than

simply scoring the mutant allele based on the multiple protein

sequence alignment, as SIFT does, B-SIFT calculates scores for

both the mutant allele and the wild-type allele and returns the

difference of these values as the final score, which effectively

measures relative functional activity (Fig. 1A). In contrast to the

two-category scoring that most bioinformatics tools output, B-

SIFT scores can be interpreted with three categories such that low

scores represent a deleterious effect, scores near zero represent a

neutral effect, and high positive scores identify potential activating

mutations.

To quantify B-SIFT’s ability to classify mutations, we have

validated B-SIFT against two protein mutation datasets: a diverse

set of experimentally described mutagenesis experiments as curated

in the SWISS-PROT protein database (MUTAGEN field [7]) and a

large set of single amino acid substitution mutants in human DNase

I. We find that high B-SIFT scores can effectively enrich for

activating mutations in both datasets. The DNase I results

demonstrate that B-SIFT could be capable of providing a starting

point in protein engineering efforts by identifying candidate
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mutations for any protein, even one with minimal available

structure or functional data (see Results S1 and Figure S1).

Perhaps the most important recent application of mutation

analysis tools is in the realm of cancer research, where an influx of

data regarding somatic mutations found in cancer emphasizes the

need for efficient and reliable analysis methods [8–14]. Because of

the inherent genetic instability of many cancers, it is known that

many mutations found in cancer cells are a result of the cancer

itself (passengers) rather than actual contributors to disease

progression (drivers) [15].We have analyzed a large set of

experimentally discovered cancer-associated somatic mutations

with B-SIFT and performed a detailed structural analysis to

predict the mutations most likely to be activating and potentially

cancer-causing.

Hyperactive or gain-of-function mutations comprise an area of

functional analysis that is often overlooked in large-scale mutation

analyses. B-SIFT presents the first generalized tool for systematic

prediction of potentially activating missense mutations that are a

result of increased protein fitness, thereby identifying potentially

functional mutations that were previously ignored. We show that

B-SIFT can be used for identification of potential activating

mutations while maintaining SIFT’s ability to identify neutral and

deleterious mutations.

Materials and Methods

The original SIFT software (version 2.1.2) was downloaded

from the official SIFT website (http://blocks.fhcrc.org/sift/SIFT.

html). Protein sequences were retrieved from Uniprot for the

siftalign program. Wrapper scripts were written to streamline

protein sequence retrieval, cache alignment results, and enable

batch processing of the input. B-SIFT score can be calculated as

SIFT(mutant)–SIFT(wild-type) where SIFT(mutant) refers to the

SIFT score calculated for the mutant allele and SIFT(wild-type) is

the score calculated for the wild-type allele. According to SIFT

documentation, results that have a median sequence information

of greater than 3.25 are considered low confidence, so these results

have been filtered from our analysis [16,17].

SWISS-PROT mutagenesis data was downloaded and parsed

from SWISS-PROT release 56. The MUTAGEN field from each

protein entry was parsed out and merged into a single file containing

all MUTAGEN entries. Each mutation was labeled as deleterious,

activating, or neutral based on keyword recognition within only the

first two words of the text description to prevent complications with

exceptionally verbose phenotype descriptions. Mutations with

descriptions that did not match any of the given strings were

discarded from further analysis. Activating mutations contained at

least one of: increase, enhance, activat, constitutive acti, restore.

Mutations annotated as having a small or no effect were labeled as

neutral, these were identified with keywords no effect, no change,

normal, mild, minimal effect, minor, small effect, or wild-type.

Deleterious mutations made up the majority of the dataset and also

contained the greatest number of keywords: decrease, inhibit, reduc,

loss, lower, abolish, abrogate, inactive, diminish, disrupt, impair,

eliminate, no activity, prevent, suppress, increases km, increases the

km. Mutations annotated as activating were then investigated by

hand to remove any false positives, such as mutations described as

‘‘Increases substrate binding and reduces catalytic activity’’ or

‘‘Increases electrophoretic mobility of the protein.’’ This resulted in

the removal of 104 out of 512 mutations (,20%). The final dataset

used for analysis included 408 activating, 1932 neutral, and 9736

deleterious mutations. The complete dataset, including B-SIFT

scores and annotations, is available in Supplemental Data.

DNase I mutations were generated by site-directed mutagenesis

and proteins were expressed in HEK293 cells using methods as

previously described [18–20]. The methyl green assay was used to

measure DNA hydrolytic activity of DNase I in the presence of

2 mM Mg2+ and 2 mM Ca2+ as reported previously [20,21].

DNase I concentrations were determined by ELISA, using a goat

anti-DNase I polyclonal antibody coat and detecting with a rabbit

anti-DNase I polyclonal antibody conjugated to horseradish

peroxidase as described previously [20,21]. In both assays,

multiple sample dilutions were compared to standard curves of

wildtype DNase I to determine concentrations. The relative

specific activity (RSA) was calculated by normalizing the specific

activity of the mutant to the specific activity of wild-type DNase I.

Our analyses of DNase I mutations are described in Results S1

and Figure S1.

SNP data was downloaded from NCBI dbSNP database build

126 (http://www.ncbi.nlm.nih.gov/projects/SNP/) [22]. Because

Figure 1. B-SIFT schematic and performance compared to SIFT.
A. Schematic of B-SIFT scoring range versus original SIFT. SIFT generates
scores for each substitution on a scale from 0 to 1, with scores closer to
zero representing the mutations most likely to be deleterious. B-SIFT is bi-
directional and takes the difference of SIFT scores between the wild-type
and mutant alleles to obtain a score ranging from 21 to 1 with higher
scores representing substitutions more likely to be activating mutations.
B. Performance of B-SIFT versus SIFT in predicting deleterious mutations.
A receiver-operator characteristic (ROC) plot showing the true positive
versus false positive performance rates for B-SIFT (red curve, area under
curve = 0.75) and SIFT (black curve, area under curve = 0.75) in predicting
which of 4041 mutants of the E. coli LacI repressor gene are likely to have
a deleterious functional impact [27,29].
doi:10.1371/journal.pone.0008311.g001
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B-SIFT uses an amino acid substitution as input and interpretation

of allele frequencies would be complicated by multi-allelic SNPs,

only bi-allelic missense SNPs were used in this analysis, resulting in

a set of 32261 nonsynonymous SNPs (22,219 with median

sequence information less than or equal to 3.25). Each nonsynon-

ymous SNP was translated into the appropriate amino acid change

for use as input into B-SIFT. Allele frequencies were determined

from the SNPAlleleFreq.bcp file from the dbSNP FTP download

site. The raw data used in our dbSNP analysis is available in

Supplemental Data.

Cancer mutation data was obtained from the Sanger Institute

Catalogue Of Somatic Mutations In Cancer web site (http://

www.sanger.ac.uk/cosmic [23,24]). Public cancer genome muta-

tion data was downloaded from their respective publication sites

[8,9,11,12,14] and run through B-SIFT with protein sequences

corresponding to the given transcript identifiers in each publica-

tion. Mutations chosen for further structural analysis had either B-

SIFT score greater than 0.5 or both a positive B-SIFT score and

cancer-specific overexpression with a one-tailed t-test p-value less

than 0.001. Expression data is extracted from the Gene Logic

database (Gene Logic, Inc., Gaithersburg, MD, USA) and based

on the average expression in cancer samples versus normal

samples for the tissue that the mutation was found in. Expression

differences are calculated as a p-value using a two-sample t-test for

the average expression between cancer samples and normal

samples.

Homology models were built using Modeler 9v4. Models of

Pirh2 A190 and Pirh2 A190V were built from the structure of

Pirh2 RING-H2 domain (PDB code: 2jrj). Interaction model

of Pirh2–UbcH7 was built by superimposing the model of Pirh2

over C-cbl from C-cbl–UbcH7 complex (PDB code: 1fbv).

Potential interactions and figures were generated using Pymol

(www.pymol.org [25]).

Results

Validation
SIFT was originally validated upon previously published large-

scale mutagenesis experiments [26–29], so we used an identical

dataset to validate whether or not B-SIFT could call deleterious

mutants at a rate similar to that of the original SIFT. The E. coli

LacI repressor mutagenesis dataset contained 4004 mutations with

experimentally measured phenotypes that SIFT used for valida-

tion [16]. SIFT was able to predict deleterious mutations in LacI

at approximately 68% total prediction accuracy rate [27,29]. We

analyzed this same dataset with our implementation of B-SIFT

and, using a Receiver-Operator Characteristic (ROC) curve plot,

we show that B-SIFT and the original SIFT have almost identical

true positive/false positive trade-off rates (Fig. 1B) for detection of

deleterious mutations.

The goal of B-SIFT is to enable prediction of activating

mutations in addition to deleterious mutations that SIFT already

predicts, and so we sought out a large-scale mutagenesis dataset

with experimentally verified phenotypes for use in validation of B-

SIFT’s utility. Ng and Henikoff used LacI, HIV-1 protease, and

bacteriophage T4 lysozyme in validation of SIFT, but none of

these three datasets contains information about activating or gain-

of-function phenotypes [26–29]. To test B-SIFT’s ability to predict

activating mutations, we turned to the SWISS-PROT protein

database, which contains literature-curated entries of experimen-

tally determined phenotypes for directed mutagenesis experiments

across a large number of proteins [7] (SWISS-PROT MUTAGEN

field). We filtered the complete set of mutagenesis data from

SWISS-PROT release 56 for single amino acid substitution

mutations, which resulted in a dataset containing 20787

mutations. Mutations are described with a text description of the

experimentally determined phenotype, but these descriptions do

not adhere to any kind of specific format or controlled vocabulary.

To simplify the analysis, we implemented a simple parsing

algorithm to categorize each mutation description as deleterious,

neutral, activating, or uncategorized. This categorization was done

by looking for specific keywords within the first few words of the

description, and since there is no controlled vocabulary the

accuracy of this categorization approach was validated by random

sampling and manual examination (see Methods).

After the filtering by categorization, we were left with 14993

mutations categorized as either activating, neutral, or deleterious.

These mutations were all analyzed by B-SIFT and filtered by

information content of the SIFT alignment (see Methods),

resulting in 12076 remaining mutations of which 408 (3.4%) are

called activating and 9736 (80.6%) are deleterious. The majority of

mutations scored near -1 in all three sets, but this is consistent with

the fact that the majority of these mutations have SIFT scores

close to zero (Figure S2). Even with the low-value peaks, however,

distributions of B-SIFT scores for each of the three categories show

enrichment at the expected B-SIFT values. For example, the

deleterious mutations are enriched for low B-SIFT scores around -

1, the neutral mutations have a score bump near 0 while the

activating mutations have noticeably more mutations in the

positive score range (Fig. 2A). This data can be seen in another

form by examining the fraction of mutations with a given score

cutoff that are classified as either deleterious, neutral, or activating

(Fig. 2B). From this, we see that although only 3.4% of the total

dataset is activating, 22% of the mutations with a B-SIFT score

greater than 0.5 are activating (Fig. 2B) and in fact there is a

consistent enrichment of activating mutations as B-SIFT scores

increase (Fig. 2C). To show that the additional data used in the B-

SIFT calculation improves performance, we also calculated the

enrichment of activating mutations that would result from

increasing SIFT scores alone. We also observe an enrichment of

activating mutations for high SIFT scores, but B-SIFT performs

substantially better (Fig. 2C). At a B-SIFT score cutoff of 0.5, we

observe a 9% sensitivity towards identifying activating mutations

but a 99% specificity, suggesting that we are able to identify only a

subset of activating mutations but the majority of mutations are

correctly classified as non-activating. There are many possible

ways in which a mutant phenotype may be considered activating,

but based on these results on diverse mutagenesis data we feel

confident that B-SIFT is able to identify at least a subset of

activating mutations that would not otherwise be identified by

SIFT.

We further attempted to validate B-SIFT’s ability to identify

activating mutations through analysis of the Protein Mutant

Database (PMD), a database of literature-curated protein mutants

and phenotypes [30]. Although PMD contained a large number of

mutations with phenotype descriptions and annotations, the

interpretation of these descriptions proved to be more complex

than the similar data contained in SWISS-PROT and the results

were inconclusive. The primary obstacle towards proper utiliza-

tion of these protein mutation databases as benchmarks for B-

SIFT was the difficulty in assigning each phenotype as deleterious,

neutral, or activating. We utilized an ad hoc method for doing

initial categorization in both cases, but after extensive manual

examination of the mutations classified as activating in both

datasets, we found that the SWISS-PROT mutations are more

likely to provide interpretable results. All 1170 mutations initially

classified as activating in the two datasets (626 in SWISS-PROT

and 544 in PMD) were examined by hand to call whether or not

Finding Activating Mutations
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the mutation description was properly classified as activating.

Although there is some subjectivity in this analysis, we found that

,80% of SWISS-PROT and ,64% of PMD mutations were

correctly classified as activating, which typically required mention

of increased enzymatic activity or substrate binding. Due to the

difficulty in systematically categorizing activating mutants in

PMD, our analysis focused instead on the SWISS-PROT mutants.

Comparison with SNAP
SNAP (Screening for Non-Acceptable Polymorphisms) is a

neural-network based computational tool trained on a large set of

mutation data, including PMD data, that performs well in

distinguishing neutral from non-neutral amino acid substitutions

[6]. Since SNAP was trained on data that includes activating

mutations, it specifically categorizes its predictions into two

categories: neutral and non-neutral, where the authors intend

non-neutral to include both deleterious and activating mutations.

We applied SNAP to the same set of SWISS-PROT protein

mutants mentioned above and examined the results on a large-

scale.

SNAP outputs three values for each mutation: a binary call of

neutral or non-neutral, a reliability index (RI), and an expected

accuracy. The reliability index and expected accuracy are quality

scores that are highly correlated, and so we only used the reliability

index scores for quality thresholding. 14813 mutations across 4052

protein sequences received both a B-SIFT score and a SNAP

prediction, and so we focused on these mutations for further

analysis.

SNAP predicted only 1731 (11.3%) of these mutants to be

neutral, so the great majority of mutations were predicted to be

non-neutral. In order to investigate SNAP’s ability to distinguish

activating and neutral mutations, we calculated the percentage of

mutations called neutral for each of the three categories at each

reliability index (Figure S3). We found that neutral and activating

mutations have a very similar distribution of SNAP calls until the

reliability index cutoff is raised to 5 or higher, after which

activating mutations are called non-neutral at a rate more similar

to deleterious mutations. If we consider all predictions, we find

that SNAP calls 74% of all activating mutations as non-neutral.

However, among activating mutations with B-SIFT score greater

than or equal to 0.5, SNAP calls only 26% as non-neutral,

implying that B-SIFT is detecting a distinct subset of activating

mutations.

SNP Analysis
Although the majority of our analysis is focused on mutations,

we sought to ensure that B-SIFT is not simply identifying naturally

occurring alleles in polymorphic positions. To do this, we

leveraged the knowledge of natural human genetic variation in

dbSNP to study the relationship between human population allele

frequencies and functional prediction. We analyzed ,32,000

missense SNPs from dbSNP for both B-SIFT score and allele

frequency, calculating SIFT scores for both the reference allele

and the variant to receive a B-SIFT value. These results were then

filtered by information content of the alignment in the same way as

the SWISS-PROT mutagenesis analysis to result in a list of

,22,000 SNPs. Given that evolution will tend to select against

mutations that provide a fitness disadvantage, we would believe

that the ‘‘wild-type’’ or reference allele should be less likely to be

deleterious than a less common polymorphic allele. However, we

found that in some cases the reference allele is not the most

common allele, and this can confound the B-SIFT results, and so

we proceeded to calculate B-SIFT scores treating the more

common allele as the ‘‘wild-type.’’ We then calculated the average

minor allele frequency (MAF) for SNPs with varying B-SIFT

cutoffs and observed a striking positive correlation (Fig. 3A,

r2 = 0.97). In other words, residues that have been selected

throughout the population to be primarily just a single allele (and

therefore have a low minor allele frequency) are more likely to be

deleterious when a different, less preferred allele is present. We

would also expect that, in general, polymorphic positions that are

tolerant of multiple high frequency alleles should be functional

with either allele present. This is confirmed by showing B-SIFT

score distribution for SNPs with different minor allele frequencies

(Fig. 3B). SNPs with a low minor allele frequency (, = 2%, Fig. 3B,

red line) are much more likely to be deleterious with that minor

allele, whereas those that have high MAF (. = 20%, Fig. 3B, blue

line) are much more likely to be tolerant. The distribution of all B-

SIFT scores among available SNPs reveals a tri-modal distribution

with peaks near 21, 0, and 1 (Fig. 3B, black line). These results

Figure 2. Validation of B-SIFT on protein mutation datasets. A. Distribution of B-SIFT scores for SWISS-PROT mutagenesis data. Density plots
showing the distributions of B-SIFT scores for mutations in the SWISS-PROT mutagenesis dataset classified as deleterious (red curve), neutral (black),
and activating (blue). Legend specifies the number of mutations classified under each functional category. B. Mutation composition of SWISS-PROT
mutagenesis data. Each bar shows the percentage of the total mutations that meet the given B-SIFT cutoffs that are classified as either activating
(blue), neutral (green), or deleterious (red). Values in parentheses show the total number of mutations that met each of the B-SIFT score thresholds. C.
Fold enrichment of activating mutations with increasing score cutoffs. As B-SIFT score cutoff is increased, the percentage of activating mutations with
B-SIFT scores greater than or equal to the cutoff increases as well (red line). A B-SIFT cutoff of 21 represents the complete dataset and each
successive point is the fold enrichment over this baseline. In contrast, the green line shows a similar plot but using increasing SIFT cutoffs starting
from 0. Although simply having a high SIFT score also results in enrichment of activating mutations, B-SIFT significantly improves the enrichment.
doi:10.1371/journal.pone.0008311.g002
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show that it is possible for high B-SIFT scores to be a result of a

common polymorphism, and so our mutation analyses have been

filtered against known SNPs.

Somatic Mutations in Cancer
The rapidly decreasing price and rising throughput of DNA

sequencing has resulted in several efforts to identify somatic

mutations in cancer in a comprehensive manner [8–14]. It is

known that in many cases, the genetic event that drives

tumorigenesis is a single or sequence of somatic mutations that

results in a cancerous cell. Current cancer genome sequencing

efforts are primarily focused on the protein-coding regions of the

genome and so the majority of identified mutations are in the form

of single-amino acid substitution changes. Numerous methods

have been applied to the mutations discovered in these sequencing

projects in an attempt to identify the causal mutations, but the

majority of this analysis has been based upon methods that can

only identify deleterious mutations [1–5].

We have applied B-SIFT towards functional prediction of over

9000 mutations covering somatic alterations in multiple cancer

types, including breast, colorectal, glioblastoma, pancreatic, and

lung [8–14]. In order to ensure that none of our hits are actually

high frequency polymorphisms, we first checked the list of somatic

mutations against dbSNP and two other fully sequenced human

genomes [31,32]. The data can be separated into two sets; one set

of mutations is extracted from the COSMIC database, which is

filtered for mutations more likely to be causal, and the rest of the

data consists of mutations identified from large-scale sequencing

efforts comparing tumor samples to matched normal samples of

the same individual [23,24]. The COSMIC dataset is presumably

enriched for functionally relevant mutations already whereas the

large-scale somatic mutation discovery datasets should contain a

fair number of ‘‘passenger’’ mutations that are functionally

neutral. B-SIFT score distribution for each of the two sets of

mutations confirms this hypothesis (Fig. 4A). A larger proportion

of COSMIC mutations have very low B-SIFT scores, suggesting

that many COSMIC mutations are functionally deleterious. On

the other hand, the B-SIFT score distribution for somatic

mutations discovered by large-scale sequencing projects has a

noticeable bump near zero, suggesting that there is indeed a larger

portion of these mutations that are not functionally relevant.

A small fraction of these somatic mutations have positive B-

SIFT scores. Based on previous validation results, we speculate

that this group of mutations may be enriched for activating

mutations that have the potential to drive cancer. Table 1 shows a

representative list of mutations with B-SIFT score.0.5 or with

both a moderately high score (.0.2) and additional support from

expression data (Gene Logic) showing that this gene may be

overexpressed in cancer in the tissue that the mutation was found.

The expression requirement attempts to find genes where

additional protein function may be involved in cancer develop-

ment or progression.

Structural Analysis
To gain additional insights into this collection of somatic

mutations in cancer, we evaluated whether some of these

mutations would be consistent with functional activation based

on protein structure analysis. We took the full set of B-SIFT results

for somatic mutations found in high-throughput cancer sequenc-

ing datasets and filtered based on alignment quality, B-SIFT score,

and available expression information (see Methods). The resulting

mutations were then mapped to available protein structures (either

exact structure or by homology) through queries to the Unison

database [33]. A total of seventeen mutations could be mapped to

a protein structure with a sequence identity of 50% or greater,

which we then analyzed for their potential impact on protein

function. We present below our arguments for two of these

potentially activating mutations, with detailed analysis of a third

example in Results S1 and Figures S4 and S5.

One of the somatic mutations with a high B-SIFT is H1047L in

the gene phosphatidylinositol-3 kinase alpha isoform (PIK3CA),

with a score of 0.82. PIK3CA is a well-known oncogene and

Figure 3. B-SIFT analysis of naturally occurring variations in dbSNP. A. Average minor allele frequency is correlated with B-SIFT score in
dbSNP. Scatter plot and linear trendline showing that as B-SIFT score increases, the average minor allele frequency (MAF) for bi-allelic SNPs within
each B-SIFT score range also increases, linear regression r2 = 0.97, error bars represent the standard error of the mean at each point. B. Distribution of
B-SIFT scores in dbSNP. Density plots showing the distributions of B-SIFT scores for all bi-allelic polymorphisms in dbSNP (black curve), those with
minor allele frequency (MAF) less than or equal to 2% (red), and those with MAF. = 20% (blue). The legend shows the number of SNPs included in
each of the distribution curves.
doi:10.1371/journal.pone.0008311.g003
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H1047L is in a known cancer-associated mutation hotspot within

the kinase domain [34]. This mutation has been shown to be an

activating mutation both experimentally [35] and computationally

[36]. Histidine-1047 is located close to the activation loop and the

change from histidine to leucine results in loss of interactions with

the activation loop making it more flexible. This increase in

flexibility of the activation loop is presumed to result in increased

substrate interaction thus leading to a gain of function. PIK3CA

H1047L is a validation of B-SIFT’s ability to identify potentially

activating mutations.

The mutation A190V in the gene Pirh2 (p53-induced protein

with RING-H2 domain) also gets a high B-SIFT score of 0.83.

Pirh2 is an E3 Ubiquitin ligase and is known to negatively regulate

levels of p53, a powerful tumor suppressor, in the cell [37].

Because Pirh2 promotes p53 degradation through ubiquitination,

additional activity of Pirh2 will result in loss of p53 activity that

will in turn result in cancer [38]. Alanine-190 is located at the C-

terminal end of the central RING-H2 domain. RING-H2

domains mediate the interaction with the E2 enzyme while

transferring Ubiquitin from the E2 enzyme to the substrate (in this

case, p53). The interaction between the RING-H2 domain and E2

is known to be hydrophobically driven [39]. The RING-H2

domain of Pirh2 contains a shallow hydrophobic patch on its

surface, a feature necessary to facilitate this interaction and shared

by other E3 RING-H2 domains like C-cbl [39]. The structures of

the three domains of Pirh2 were separately solved using NMR

spectroscopy [40]. The structure of the RING-H2 domain has

only been solved from residue 127 to 189, and so coordinates of

Ala 190 were not available due to a flexible linker region between

the RING-H2 domain and the C-terminal domain. We

approached this analysis by building separate structural models

of the Pirh2 RING-H2 domain with alanine and valine at position

190 using Modeler [41]. We then built an interaction model of

Pirh2–UbcH7 using the coordinates of the C-cbl-UbcH7 complex.

Figure 4B shows the hydrophobic patch on Pirh2 at the UbcH7

interface (green highlight), the increase in hydrophobicity when

position 190 is mutated from alanine to valine is denoted by the

larger hydrophobic patch (Fig. 4B). Based on previous interaction

studies of RING and HECT E3 ligases with E2 enzymes

[39,42,43], we hypothesize that this increase in hydrophobicity

could result in an increase in binding affinity between the E3 and

E2 proteins that would enhance p53 degradation.

Discussion

We have presented evidence that the bi-directional SIFT

algorithm is capable of finding a subset of mutations that are

potentially functionally activating. This fills an important void in

existing methods for functional analysis of mutations in that there

are no current methods that have been established for identifying

activating or gain-of-function mutations. B-SIFT is not only

capable of filtering for activating mutations, but its accuracy in

identifying deleterious mutations is consistent with that of the

original SIFT algorithm.

There are some caveats to the study of activating mutations

which are independent of the algorithm used, but do apply to B-

SIFT. In particular, in many cases it is difficult to define exactly

what ‘‘hyperactivity’’ means for a given protein. For example, in

the DNase I data that we present, we define activity as DNA

hydrolysis rate. However, there are many factors that can affect

the rate of DNA hydrolysis, including DNA binding, actin binding,

and the actual catalysis of the hydrolysis reaction [19,44,45]. In

most cases, it appears that increasing DNA binding affinity

improves the rate of DNA hydrolysis, but if the enzyme binds

DNA too tightly then overall DNA hydrolysis can become

inhibited by reducing the turnover of new DNA strands on an

individual enzyme molecule.

Perhaps in a more familiar example, there are many examples

of oncogenes in cancer that become tumorigenic as a result of

hyperactivity. Many of these oncogenes are signaling molecules or

receptors that become hyperactive or constitutively active which

can result in uncontrolled cell proliferation [46]. There are many

examples where this misregulated signaling is actually a result of a

loss of function in a regulatory region of a signaling molecule

[46–50]. In these cases, although it is hyperactivation of signaling

that results in oncogenesis, it is in fact a loss-of-function mutation

Figure 4. B-SIFT and structural analysis of potential activating cancer somatic mutations. A. Distribution of B-SIFT scores in cancer
somatic mutation datasets. Density plots showing the distributions of B-SIFT scores for somatic missense mutations listed in COSMIC (black curve)
[23,24] and those found in large-scale cancer sequencing projects representing a large set of cancers including pancreatic, breast, colorectal cancers,
lung adenocarcinoma, and glioblastoma (red) [8,9,11,12,14]. B. Model of Pirh2 interaction surface. Models of Pirh2 at the UbcH2 binding interface,
green shading represents the hydrophobic surface important in the protein-protein interaction. The left model is for wild-type Pirh2 and the model
on the right shows the increased hydrophobic surface that would result from the A190V mutation, the black circle highlights the change.
doi:10.1371/journal.pone.0008311.g004

Finding Activating Mutations

PLoS ONE | www.plosone.org 6 December 2009 | Volume 4 | Issue 12 | e8311



that results in this hyperactivity. For example, the L858R mutation

in EGFR is a common mutation in cancer and is classified as an

activating mutation, but its effect is a result of the mutation

destabilizing the inactive conformation of the enzyme and causing

it to fold into an active conformation even in the absence of ligand

[51]. Similarly, it is hypothesized that the common V600E

mutation in the BRAF kinase leads to excessive activation of the

enzyme by mimicking phosphorylation and destabilizing its

inactive conformation [52]. B-SIFT will fail to recognize most of

these as being activating mutations, but it does in fact find many of

these as deleterious mutations instead (EGFR L858R B-

SIFT = 21, BRAF V600E B-SIFT = 21). Our analysis of

COSMIC mutations and other cancer mutations did not find an

enrichment for high B-SIFT scores in COSMIC (Fig. 4A),

implying that the majority of characterized ‘‘activating’’ cancer

mutations fall into this category of deleterious mutations that result

in functional activation and are thus indistinguishable from other

deleterious mutations by B-SIFT. The complexity involved in

analysis of activating mutations is further demonstrated by the

difficulty in categorizing mutations found in protein databases as

deleterious, neutral, or activating. Without a controlled vocabulary

or a clear definition of what constitutes an activating mutation,

especially in the case of mutations with multiple known

phenotypes, systematic identification will continue to be a

challenge.

Our detailed structural analysis of cancer associated somatic

mutations has found several examples of mutations that could

contribute to cancer progression through different mechanisms, all

with high B-SIFT scores. PIK3CA H1047L is an activating

mutation in a well-studied gene with many known activating

mutations that result in cancer [34,53]. Pirh2 is also a known

oncogene, but an activating mutation in this gene results in cancer

indirectly by excessively degrading the p53 tumor suppressor.

It is apparent from our B-SIFT analysis that the systematic

prediction of activating mutations is more complex than the

analogous prediction of deleterious mutations. One confounding

factor is that it seems as though the majority of possible mutations

will in fact result in loss of function, and so the total sample size of

activating mutations is significantly less. This is consistent with the

SWISS-PROT mutagenesis dataset, in which only 3.4% of

mutations appear to be gain of function mutations. Although

these mutations are not an unbiased random sampling of all

possible mutations, conventional wisdom is that it is much easier to

disrupt protein function than to enhance it in some way, and the

distribution of mutation descriptions supports this (,80%

deleterious). B-SIFT produces scores in a way consistent with

the expectation that many more mutations will be deleterious than

activating. In every dataset examined, the distribution of B-SIFT

scores is shifted towards the negative end (Fig. 4A).

The inherent differences between activating and deleterious

mutations are perhaps the greatest contributing factors towards

the relative inaccuracy in prediction quality between the two

mutation types. We find that the use of a B-SIFT cutoff allows for

enriching a mutation dataset for activating mutations, but there

continues to be a high rate of false negatives and false positives

(Fig. 2B). False positives may result from alleles that are

evolutionarily conserved and potentially provide a fitness advan-

tage to the organism, but do not result in measurable optimized

protein function. False negatives could be a result of the multiple

sequence alignment that B-SIFT (and SIFT) relies upon being

limited in its scope. In the case of activating mutations, if the

mutant residue is not used by any of the homologues used in the B-

SIFT alignment, then the algorithm is unlikely to score the

mutation as activating. However, it is certainly possible that there

exist activating mutations that are not otherwise seen in

homologous protein sequences. On the other end of the spectrum,

since it does seem as though the majority of mutations result in loss

of function, it is likely that false positives result from the somewhat

delicate nature of protein structure and function. Even though

protein homologues may be functional with the mutated residue at

the given position, even subtle differences in protein structure

could result in vast differences in function as a result of the

mutation. Although many caveats exist in the study of activating

mutations, B-SIFT provides a starting point by finding mutations

that would otherwise have been missed or indistinguishable from

the deleterious mutations that comprise the majority of currently

identified functional mutations.

Our analysis of large mutation datasets shows that B-SIFT is

easily scalable in the way that SIFT is, and the distribution of B-

SIFT scores can be used to discover high-level characteristics of

the dataset. Furthermore, studies that are interested in finding

activating mutations would find B-SIFT to be a useful tool in

providing a first step for finding mutations most likely to be

activating. There is still significant improvement that is possible in

Table 1. Possible activating mutations found in cancer
sequencing projects.

Refseq Gene Mutation B-SIFT Tissue*

NM_002208 ITGAE V913I 0.92 Colorectal+

NM_014269 ADAM29 P31L 0.91 Colorectal

NM_015436 PIRH2 A190V 0.83 Pancreatic

NM_006218 PIK3CA H1047L 0.82 Breast

NM_001039029 LRTM2 V320I 0.81 Colorectal

NM_014788 TRIM14 P207L 0.79 GBM+

NM_144773 GPR73L1 M165I 0.66 GBM

NM_007181 MAP4K1 A503S 0.66 Lung+

NM_015078 MCF2L2 R622H 0.65 Colorectal

NM_194251 GPR151 G68R 0.63 Pancreatic

NM_001523 HAS1 V521I 0.61 Pancreatic

NM_000059 BRCA2 P920S 0.60 CGA_GBM+

NM_005883 APC2 G2003S 0.53 Breast

NM_015199 ANKRD28 G651E 0.53 Breast

NM_002578 PAK3 P53T 0.52 Lung

NM_025132 WDR19 L214F 0.51 Colorectal

NM_133493 CD109 Q1007E 0.51 Colorectal

NM_030961 TRIM56 P356S 0.45 GBM+

NM_001569 IRAK1 C307F 0.43 Lung+

NM_003920 TIMELESS Q1008E 0.40 Breast+

NM_001262 CDKN2C M1I 0.33 Lung+

NM_005378 MYCN L402F 0.33 Lung+

NM_020341 PAK7 P76T 0.32 Lung+

NM_020341 PAK7 T397K 0.31 Lung+

NM_001078 VCAM1 G395R 0.24 GBM+

*Tissue refers to the cancer tissue that this particular mutation was found in.
Colorectal and breast are from Wood et al. [14], Pancreatic is from Jones et al.
[11], GBM refers to glioblastoma data from Parsons et al. [12], CGA_GBM is
glioblastoma data from The Cancer Genome Atlas publication [8], and lung
refers to lung adenocarcinoma data from Ding et al. [9].

+in the Tissue column denotes that this gene is significantly overexpressed in
cancer (p,0.01, t-test), compared to normal samples of the same tissue type
(Gene Logic expression data, see Methods).
doi:10.1371/journal.pone.0008311.t001
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the field of detecting and characterizing activating mutations, but

B-SIFT provides a valuable starting point for such analyses.

Supplemental Data
Supplemental data are available for download at http://

research-pub.gene.com/bsift/.

Supporting Information

Results S1

Found at: doi:10.1371/journal.pone.0008311.s001 (0.07 MB

DOC)

Figure S1 DNase I activity for mutants with positive and

negative B-SIFT scores. Each bar shows the mean relative specific

activity (RSA) for DNase I mutants with positive B-SIFT scores

(left bar), negative scores (right bar), or wild-type controls (middle).

Error bars are the standard error of the mean for each dataset.

Found at: doi:10.1371/journal.pone.0008311.s002 (0.73 MB TIF)

Figure S2 Distribution of Swiss-Prot mutant SIFT scores. SIFT

scores of all Swiss-Prot mutants are shifted towards zero, which

contributes to the large number of small B-SIFT scores among all

mutation sets as shown in Figure 2A.

Found at: doi:10.1371/journal.pone.0008311.s003 (0.49 MB

PDF)

Figure S3 Percentage of Swiss-Prot mutations called as Neutral

by SNAP, as separated by mutation category. Activating and

neutral Swiss-Prot mutations show similar distributions of SNAP

calls until higher Reliability Index cutoffs.

Found at: doi:10.1371/journal.pone.0008311.s004 (0.73 MB TIF)

Figure S4 VCAM-1 gene expression in brain tissues. Boxplots of

VCAM-1 expression show the distribution of expression values

between cancerous and normal brain tissues. VCAM-1 is

significantly overexpressed in cancer compared to normal in the

brain.

Found at: doi:10.1371/journal.pone.0008311.s005 (0.77 MB TIF)

Figure S5 VCAM-1 G395R-VLA4 interaction model. Cartoon

representation of VCAM-1 domains 4 and 5 (orange) shown

bound to VLA4 b1 subunit (translucent surface). G395R and

D352 are shown as sticks. The MIDAS, ADMIDAS and LIMBS

sites are shown in magenta, red, and green spheres respectively.

Known and potential interactions are shown in blue and red

dashed lines. The inset shows a close-up view of these interactions.

Found at: doi:10.1371/journal.pone.0008311.s006 (10.66 MB

PDF)
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