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Abstract

Models designed to detect abnormalities that reflect disease from facial structures are an

emerging area of research for automated facial analysis, which has important potential

value in smart healthcare applications. However, most of the proposed models directly ana-

lyze the whole face image containing the background information, and rarely consider the

effects of the background and different face regions on the analysis results. Therefore, in

view of these effects, we propose an end-to-end attention network with spatial transforma-

tion to estimate different pain intensities. In the proposed method, the face image is first pro-

vided as input to a spatial transformation network for solving the problem of background

interference; then, the attention mechanism is used to adaptively adjust the weights of

different face regions of the transformed face image; finally, a convolutional neural network

(CNN) containing a Softmax function is utilized to classify the pain levels. The extensive

experiments and analysis are conducted on the benchmarking and publicly available data-

base, namely the UNBC-McMaster shoulder pain. More specifically, in order to verify the

superiority of our proposed method, the comparisons with the basic CNNs and the-state-

of-the-arts are performed, respectively. The experiments show that the introduced spatial

transformation and attention mechanism in our method can significantly improve the estima-

tion performances and outperform the-state-of-the-arts.

Introduction

As one of the important indicators of our health, pain is an unpleasant feeling caused by ill-

nesses, injuries or mental distress. In the medical field, pain is often considered as the fifth

vital sign [1]. Especially in the case of not optimistic, chronic pain may bring a variety of path-

ological and physiological risks. However, either in a clinical inspection or using Visual Analog

Scale (VAS) [2], the doctor cannot understand the pain of the patient, that is, the feeling of

pain is often subjectively stated by the patient. This self-reported pain assessment is very sub-

jective and has certain flaws: (1) the self-reported mechanism is useless for the people who

cannot express their pain intensity (e.g., newborns, post-operative patients, etc.) [3, 4]; (2) dif-

ferent individuals always experience the same pain differently, making it difficult for doctors

to obtain accurate pain assessments. In addition, studies have shown that human pain is
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mainly reflected in the changes of our facial expressions, which can provide the most reliable

and accurate source of information regarding a subject’s health condition. Therefore, develop-

ing a technique that can automatically assess the pain intensity from a patient’s face is essential

for telemedicine and for groups that do not effectively express pain perception, as well as for

future smart healthcare. For instance, it can monitor the patient’s pain state autonomously,

without the need for a caregiver to observe all day, and it can also provide doctors with alerts

when severe pain occurs.

The current automatic pain assessment techniques mainly solve the problem of pain inten-

sity estimation by analyzing facial expressions. This is because the face is indeed an important

source of information about health conditions [5], and facial expressions are thought to be the

spontaneous responses to painful experiences in humans. Most researches on facial expression

are based on Facial Action Coding System (FACS) [6], which can score facial expressions

according to elementary facial Action Units (AUs). Each AU is coded with onset, offset, and

an intensity on a five-point scale. Fig 1 illustrates the related coding AUs when facial pain

occurs.

Over the past decade, many evaluation methods have been proposed and achieved satisfac-

tory performances [7–12]. However, the interference of background generated during the

video capture process and the weight distribution of the face region during evaluation have

not been well considered [12]. At present, most methods directly estimate pain intensity based

on whole face image with background information, although some works have divided face

image into different regions [11, 12]. However, these estimation methods require extensive

hand-designed rules. For instance, Huang at al. [12] divided the face image equally into four

regions, instead of considering the impact of different regions on pain estimation. Therefore,

in this paper, we propose a new pain intensity estimation method, which can adaptively assign

weights to different regions of the face image and transform the irregular face image to elimi-

nate background interference.

Fig 2 shows the architecture of the proposed pain intensity estimation method. The face

image is first fed into a spatial transformation network to eliminate the interference of back-

ground; then, the attention mechanism is used to weight the transformed face image; after

that, a convolutional neural network (CNN) is introduced to extract the self-learned features

for describing pain intensity, and a classifier is explored to estimate the pain intensity of the

Fig 1. Facial action coding of seven component actions when pain occurs. It is noted that the picture was collected

by the author himself and agreed to be published in Plos One.

https://doi.org/10.1371/journal.pone.0232412.g001
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input face images. Among the contributions of this present paper, we can summarize them as

follows:

1. While most previous works on pain intensity estimation are based on whole face image, we

propose a novel and appealing approach using spatial transformation and attentional infor-

mation, and demonstrate that the proposed method can be very useful in recognizing dif-

ferent levels of pain intensity.

2. The spatial transformation and attention mechanism are used to address with the problems

of background interference and adaptive weight distribution, respectively. Extensive experi-

ments and analysis on the UNBC-McMaster shoulder pain database show that the proposed

method can outperform the basic CNN method and the-state-of-the-art methods.

The remainder of the paper is organized as follows: Section of Related Work reviews the

existing state-of-the-art methods for pain intensity estimation. In Section of Proposed Method,

we describe the proposed spatial transformation and attentional CNN method. Section of

Experimental Results and Discussion gives the details of the experimental protocol and reports

the obtained results. In Section of Conclusion, we conclude the paper and discuss some direc-

tions for future work.

Related work

In recent years, many methods have been developed to tackle the problem of automatic pain

intensity estimation. Depending on the outputs of the algorithms, existing methods can be fur-

ther divided into two categories: (1) determining the presence of pain and (2) measuring the

intensity of pain. For the former methods, they mainly designed models that automatically

recognize pain from painlessness [13–15]. For instance, Brahnam at al. [16] described pain

images by using Discrete Cosine Transform (DCT) and reduced the dimension with Sequen-

tial Forward Selection (SFS) algorithm, where the nearest neighbor is used for pain classifica-

tion. In another work, a correlation vector machine (RVM), a Bayesian extension of the

support vector machine (SVM) algorithm, is applied to manually select facial images [17].

Considering the texture differences of different pain levels, Guo at al. [7] exploited local binary

pattern (LBP) features and its variants to capture texture information of face images. Apart

from texture difference, shape is also another important clue for pain detection. Ashraf at al.
[13] used the active appearance model (AAM) to detected face key points, and analyze the

pain face shape in view of the detected key points. By invoking AAM, Luceyetal at al. [14]

Fig 2. The architecture of the proposed pain intensity estimation method, where I/P and O/P denote the channel number of input and output feature maps,

respectively. In the proposed method, the input face image is first fed into STN to against background interference; then, the attention mechanism is used to adaptively

distribute different face region weights; finally, the attentional face image is input to CNN module and Softmax Function to extract features and classify pain levels.

https://doi.org/10.1371/journal.pone.0232412.g002
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aligned the face images of manually labeled keyframes and feed them into an SVM classifier

for frame-level pain recognition.

With regard to the measure of pain intensity, according to the aforementioned pain inten-

sity metric [18], pain expression can be further classified into several discrete levels. Therefore,

the most recent works about automatic pain assessment have focused on the challenging task

of estimating pain intensity instead of classifying pain or non-pain. More specifically, Lucey at
al. [4] utilized extended SVM classifiers to estimate pain intensity of three levels. In another

work, Kaltwang at al. [19] computed LBP and DCT features from facial images and combined

them to classify different pain levels, where the relevance vector regression was used for classi-

fication task. Hammal and Cohn [15] extracted hand-crafted features based on Log normal

filters to identify four pain intensity levels. Florea at al. [20] accomplished pain intensity

recognition task by using a histogram of topographical features and an SVM classifier, and

improved the estimation performance. Recently, Zhao at al. [10] took advantage of the natural

onset-apex-offset evolution pattern of facial expression to regress intensity estimation.

More recently, with the successes of deep learning in computer vision [21–23], some works

have introduced deep neural networks into pain intensity estimation instead of using conven-

tional hand-crafted features. For instance, Huang at al. [12] fed the divided face images into

four different CNN models and concatenated the fully connected layers to estimate pain inten-

sity. Yang at al. [11] combined high-level features of CNN with low-level LBP features of key

patches for pain description. Apart from extracting features from one video frame, temporal

information within video sequences are also computed by deep neural networks. For instance,

Zhou at al. [24] converted video frames into vectors and input them into a Recurrent Convo-

lutional Neural Network (RCNN) to regress the pain intensity. In another work, Rodriguez at
al. [25] first extracted self-learned features of each frame via the fully connected layer of a

CNN architecture, then fed the extracted features to a Long-Short Term Memory (LSTM) [26]

to obtain the temporal information.

The aforementioned methods based on hand-crafted features or deep learning have

achieved satisfactory performances, but the background interference and the adaptive facial

region weight distribution that may be encountered in pain estimation have not been well con-

sidered. Based on this, we propose an automatic pain estimation algorithm in this paper.

Proposed method

In order to against the problems of background interference and facial region adaptive distri-

bution weights, we propose a spatial transformation and attention CNN for pain intensity

estimation. The overall estimation pipeline is shown in Fig 2, which consists of five modules:

Input Image, STN, Attention Mechanism, CNN Network and Softmax Function. More specifi-

cally, the input face image is first provided as input to a STN module for address with back-

ground interference; then, the attention mechanism is used to distribute different weights of

different face regions; after that, the attentional face image is input into the CNN module to

extract feature descriptors; finally, the outputs of the CNN module is measured by the Softmax

function, which is further used to optimize the parameters of the STN, Attention Mechanism

and CNN modules in back propagation process.

Spatial transformation network

For the face image I, we normalize it to [0, 1] by the operation I/255 denoted as I0. Then, the

normalized face image I0 is fed into the spatial transformation network (STN) [27] to perform

a geometric transformation. So that the proposed method is provided with the ability of spa-

tially invariant to the input face image in a computationally efficient manner. As shown in
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Fig 3, the STN consists of three elements: the localisation network, the grid generator and the

sampler.

More specifically, the localisation network floc takes an input feature map U 2 RH×W×C,

where H, W and C are the height, width and channels of U respectively, and outputs the

parameters θ of the transformation Tθ to be applied to the feature map θ = floc(U). The dimen-

sion of θ depends on the type of transformation Tθ that will to be parameterized. In STN of

the proposed method, θ includes 6-dimensional parameters. This is because the Tθ performs a

2D affine transformation, which allows translation, cropping, rotation, scaling, and skewing.

Detailed architecture of the localisation network is drawn in Table 1. In transformation pro-

cess, the 6-dimensional θ is used in grid generator to create a sampling grid for obtaining the

desired transformed output. Finally, the sampler component is utilized to produce the trans-

formed output feature map V by performing a bilinear sampling of the generated sampling

grid and the input feature map U. Here, U is the normalized face image I0, and H, W and C
equal to 192, 192 and 3 respectively. For each source coordinate (xsi ; y

s
i) of I0 and the transfor-

mation matrix Aθ, the target coordinates of the regular grid in the output feature map (xti ; y
t
i)

Fig 3. The components of spatial transformer network [27].

https://doi.org/10.1371/journal.pone.0232412.g003

Table 1. Localisation network details of spatial transformers used for the normalized face image.

layer 1 2 3 4 5 6 7 8 9 10 11

type Conv ReLU mPool Conv ReLU mPool Conv ReLU mPool Conv ReLU

filt size [3, 3] − − [3, 3] − − [3, 3] − −v [3, 3] −
filt dim 3 − − 16 − − 16 − − 16 −

num filts 16 − − 16 − − 16 − − 16 −
stride [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] [2, 2] 1

pad [1, 1] 0 0 [1, 1] 0 0 [1, 1] 0 0 [1, 1] 0

layer 12 13 14 15 16 17 18 19 20 21 −
type mPool Conv ReLU mPool Conv ReLU mPool FC ReLU FC −

filt size − [3, 3] − − [3, 3] − − [1, 1] − [1, 1] −
filt dim − 16 − − 16 − − 144 − 32 −

num filts − 16 − − 16 − − 32 − 6 −
stride [2, 2] [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] −
pad 0 [1, 1] 0 0 [1, 1] 0 0 0 0 0 −

https://doi.org/10.1371/journal.pone.0232412.t001
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can be written as Eq 1.
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Attention mechanism

In the process of pain intensity estimation, different face regions should have different weights

for estimation results [11, 12]. For instance, the action units play a more important role in rec-

ognizing pain intensity levels than other regions, as shown in Fig 1. Therefore, after STN, each

channel of transformed color face images is fed into the module of attention mechanism to

obtain the self-learned weights of different regions. Then, the transformed color face images

are multiplied by the self-learned weights for computing attentional face images. The detailed

attention mechanism is shown in Fig 4. Specifically, for the transformed VI, each color channel

(i.e., VIR
, VIG

and VIB
) is input into a convolutional (Conv) layer with kernel size of 3×3 and

padding size of 1×1. After that, the convolutional feature maps are activated with Sigmoid
function to compute the attentional weights denoted as AIR

, AIG
and AIB

respectively. At end,

the computed attentional weights are multiplied by the transformed face images to get the

attentional face images. The attention mechanism can be written as Eq 2.

V 0I ¼ VI � SigmoidðConvðVIÞÞ ð2Þ

where V 0I denotes the attentional face image, � denotes matrix point multiplication, Conv(�) is

the convolution operation, VI is the output of STN, and Sigmoid(x) = 1/(1 + e−x).

CNN network

As shown in Fig 2, the CNN network module consists of n serial convolutional and ReLU lay-

ers. The purpose of this module is to extract self-learned features from the attentional face

image V 0I . More specifically, a convolutional layer with filter size of 3×3×3×64 and a rectified

Fig 4. The flow chart of attention mechanism.

https://doi.org/10.1371/journal.pone.0232412.g004
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linear unit (ReLU) layer are firstly used to process V 0I . For the size of the convolution filter with

dimension of 3×3×3×64, the first two dimensions (3×3) represent the size of the convolution

kernel, the third dimension (3) denotes the number of input feature maps, and the last dimen-

sion (64) represents the number of output feature maps. With regard to ReLU, it has strong

biological and mathematical underpinning [28] and was demonstrated to further improve

training of deep neural networks [29]. Compared with other activation functions (such as Sig-
moid, Tanh, etc.), ReLU function has a wider activation area, which can effectively prevent the

diffusion of training gradients. After the first ReLU layer, the feature maps are pooled through

a maximum pooling layer to reduce the spatial dimension. Repeated five times in this way, the

finally feature maps with size 3×3×256 are output by the final pooling layer, and denoted as

fV0I ¼ CðV 0I ;WÞ, where C(�) denotes the feature extraction function of the CNN network and

W represents the parameters of C. It is worth mentioning that the filter size of all other convo-

lutional layers is 3×3, allowing for deep models with a low number of parameters [30]. The

hierarchic architecture of the CNN network is shown in Table 2.

Softmax function

For pain intensity recognition, its essence is to classify different levels of pain intensity. There-

fore, after the CNN network module, a FC layer (denoted as L) with four neurons is intro-

duced and the most commonly used Softmax loss function is used to measure the estimation

error [31]. In network training, the Softmax loss function can maximize the probability of the

right class and update the network parameters based on the algorithm of back propagation

(BP) [32], as illustrated in Eq 3.

C ¼ �
XT

j¼1

fyjlogð
eaj

PT
j¼1

eaj
Þg ð3Þ

where T is the levels of pain intensity (here T = 4), yj is jth value of the one-hot label of training

sample, and aj represents the output of the jth neuron of L. In testing stage, we classify the pain

intensity of the input face image I based on the probability value of the neuron output of L.

Table 2. The configuration parameters of the CNN network module.

layer 1 2 3 4 5 6 7 8 9

type Conv ReLU mPool Conv ReLU mPool Conv ReLU mPool

filt size [3, 3] − − [3, 3] − − [3, 3] − −
filt dim 3 − − 64 − − 64 − −

num filts 64 − − 64 − − 128 − −
stride [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] [2, 2] 1 [2, 2]

pad [1, 1] 0 0 [1, 1] 0 0 [1, 1] 0 0

layer 10 11 12 13 14 15 16 17 18

type Conv ReLU mPool Conv ReLU mPool Conv ReLU mPool

filt size [3, 3] − − [3, 3] − − [3, 3] − −
filt dim 128 − − 128 − − 256 − −

num filts 128 − − 256 − − 256 − −
stride [2, 2] 1 [2, 2] [2, 2] 1 [2, 2] [2, 2] 1 [2, 2]

pad [1, 1] 0 0 [1, 1] 0 0 [1, 1] 0 0

https://doi.org/10.1371/journal.pone.0232412.t002
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Implementation details

In order to ensure that all convolutional layers have approximately the same output distribu-

tion and to improve the rate of convergence, the parameters of the CNN model are initialized

using [33], as shown in Eq 4.

Wl
i ¼

randðnlÞffiffiffiffiffiffiffiffiffi
2=nl

p ð4Þ

where Wl
i is the parameter of lth convolutional layer of ith CNN, rand(�) samples from a zero

mean, unit standard derivation gaussian function, and nl is the channel number of inputs in

convolutional layer. In training stage, the momentum β of SGD is set to 0.9, the learning rate α
is set to 10−4 and all mini-batches are traversed and re-allocated randomly. All face images are

normalized into 192×192×3 with the scale ranging from 0 to 1. The proposed pain intensity

estimation network is implemented using the toolbox of PyTorch with the version 1.0.0.

Experimental results and discussion

In this section, we report and discuss the pain estimation results achieved by the proposed spa-

tial transformation and attention CNN. Firstly, the database used to validate our method are

introduced. Secondly, we evaluate the effectiveness of the used spatial transformation network

and attention mechanism. Finally, the proposed method is compared with the-state-of-the-art

methods.

Experimental data

In order to validate the effectiveness of our proposed method, we test it on the publicly avail-

able UNBC-McMaster Shoulder Pain Expression Archive Database [34]. The database con-

tains in total 200 video sequences of FACS coded frames from 25 subjects. The subjects are of

various occupations and age groups. These subjects are self-identified as suffering from shoul-

der pain and the videos are recorded when they are experiencing a series of active and passive

motions of their affected and unaffected limbs. In this database, each frame is AU-coded by

certified FACS coders, where there are 44 individual action units (AUs) in FACS. The corre-

sponding prkachin and solomon intensity (PSPI) scores [18] are computed in 16 discrete levels

(0-15) to estimate different pain intensities. For the used PSPI scores, they are calculated based

on six specific action units of FACS. More specifically, this is because Prkachin at al. [35]

found that four facial actions—brow lowering (AU4), orbital tightening (AU6 and AU7), leva-

tor contraction (AU9 and AU10) and eye closure (AU43)—carried the bulk of information

about pain, where AU4, AU6, AU7, AU9, AU10 and AU43 are the Action Units. The calcula-

tion of PSPI is accorded to Eq 5:

Pain ¼ AU4þmaxðAU6;AU7Þ þmaxðAU9;AU10Þ þ AU43 ð5Þ

where max(�) is the operation of selecting the maximum value.

In this paper, as in [10, 12, 15], we integrate the pain into four different levels correspond-

ing to PSPI. More specifically, the scores of 0 are integrated into the first pain level, the scores

ranging from 1 to 2 are integrated into the second pain level, the scores ranging from 3 to 5 are

integrated into the third pain level, and other scores are integrated into the fourth pain level.

With regard to the four pain levels, the corresponding pain states are no pain, weak pain,

intense pain and excruciating pain, respectively. The more detailed sample distribution of

different pain levels is shown in Table 3. Considering the training efficiency, the database is

randomly divided into three disjoint subsets (i.e., training set, development set and test set),
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where the training set contains 10 subjects, the validation set contains 5 subjects, and the test

set contains 10 subjects. During the experiment, the training set is used to update the network

parameters, the development set is used to select the best network, and the test set is used to

evaluate the network performance. It is noted that before dividing subsets, we randomly select

5260 samples from pain level 0 to solve imbalance data problem. With regard to the perfor-

mance evaluation, the results are reported in term of classification accuracy, precision, recall

and mean squared error (MSE) [19]. This study used the UNBC-McMaster Shoulder Pain

Expression Archive Database and all data were fully anonymized before the authors accessed

them.

Analysis of STN and attention mechanism

In order to solve the problem of background interference and adaptive weight distribution, we

propose a pain intensity estimation method based on a spatial transformation and attention

CNN. Therefore, in this part, the effectiveness of the STN and attention mechanism are ana-

lyzed respectively. More specifically, the method with STN and with attention mechanism, the

method with no STN and attention mechanism, the method with STN and with no attention

mechanism and the method with no STN and with no attention mechanism are compared

with each other. The comparison results and the confusion matrixes of different modes are

shown in Tables 4 and 5, respectively.

For the STN, we can clearly find that compared to the basic CNN network, the CNN with

STN can improve the classification accuracy from 32.68% to 48.80% and reduce the MSE

from 2.5358 to 1.4033. With regard to the recall and precision measures, compared with other

modes, the proposed method with STN and attention mechanism achieved the best results.

For instance, when the pain level is 0, the recall rate of Level 0 is 91.3%, and the precision of

Level 0 is 54.4%. However, for samples with Level 3, its recall and precision are both 0%, which

means that all samples with Level 3 are misclassified as other pain levels. As shown in Table 5,

the proposed method with STN and attention mechanism classified 369 samples with Level 3

as Level 0, Level 1 and Level 2 with a number of 170, 95 and 104, respectively. By analyzing

samples of different pain levels, there are some training samples that are difficult to classify.

Table 3. The detailed sample distribution and number of different pain levels.

Pain Intensity PSPI Description Amount Portion

Level 0 0 None 40007 82.7%

Level 1 1-2 Weak 5260 10.9%

Level 2 3-5 Intense 2456 5.1%

Level 3 6-16 Excruciating 653 1.3%

https://doi.org/10.1371/journal.pone.0232412.t003

Table 4. The precision (%), recall (%), accuracy (%) and MSE of different modes of the proposed method. P denotes to precision, R denotes recall, A denotes classifica-

tion accuracy, and Att is short for attention.

Mode Level 0 Level 1 Level 2 Level 3 A MSE

P R P R P R P R

No-STN-No-Att 42.6 58.9 11.4 10 13.7 5.8 0 0 32.7 2.5358

STN-No-Att 53.4 89 32.6 13.3 34.4 8.6 0 0 48.8 1.4033

No-STN-Att 52.6 88 33 14.7 16.1 3 0 0 47.8 1.3185

STN-Att 54.5 91.3 40.5 16 42.2 10.5 0 0 51.1 1.1014

https://doi.org/10.1371/journal.pone.0232412.t004

PLOS ONE Pain intensity estimation based on CNN

PLOS ONE | https://doi.org/10.1371/journal.pone.0232412 August 21, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0232412.t003
https://doi.org/10.1371/journal.pone.0232412.t004
https://doi.org/10.1371/journal.pone.0232412


We speculate that the confusing and imbalanced training data makes the algorithm’s unsatis-

factory on Level 3.

For the inputs of STN module, there are some background information, and these back-

grounds have no effect on pain estimation. Therefore, after training, the STN module performs

2D affine transformation on the original image to eliminate the background interference.

Regarding the reduced background interference, since the input of the STN module is a face

region containing a small amount of background, the reduced background noise is not signifi-

cant compared with the input face images. However, it can be found that the output of the

STN is to reduce as much surrounding background noise as possible. With regard to the addi-

tional black edges in the transformed images, we analyze that this is caused by the operation of

image rotation. In the process of feature extraction and classification, these black edges only

occur in a limited edge area and the pixel values equal to 0, which has little effect on the final

classification result.

For the introduced attention mechanism, the CNN with attention mechanism can improve

the classification accuracy from 32.68% to 47.76% and reduce the MSE from 2.5358 to 1.3185.

From the attentional regions, it can conclude that the attention mechanism can adaptively

assign different weights to different facial regions. More specifically, the key AUs around the

eyes and cheeks have higher weights.

Therefore, considering the effectiveness of STN and attention mechanism, we combine

them in the proposed method. From Table 4, it can be found that the proposed method with

STN and attention mechanism can obtain the best estimation results, that is,Accuracy = 51.06%

and MSE = 1.1014. Compared the method only with STN or attention mechanism, the method

combined both of them effectively solves the problems of background interference and weight

distribution. Fig 5 visualizes the sample distribution of the UNBC-McMaster database in dif-

ferent combination modes. As the presented sample distributions, even under our proposed

Table 5. Confusion matrixes of different modes of the proposed method.

No-STN-No-Attention Level 0 Level 1 Level 2 Level 3

Level 0 2254 1443 312 118

Level 1 1946 231 80 43

Level 2 916 263 78 89

Level 3 175 96 98 0

STN-No-Attention Level 0 Level 1 Level 2 Level 3

Level 0 3406 292 59 70

Level 1 1891 305 66 38

Level 2 890 253 116 87

Level 3 187 86 96 0

No-STN-Attention Level 0 Level 1 Level 2 Level 3

Level 0 3368 297 64 98

Level 1 1882 337 51 30

Level 2 974 295 40 37

Level 3 183 92 94 0

STN-Attention Level 0 Level 1 Level 2 Level 3

Level 0 3495 246 42 44

Level 1 1870 368 47 15

Level 2 877 199 141 129

Level 3 170 95 104 0

https://doi.org/10.1371/journal.pone.0232412.t005
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Fig 5. The feature distribution in different modes. First, the PCA algorithm is used to reduce the feature (i.e., the response of the last fully connected layer) dimension

to 2. Then, we plot the reduced features in a 2D space.

https://doi.org/10.1371/journal.pone.0232412.g005
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method, the pain samples of different levels are not completely separated, which also illustrates

the difficulty of the pain estimation problem with weak texture differences. However, com-

pared with the basic method with no STN and no attention mechanism, the samples are more

distinguishable under our proposed feature space.

Comparison with the-state-of-the-art methods

In the paper, we test the state-of-the-art pain estimation approaches and our proposed method

using same samples. Table 6 shows the comparison results, and Table 7 presents more detailed

Table 6. Comparison our proposed method with the state-of-the-art methods. P denotes to precision, R denotes recall, A denotes classification accuracy, and Att is

short for attention.

Method Level 0 Level 1 Level 2 Level 3 A MSE

P R P R P R P R

Head Analysis [36] 38.9 48.7 12.2 11.5 10.2 4.9 0 0 28.1 3.0127

LBP [37] 34.7 41.9 7.5 7.3 8 3.9 0 0 23.3 3.3342

LPQ [37] 34.7 42 7.7 7.5 8.2 3.9 0 0 23.4 3.3305

BSIF [37] 34.7 42.3 8.2 8 9 4.3 0 0 23.7 3.2825

CNN [12] 44.5 61.4 15.6 12.1 24.4 10.2 0 0 35.3 2.2683

Our Method 54.5 91.3 40.5 16 42.2 10.5 0 0 51.1 1.1014

https://doi.org/10.1371/journal.pone.0232412.t006

Table 7. Confusion matrixes of the state-of-the-art methods.

Head Analysis [36] Level 0 Level 1 Level 2 Level 3

Level 0 1870 1457 415 85

Level 1 1934 264 72 30

Level 2 831 348 66 101

Level 3 172 103 94 0

LBP [37] Level 0 Level 1 Level 2 Level 3

Level 0 1604 1650 423 150

Level 1 2001 167 84 48

Level 2 844 325 52 125

Level 3 178 97 94 0

LPQ [37] Level 0 Level 1 Level 2 Level 3

Level 0 1606 1669 417 135

Level 1 1997 173 84 46

Level 2 846 323 53 124

Level 3 180 96 93 0

BSIF [37] Level 0 Level 1 Level 2 Level 3

Level 0 1618 1659 419 131

Level 1 1995 184 77 44

Level 2 846 319 58 123

Level 3 183 92 94 0

CNN [12] Level 0 Level 1 Level 2 Level 3

Level 0 2349 1107 252 119

Level 1 1915 278 65 42

Level 2 839 305 137 65

Level 3 173 89 107 0

https://doi.org/10.1371/journal.pone.0232412.t007
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distribution of classification results. It can be seen that the classification accuracy of our pro-

posed method is 51.06%, and the MSE is 1.1014. Compared with other methods, especially

with the CNN based method [12] that divides face image into different regions, the classifica-

tion accuracy is improved about 44%, and the MSE is reduced about 51%, respectively. For the

recall and precision measures of each pain level, our proposed also achieved best performance.

For instance, the precision of Level 0 has been improved from 34.7% to 54.5%. With regard to

Level 3, due to the confusing and unbalanced training samples, both recall and precision mea-

sures are unsatisfactory.

From the comparison results, it can be found that the background information is an inter-

ference that should be considered for identifying different pain levels. In addition, the atten-

tion mechanism with the ability to adaptively assign weights can effectively improve the

performance of the algorithm. However, in terms of the measures of recall, precision, accuracy

and MSE, the performance of our method is still unsatisfactory. More specifically, the recall

rates of different pain levels are 91.3%, 16%, 10.5% and 0%, respectively. As aforementioned,

this is caused by confusing and unbalanced training samples. Therefore, studying how to elim-

inate the problem of imbalanced samples and build a more accurate database is the focus of

our future research.

Conclusion

Considering the interference of background and the influence of different facial regions, a spa-

tial transformation and attention CNN is proposed to estimate pain intensity. In the proposed

method, the face image is first performed a 2D affine transformation (i.e., translation, crop-

ping, rotation, scaling, and skewing) to against background interference. Then, the trans-

formed result is multiplied with attention weights to balance different facial regions. Extensive

experiments on the challenging UNBC-McMaster Shoulder Pain Expression Archive Database

showed that our proposed spatial transformation and attentional CNN can effectively improve

the estimation performance. However, our proposed method just analyzes still face images and

does not effectively use the facial motion information to further improve the pain estimation

accuracy. Furthermore, according to the analysis of different pain levels, it is found that the

confusing training data is a problem that should be well considered. Therefore, in our future

work, we intend to estimate pain intensity from three directions: (1) Based on the existing

method, extending a new pain estimation algorithm that can effectively use facial motion

information; (2) Establishing or generating a balanced and accurate pain estimation database;

(3) Developing a new training mechanism so that the unbalance samples can effectively train

network parameters.
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