
fninf-15-596443 June 9, 2021 Time: 17:35 # 1

METHODS
published: 15 June 2021

doi: 10.3389/fninf.2021.596443

Edited by:
Mike Hawrylycz,

Allen Institute for Brain Science,
United States

Reviewed by:
Richard C. Gerkin,

Arizona State University, United States
Nick Swindale,

University of British Columbia,
Canada

*Correspondence:
Sylvain Rama

s.rama@ucl.ac.uk;
rama.sylvain@gmail.com

Received: 02 September 2020
Accepted: 12 May 2021

Published: 15 June 2021

Citation:
Zbili M and Rama S (2021) A

Quick and Easy Way to Estimate
Entropy and Mutual Information

for Neuroscience.
Front. Neuroinform. 15:596443.
doi: 10.3389/fninf.2021.596443

A Quick and Easy Way to Estimate
Entropy and Mutual Information for
Neuroscience
Mickael Zbili1 and Sylvain Rama2*

1 Lyon Neuroscience Research Center (CRNL), Inserm U1028, CNRS UMR 5292, Université Claude Bernard Lyon1, Bron,
France, 2 Laboratory of Synaptic Imaging, Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute
of Neurology, University College London, London, United Kingdom

Calculations of entropy of a signal or mutual information between two variables are
valuable analytical tools in the field of neuroscience. They can be applied to all types of
data, capture non-linear interactions and are model independent. Yet the limited size and
number of recordings one can collect in a series of experiments makes their calculation
highly prone to sampling bias. Mathematical methods to overcome this so-called
“sampling disaster” exist, but require significant expertise, great time and computational
costs. As such, there is a need for a simple, unbiased and computationally efficient tool
for estimating the level of entropy and mutual information. In this article, we propose that
application of entropy-encoding compression algorithms widely used in text and image
compression fulfill these requirements. By simply saving the signal in PNG picture format
and measuring the size of the file on the hard drive, we can estimate entropy changes
through different conditions. Furthermore, with some simple modifications of the PNG
file, we can also estimate the evolution of mutual information between a stimulus and the
observed responses through different conditions. We first demonstrate the applicability
of this method using white-noise-like signals. Then, while this method can be used in
all kind of experimental conditions, we provide examples of its application in patch-
clamp recordings, detection of place cells and histological data. Although this method
does not give an absolute value of entropy or mutual information, it is mathematically
correct, and its simplicity and broad use make it a powerful tool for their estimation
through experiments.

Keywords: entropy, mutual information, portable network graphic image, DEFLATE compression, rastergram,
lossless (image) compression, place field

INTRODUCTION

Entropy is the major component of information theory, conceptualized by Shannon (1948). It is a
dimensionless quantity representing uncertainty about the state of a continuous or discrete system
or a collection of data. It is highly versatile as it applies to many different types of data, it can
capture non-linear interactions, and is model independent (Cover and Thomas, 2006). It has been
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widely used in the field of neurosciences, see Borst and
Theunissen (1999), Timme and Lapish (2018), Piasini and
Panzeri (2019) for a more complete review of work; for
example in the field of synaptic transmission (London et al.,
2002), information rate of Action Potentials (APs) trains
(Bialek et al., 1991; Juusola and de Polavieja, 2003; Street, 2020),
or connectivity studies (Ito et al., 2011; Vicente et al., 2011).

However, estimating the entropy of a signal can be a daunting
task. The entropy H of a signal X is calculated with the well-
known Shannon’s formula:

H (X) = −

N∑
i= 1

p (xi) log2 p (xi) (1)

Where p(xi) is the probability that the signal will take the
xi configuration among all the configurations (x1, x2, x3,. . .,
xN) of the signal. It is considered that if p (xi) = 0, then
p (xi) log2 p (xi) = 0, as limx→0 x(log2 x) = 0. And using a
base 2 logarithm, entropy will be expressed in bits (Shannon,
1948; Cover and Thomas, 2006).

However, correctly estimating a probability distribution works
only if each configuration happens many times. And by
definition, one cannot know beforehand the number of needed
experiments. This recording bias is even amplified by the fact
that without making assumptions, there is no way to determine
the relevant quantization and sampling of the data, i.e., in which
probability space the entropy must be calculated. The same
recordings could be divided in any quantization bins and sampled
by any interval, all giving different probability distributions and
thus different entropy values.

As an example, let us consider the chain of characters
A = ”04050405.” It is unchanged with a quantization range v of
6, but will become “01010101” with a quantization range v of 2. If
we now combine those characters with a bin T of 1, this will give
a probability distribution of: p(0) = 0.5, p(4) = p(5) = 0.25 in the
first scenario (v = 6) and: p(0) = p(1) = 0.5 in the second scenario
(v = 2). We thus obtain different entropy values for these two
probability spaces: Hv =6, T=1

= 1.5 and Hv =2, T=1
= 1. Now,

if we take a combination bin of T = 2 we obtain p(04) = p(05) = 0.5
for v = 6 and p(01) = 1 for v = 2. The calculated entropies
thus are: Hv=6, T=2

= 1 and Hv=2, T=2
= 0. In this example we

could take any different of v and T and obtain different values
for the entropy.

Without making assumptions on the data, there is no way to
determine which probability space and which value of entropy is
the correct one. Therefore, quantization range and combination
bins are crucial to determine the entropy of a signal. In an
ideal case, we would need a method able to correct for this
sample bias without making assumptions about the signal, and
exploring every possible probability space meaning for any length
of acquisition, any quantization range v and any T combination
bins of the recorded data.

Thankfully there are multiple ways to use the Shannon’s
formula (Eq. 1) and compensate for this bias, but none
of them can be called trivial. There are for example the
quadratic extrapolations method (Strong et al., 1998; Juusola

and de Polavieja, 2003; de Polavieja et al., 2005), the Panzeri-
Treves Bayesian estimation (Panzeri and Treves, 1996), the Best
Universal Bound estimation (Paninski, 2003), the Nemenman-
Shafee-Bialek method (Nemenman et al., 2004), or some more
recent methods using statistic copulas (Ince et al., 2017; Safaai
et al., 2018). Each method has its advantages and downsides
[see Panzeri et al. (2007) for a comparison of some of them],
which leaves the experimenter puzzled and in dire need of a
mathematician (Borst and Theunissen, 1999; Magri et al., 2009;
Timme and Lapish, 2018; Piasini and Panzeri, 2019).

However, there is another way to calculate the entropy of
a signal, through what is called the Source Coding Theorem
(Shannon, 1948; Larsson, 1996, 1999; Cover and Thomas, 2006;
Wiegand, 2010). In signal processing, data compression is the
process of encoding information using fewer bits than the
original representation. In case of lossless compression, it does so
by sorting parts of the signal by their redundancy and replacing
them by shorter code words (Shannon, 1948; Huffman, 1952).
The Source Coding Theorem specifies that a signal of size S and of
entropy H cannot be compressed into less than S×H bits without
losing information. Therefore, with a perfect lossless compression
method the size of the compressed signal is proportional to the
original signal entropy (Shannon, 1948; Larsson, 1996, 1999;
Cover and Thomas, 2006; Wiegand, 2010). This method has
been widely described in the field of physics, where estimating
entropy via compression algorithms has been done several times
(Baronchelli et al., 2005; Avinery et al., 2019; Martiniani et al.,
2019, 2020) but to our knowledge it has been used only twice
in the field of neurosciences (London et al., 2002; Amigó et al.,
2004) to estimate the entropy of spike trains and the information
efficacy of a synapse.

When choosing this way of calculating entropy, the choice of
the compression algorithm becomes critical as the compressed
signal must be the smallest possible in order to represent the
entropy of the original signal. It is of course possible to craft
its own compression algorithm [see London et al. (2002)],
but thankfully this application has been broadly used in the
domain of informatics, in order to compress text and images
efficiently on the hard drive of a computer or before sending
data through a network. In particular, this led to the development
of two principal entropy-coding compression algorithms: the
Huffman coding algorithm (Huffman, 1952) and the Lempel–
Ziv–Storer–Szymanski algorithm (Ziv and Lempel, 1977; Storer
and Szymanski, 1982), both used to compress text and image
files. This Lempel-Ziv algorithm and its variants are the main
tools for the estimation of entropy from data compression
(Benedetto et al., 2002; Baronchelli et al., 2005; Avinery et al.,
2019; Martiniani et al., 2019).

Portable Network Graphics (or PNG, see specifications
at https://www.w3.org/TR/PNG/ or http://www.libpng.org/
pub/png/) is a graphic file format supporting lossless data
compression. Its high versatility and fidelity made it widely used
for saving and displaying pictures. Its lossless compression is
based on the combination of the Lempel–Ziv–Storer–Szymanski
and Huffman algorithms and is called DEFLATE (Deutsch,
1996). In short, it consists of two main steps: (i) bit reduction,
replacing commonly used symbols with shorter representations
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and less commonly used symbols with longer representations
by Huffman coding and (ii) Duplicate string elimination by
detecting duplicates and replacing the occurrences by a reference
to the first one, by LZSS algorithm. Its great efficacy made it a
reference for comparison with other entropy-encoding image
compression methods (Cover and Thomas, 2006; Bian et al.,
2019; Hou et al., 2020; Mentzer et al., 2020) and it is even used
directly to estimate image entropy (Wagstaff and Corsetti, 2010).

In this article, we show that measurement of PNG file
output size of neuroscientific data (in Bytes on the hard
drive) is a reliable and unbiased proxy to estimate the level
of entropy of electrophysiological or morphological data. First,
the relationship between entropy level and file size is linear.
Second, by simply dividing the size of the PNG file (in Bytes)
by the number of pixels in the image, we can obtain a “PNG
Size Rate” (or “PNG Rate,” in Bytes per pixels), which slowly
converges toward a stable value when increasing the amount
of recorded data. This allows the experimenter to compare
multiple recordings of different sizes. Therefore, even if the
PNG Rate does not provide the exact entropy value, it is
robust enough to estimate the level of entropy in response to
different experimental conditions. Furthermore, with minimal
modifications of the PNG file, we validate estimation of the
mutual information between a stimulation protocol and the
resulting experimental recording.

MATERIALS AND METHODS

Direct Calculation of Entropy Rate and
Mutual Information Rate via the Direct
Method and Quadratic Extrapolations
We calculated the entropy and mutual information rates using
the direct method and quadratic extrapolation, as originally
described by Strong et al. (1998), and recently used by Juusola
and de Polavieja (2003), de Polavieja et al. (2005), Panzeri et al.
(2007). This method consists in two steps:

(i) The first step of this method, comparable to a “brute force”
approach, is to calculate the different values of entropy rates of
the signal for multiple probability spaces. This means varying
the portion of the signal considered (parameter Size: if Size = 1,
the whole signal is considered, if Size = 0.5, half of the signal is
considered, etc.), the number of quantization levels (parameter v:
if v = 2, the points are put in 2 classes of amplitude, if v = 10, the
points are put in 10 classes of amplitude, etc.) and the possible
combinations of the signal (parameter T: if T = 1, all the time
points are considered independent, if T = 2, the time points are
grouped by 2, and if T = 3, the time points are grouped by 3,
etc.). As described in the introduction, each modification of Size,
v or T will give a different entropy value. Ideally, we would like to
calculate it for every possible value of Size, v and T, but this is not
possible in practice: we want an estimation of entropy rate for
recordings of infinite size, quantization range and combination
bins. We thus limit ourselves to probable combinations for this
first step, keeping in mind we will need a set of values big enough
to yield accurate fits in the second step.

For example, in Figure 1, to estimate the entropy rate on
different length of recordings the parameter Size was successively
set as 1, 0.9, 0.8, 0.7, 0.6, 0.5, which takes decreasing portions
of the signal, from full signal to half of it. As we are measuring
the entropy rate from a discrete uniform distribution (white-
noise-like) with 2 to 256 possible values, we successively set the
quantization range v as 2, 4, 8, 16, 32, 64, 128, and 256. Any range
higher than 256 will yield the same value of entropy rate. The
number of combination bins T was successively set as 1, 2, 3, 4, 5,
6, 7, 8, in order to measure the entropy with no combinations
(T = 1) until 8 possible combinations of values (T = 8). This
produced 6 × 8 × 8 = 384 distinct values of entropy for every
trial. Entropy values for different trials of the same condition were
averaged together.

(ii) The second step (Figure 1B) will extrapolate these data
to find their limit value to infinite size, quantization range
and combination bins. The previously calculated values are first
plotted against 1/Size and the intersections to 0 estimated by
quadratic fit of the data. This gives us the entropy values for
every v and T, corrected for infinite size of the recordings. These
values are then quadratic fitted against 1/v. The intersection to
0 gives us entropy values for every number of combination T,
corrected for infinite Size and infinite number of quantization
levels v. As combinations of T elements will happen 1/T times,
we divide these values by T and these new values are fitted against
1/T to estimate the extrapolation to 0. By performing this triple
extrapolation and dividing by the number of combination bins,
we can estimate the entropy rate RS of the signal for theoretical
infinite size of recording, infinite number of quantization levels
and infinite number of combinations as

RS = lim
T→∞

1
T

lim
v→∞

lim
Size→∞

HT,v,Size (2)

To obtain RN in Figure 4, the entropy rate of the noise, instead of
calculating the entropy H along the length of the signal, we did it
at every time point across the successive trials. This is equivalent
to simply transpose the signal and re-applying the same method
as for RS. Finally, we obtained the mutual information rate by
subtracting RN to RS as

R = RS − RN = lim
T→∞

1
T

lim
v→∞

lim
Size→∞

(
HT,v,Size

S −HT,v,Size
N

)
(3)

For Figure 4A, simulated recordings were down-sampled to
10 kHz before calculation of information rate. For Figure 4C,
middle, simulated recordings were down-sampled to 3 kHz and
binned as 0 and 1 depending of the presence of APs or not, similar
to (London et al., 2002).

For Figures 1B–D, 2, 3, 4A,B, The parameter Size was
successively set as 1, 0.9, 0.8, 0.7, 0.6, and 0.5; v successively
set as 2, 4, 8, 16, 32, 64, 128, and 256 and the parameter T
was successively set as 1, 2, 3, 4, 5, 6, 7, and 8. For Figure 4C,
the parameter Size was successively set as 1, 0.9, 0.8, 0.7, 0.6,
and 0.5; v set as 2 and the parameter T was successively set
as 1, 2, 5, 10, 20, 30, and 40. RS, RN and information transfer
rate were calculated by direct method and successive quadratic
extrapolations, as described above.

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2021 | Volume 15 | Article 596443

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-596443 June 9, 2021 Time: 17:35 # 4

Zbili and Rama Entropy Estimation by PNG Size

FIGURE 1 | Comparison of entropy and PNG file size on a model case. (A) Examples of 10 000 data points of white-noise-like signal with growing number of gray
levels and growing entropy (here showed as square picture signals). Left: 2 possible gray values, or entropy of 1 bit. Middle: 16 possible gray values, or entropy of
4 bits. Right: 256 possible gray values, or entropy of 8 bits. (B) Direct calculation and quadratic extrapolations to 0 to calculate the entropy rate of the 1 bit- signal
(left signal in A). Left: Plotting all the entropy values to 1/Size and extrapolating to 0 to get the value for infinite size (white arrowhead). For clarity, only the condition for
v = 2 is shown (but this was done for v equal to 2, 4, 8, 16, 32, 64, 128, and 256). Middle: Plotting the limits values obtained for 1/Size = 0 (left graph) versus 1/v and
extrapolating to 0 to get the value for infinite number of quantization levels (white arrowhead). Right: Plotting the limits values obtained for 1/v = 0 (middle graph)
versus 1/T and extrapolating to 0 to get the value for infinite number of combinations bins (black arrowhead). Note that this value is close to 1 bit/pixel, as expected
when using a signal made of uniform white noise with 2 possible values. (C) Direct calculation and quadratic extrapolations to 0 to calculate the entropy rate of the
8 bits- signal (right signal in A). Left: Plotting all the entropy values to 1/Size and extrapolating to 0 to get the value for infinite size. For clarity, only the condition for

(Continued)
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FIGURE 1 | Continued
v = 2 is shown (but this was done for v equal to 2, 4, 8, 16, 32, 64, 128, and 256). Middle: Plotting the limits values obtained for 1/Size = 0 (left graph) versus 1/v and
extrapolating to 0 to get the value for infinite number of quantization levels. Right: Plotting the limits values obtained for 1/v = 0 (middle graph) versus 1/T and
extrapolating to 0 to get the value for infinite number of combinations bins. Note that in the final graph (right), points do not follow a linear trend. When using the last
2 points for extrapolation to 0, we obtain a value of 5.6 bits/pixels (red arrowhead), far from the expected value of 8 bits. This reveals the sampling disaster (not
enough points in the signal to properly estimate the entropy). (D) Left: When plotted against the real entropy value, the direct method with quadratic extrapolation
shows examples of sampling disaster for high values of entropy (red arrowheads). Right: When simply saving all the signals described in (A) and dividing their size by
the number of pixels in the image we obtained the PNG Rate in Bytes per pixel. The PNG Rate shows a linear relationship with the Entropy Rate
(y = 0.12 x + 0.06, R2 = 0.99). Note that this is true for pictures made either of square signals (squares plot) or linearized signals (crosses plot).

All of this was done by custom scripts written in Python
3.7 Anaconda with Numpy, Pandas and pyABF modules. These
scripts are available in Python and Labview format at https://
github.com/Sylvain-Deposit/PNG-Entropy.

Export to PNG Format
Export to PNG was made with 3 different softwares: (i)
Anaconda 3.71 and the pyPNG package2 for Figures 1, 2A,
3A,B; (ii) Labview 2017 and Vision 2017 (National Instruments)
for Figures 2B, 4A–C, 5C; and (iii) the FIJI distribution of
ImageJ software (Schindelin et al., 2012; Rueden et al., 2017)
for Figure 6B. Signals were normalized to 256 values from 0
to 255 simply by subtracting the minimal value of the signal,
then dividing by the maximal value and multiplying by 255. It
was then saved as PNG format in 8-bits range (256 gray values).
For Figure 4C, as the signal was binarized we saved it with a
1-bit range (2 gray values). This script and others are available
in Python and Labview format in a GitHub depository: https:
//github.com/Sylvain-Deposit/PNG-Entropy.

A minimal file of PNG format is composed of a header
and several parts of data, named critical chunks3. To these
minimum requirements it is possible to add ancillary chunks4

containing various information such as Software name, ICC
profile, pixels dimensions, etc. . . If useful, this is hindering
the estimation of entropy as it represents an overhead to the
final size of the file. To estimate this overhead for each of
our software we saved an image of 100 × 100 values of zeros,
which corresponds to black in 8-bits gray levels and has an
entropy of 0. With pyPNG, Fiji and Labview we obtained three
PNG files of size 90, 90, and 870 Bytes, respectively. When
repeating the experiment of Figure 1, we obtained similar linear
fits of slopes 1.21 (R2 = 0.99), 1.18 (R2 = 0.99), and 1.21
(R2 = 0.99), respectively.

For Figure 6C, we used Fiji for every image of the collection
and we: (i) extracted the channel number 2 containing the
MAP2 staining; (ii) converted the file to 8-bits gray levels;
(iii) thresholded it to remove every intensity values under
10 to remove most of the background; (iv) saved the new
file as PNG format, (v) checked the size of this new file,
and (vi) divided the size in kBytes by the number of soma
visible in the field.

1 https://www.anaconda.com/
2https://pypi.org/project/pypng/
3https://www.w3.org/TR/PNG/#5DataRep
4https://www.w3.org/TR/PNG/#11Ancillary-chunks

Neuronal Modeling
A single compartment model was simulated with NEURON 7.75.
All simulations were run with 100-µs time steps. The nominal
temperature was 37◦C. The voltage dependence of activation
and inactivation of Hodgkin-Huxley–based conductance models
were taken from Hu et al. (2009) for gNav and gKDR. The
equilibrium potentials for Na+, K+, and passive channels
were set to +60, −90, and −77 mV, respectively. The
conductances densities were set to 0.04 S/cm2, 0.01 S/cm2,
and 3.33 × 10−5 S/cm2 for gNav and gKDR and passive
channels, respectively.

The model was stimulated using various numbers of excitatory
synapses using the AlphaSynapse PointProcess of the NEURON
software. The time constant and reversal potential were the
same for every synapses and were set to 0.5 ms and 0 mV,
respectively. The size of EPSPs produced by the synapses were
randomly chosen using a lognormal distribution of EPSPs
amplitude experimentally described in L5 pyramidal neurons
(Lefort et al., 2009). Each synapse stimulated the model once
during a simulation and the time onset was randomly chosen.

For the simulations of Figure 3, the number of synapses
simulating the model depended on the duration of the simulation
and spiking frequency desired. For example, to calculate the
entropy rate in the case of a 1 Hz spiking frequency during
400 s, we simulated the model with 3,200 of the synapses
described above. For higher spiking frequencies, the number of
synapses were increased.

For the simulations of Figures 4A,B, each trace lasted 5 s.
The number of synapses simulating the model depended on
the spiking frequency desired. For example, to calculate the
information transfer rate in the case of a 1 Hz spike train, we
simulated the model with 400 of the synapses described above.
We ran 20 trials of the simulation with the same train of synapses
(Figure 4A). In order to introduce some jitter in the spiking
times, we also injected a small gaussian current with a mean of
0 nA and a standard deviation of 0.0005 nA during the 5 s of
the simulation. We reproduced this whole protocol for others
desired spiking frequency, using increasing number of synapses
(for example: 1,900 synapses for a 19 Hz spiking).

For the simulations of Figure 4C, we stimulated the model
with 750 of the synapses described above to get a spiking
frequency around 5 Hz. The time onsets and the amplitude of
the synapses were randomly chosen at each simulation. We also
added one supplementary synapse (Syn_supp) which stimulates
the model every 200 ms (i.e., 25 times in 5 s). The size of the

5https://www.neuron.yale.edu/neuron/
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FIGURE 2 | Effect of signal size on quadratic extrapolations method and PNG Rate. (A) Left: The signals have 2 possible values (1 or 0, here shown by black or
white) and can be of length 100, 1,000, or 10,000 data points (only 100 and 10,000 points signals are shown). The signals with growing amount of white points
(from 0 to 100%). Here, example of 10% of white points (up) or 50% of white points (down) are shown. Middle: In dashed line: the ideal bell-shaped curve calculated
by the Shannon’s formula. When using the quadratic extrapolations method, we needed at least 10,000 points to converge to the ideal bell-shaped curve (compare
dark gray line to black dashed line). However, if our signal is short, it is impossible to calculate high entropy values (100 points for example, light gray curve). Right:
normalized PNG file sizes of the same signals, showing that when we increase the number of points in the signal, we progressively fit the obtained curve toward the
ideal entropy curve. This convergence is slower than when using the quadratic extrapolations method. (B) Effect of the number of points on entropy calculation for
white-noise signals. The different signals differ by their number of possible values (from 1 to 256 possible values leading to ideal entropy rates from 0 bits/point to
8 bits/point) and by their number of points (from 1,000 to 1,000,000 points). Left: Effect of the number of points on the entropy rate calculation via the quadratic
extrapolations method (QEM). For signal with few points (1,000 and 10,000 points), the curve shows a biphasic behavior revealing the sampling disaster: a signal of
few points cannot be used to calculate high entropy values. When increasing the number of points, the curve becomes accurate for every entropy value. Right: same
demonstration when using the PNG Rates. Even with few points, the curve shows a linear behavior. However, increasing the number of points modifies the slope and
intercept of the linear curve, until it stabilizes to an optimal solution. (C) Effect of the number of points on entropy calculation for white-noise signals. The different

(Continued)
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FIGURE 2 | Continued
signals differ by their number of possible values(2 or 4 possible values leading to ideal entropy rate from 1 bit/point or 2 bits/point) and by their number of points
(from 100 to 20,000 points). Left: Calculations for the 1 bit/point signal. Using the quadratic extrapolations method (QEM, white circles), the calculated entropy rate
versus the number of points in the signal shows a quick convergence to the optimal value (white arrowhead, around 500 points, value of 0.9923 bits per point). If we
plot the PNG Rate versus the number of points in the signal (black squares), we obtain a curve decreasing slowly to a stable value (Black arrowhead, around 10,000
points, value of 0.17 Bytes per pixels). Right: Same calculations made with a signal of 2-bits/point signal (4 different values possible). The direct method converges in
around 1,000 points (calculated value: 1.9794 bits per points) while the PNG Rate converges in around 10 000 pixels (calculated value: 0.32 bytes per pixels).

FIGURE 3 | PNG Rate on a model of neuronal activity. (A) Left: example of traces obtained with our model, increasing the number of synapses to obtain spiking
activity from 1 Hz (top) to 20 Hz (bottom). Right: The PNG Rate (Bytes/pixels) is linear to Entropy Rate (bits/points), following y 0.36x − 0.02 (R2 = 0.99). (B) Impact
of the simulation duration on the Entropy Rate (Left) and PNG Rate (Right). Entropy Rate converges toward a stable solution in around 5 s of recordings, or 1 sweep.
The PNG Rate needs around 40 s to obtain a stable value. As the PNG algorithm starts by linearizing the data, this is equivalent to 8 sweeps of 5 s each.

EPSP size produced by this synapse was called wSyn_supp. When
wSyn_supp was weak, this synapse did not drive the spiking of the
model (Figure 4C, up left). When wSyn_supp was strong, this
synapse drove the spiking of the model (Figure 4C, down left).
We ran 100 simulations for each wSyn_supp.

Place Fields Simulation
To simulate place fields recordings, we programmed a simple
random-walk in a 20× 20 cells area with a place field at its center.
A mock animal was placed randomly in this area and allowed to
“run” for a finite set of step (typically, 10,000 steps). For each step
of the simulation, the animal could choose uniformly between
one of the 8 neighboring cell or stay in the same cell. For each
step of the simulation, the spike frequency of a recorded place
field was generated by calculating the distance x of the animal
from the place field center and indexing this distance to a sigmoid
curve Fmax

1+e(x−x0)×Slope with x0 = 7, Slope = 2 and Fmax = 10 to

obtain a place field of roughly 3 cells of radius in the center of
the simulated area (Figure 5). This script and others are available
in Labview format in a GitHub depository: https://github.com/
Sylvain-Deposit/PNG-Entropy.

RESULTS

Entropy Estimation of White-Noise-Like
Signals
To test the usability of the PNG format to represent entropy,
we started by generating 10,000 pixels of signal with a discrete
uniform distribution (white-noise-like) which could take 2 values
(Figure 1A, 2 gray values). As we are using a uniform
distribution, we fully know the probability distribution (in that
case, p(xi) = 1/N), we can apply the Eq. 1 and obtain an entropy
H of 1 bit. We then repeated this noise model progressively
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FIGURE 4 | Comparison of mutual information and PNG Rate on a neuronal model. (A) We considered different amount of synapses to obtain different spiking
frequencies (from 1 to 20 Hz). For each spiking frequency, the model was run for 20 trials with the same synaptic inputs. Due to the injection of a small Gaussian
noise current, we obtain variability in the spiking of the different trials. Left: example of 20 generated trials with a 5 Hz spiking activity. Note that despite the same
synaptic activity between trials, the small Gaussian noise current induces variability in the spiking of the different trials. Arrows show the direction used with the
quadratic extrapolations method to calculate the signal entropy (RS) and noise entropy (RN ). Middle: calculation of the Entropy Rate of the Signal (RS) and the
Entropy Rate of the noise (Rn) for the full voltage of the cell for each condition. The Information transfer Rate R is the difference between RS and RN. Right:
Information transfer Rate (RS–RN ) between the synaptic stimulation and the neuronal activity, plotted versus the spiking frequency. This follows a linear trend
(y = 25.935 x + 188.15, R2 = 0.97). (B) Left: Conversion of the modeled traces in (A) as a 256 gray values PNG file. As the PNG conversion algorithm is line-wise,
we have to save the image a first time, divide by the number of pixels and multiply by the sampling rate to get the PNG Rate of the signal in Bytes/s (equivalent to Rs

in the quadratic extrapolation method; Left). Then we have to rotate the image 90 degrees, save it a second time, divide by the number of pixels and multiply by the
sampling rate to get the PNG Rate of the noise in Bytes/s (equivalent to Rn in the quadratic extrapolation method; Middle). Arrows show the direction of
compression. Right: the subtraction of the PNG Rate of the signal and the PNG Rate of the noise follows a linear trend with the spiking frequency
(y = 25.55 x − 41.2, R2 = 0.98). (C) The model was run with the same amount of background synapses to obtain a spiking frequency of 5 Hz. The onset of the
background synapses was chosen randomly at each trial to create variability in the spiking from trial to trial. A supplementary synapse was added and stimulated the
model every 200 ms. The strength of the supplementary synapse varied from 0.5 to 8 mV. 100 trial were ran for each strength of the supplementary synapse. Left:
examples of rastergrams showing the impact of the supplementary synapse on our neuronal model. With a low synaptic strength (wSyn_supp = 2 mV, top), this
synapse barely drives the model spiking. With a high synaptic strength (wSyn_supp = 6 mV, bottom), the neuron spiking is synchronized with the occurrence of the
synapse. Middle: Information transfer Rate between the strength of the supplementary synapse and the neuronal spiking. As expected, it follows a sigmoidal
behavior. Right: rastergrams were saved as PNG files, divided by the number of pixels and multiplied by the sampling rate to obtain the PNG Rate of the signal.
Then, the rastergrams were rotated 90 degrees, saved again, divided by the number of pixels and multiplied by the sampling rate to obtain the PNG Rate of the
noise. The difference of the 2 PNG Rates follows a similar curve as the Information transfer Rate.

increasing the number of possible values by power of 2 until
256 (i.e., 4 possible values, 8 possible values, and 16 possible
values, etc. . . up to 256 possible values). The 256 possible values

of uniform distribution correspond to an entropy of 8 bits
(Figure 1A). The entropy rate R is defined as R =

1
T H with T

being the sampling of the signal. In this model case, we can take
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FIGURE 5 | Application to mutual information from place fields. (A) Examples of simulated data: a mock animal with a random walk in an enclosed environment. The
firing rate of each space bin was modeled as a Gaussian-like centered in the field, with growing probability of firing. Left: example of a 1,000-steps random walk with
a place field of low probability of firing (p = 0.3). Middle: example of a 10,000-steps random walk with a place field of high probability of firing (p = 1). (B) Simple
explanation of the pairing function used to transform the Place field information to a 2D array to be saved in PNG format. Left, top: example of an area divided in 6
space bins, and each bin is given a unique index, which will be the index of the columns of the future image (left, bottom). Middle: if we follow the patch showed with
the arrow, we traverse the indexes 1, 2, 3, 6, 5, 4, 1, 2, 3, 2, 1. For each traversed index, we place a pixel with the color corresponding to the firing frequency at the
corresponding column index. If we go to the same position multiple times, we simply add multiple rows to the 2D array. There will be “holes” (gray squares) as the
path did not go to every position the same number of times, but we can fill them with 0 (blue squares). We end up with a 2D array with the number of columns
corresponding to the number of space bins (6 in this example) and the number of rows corresponding to the number of times the path entered the same space bin
(3 for this short example, as the path entered the space bins 1 and 2 three times). Right: result of this pairing function on the 20 × 20 arena for the example seen in
(A), left (top) and (A), right (bottom). These files were saved as PNG, rotated, saved again to obtain the difference in PNG Rates. (C) Left: Mutual Information as Isec

(Eq. 9) versus Place Field strength, showing a clear increase when the place field has a high chance to fire. Right: Difference in PNG Rates versus Place Field
strength. Both curves are similar.

T = 1 (i.e., a sampling of 1 pixel) to finally obtain an entropy rate
in bits per pixel.

As a control way to calculate the entropy of our signals, we
used a method described in Strong et al. (1998), Juusola and de
Polavieja (2003), de Polavieja et al. (2005), Panzeri et al. (2007),

involving the use of the Shannon’s formula in many probability
spaces followed by quadratic extrapolations to estimate the
entropy rate in a case of an infinite size signal, an infinite
quantization and an infinite time sampling, see Methods for
explanations. This method allows the exact calculation of
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the signal entropy rate but is long to compute and needs
programming skills to be implemented. It will be used all along
this study as a control to be compared with the PNG method. It
will be referred as “the quadratic extrapolations method.”

In our simple model data, we can see that when using only 2
different values for the white-noise-like signal (Figure 1B), the
quadratic extrapolations method gives an entropy rate close to
1 bit/pixels as expected (Figure 1B, right panel, black arrowhead).

However, when increasing the number of possible values until
256 (real entropy rate H of 8 bits/pixels) we start to unravel the
so-called “sampling disaster” (Figure 1C). In fact, the quadratic
extrapolations method gives a value around 5.7 bits/pixels
(Figure 1C, right panel, red arrowhead), far from the expected
one. This is easily explained by the number of data points
we have in our model signal. The last extrapolation concerns
the T combinations of values to calculate the entropy rate and
when using a uniform distribution and with T equal to 1, it
means we need at least 28 = 256 points to properly estimate the
probability distribution. However, if T increases to 2 (1/T = 0.5
in the Figure 1C), we then need at least 28 × 2 = 65,536
points to estimate the probability distribution, when we had
only 10,000. The probability distribution is thus insufficient to
properly estimate the entropy rate of this signal with 256 values.
Even by using quadratic extrapolations to compensate for the
sampling bias, we can see it gives a wrong result for high entropy
values when there are not enough data points (red arrowheads in
Figure 1D, left panel).

As a comparison, we simply saved the 10,000 pixels data of
increasing white-noise-like signal (Figure 1A) as PNG image
file with a depth of 8 bits (and thus 256 possible values). We
measured the space taken by these files on the hard drive (in
Bytes) and divided this value by the number of pixels to obtain the
PNG Rate (in Bytes/pixels; Figure 1D, right panel). The PNG Rate
was linearly correlated with the real entropy rate (y = 0.12 x +
0.06, R2 = 0.99). The PNG compression algorithm works with
linearized data, which means there is no difference when saving
pictures as a 100 × 100 square format (Figure 1D, right panel,
squares plot) or saving a 10,000-single line (same panel, crosses
plot). From this first test, we can conclude that for our model
signal, the size of a PNG file divided by the number of pixels has
a linear relationship with its entropy rate.

To better investigate the effect of recording length on entropy
rate and PNG conversion, we generated 100 points of white-
noise-like signal with 2 possible values (0 and 1) and progressively
increased the percentage of 1 in this signal, from 0 to 100%
(0 is represented by a black pixel, 1 is represented by a white
pixel; Figure 2A). As we know the ideal probability distribution
of this signal, we can use the Shannon’s formula (Eq. 1) to
calculate the real entropy rate and obtain the bell-shaped curve
as described by Shannon (1948; Figure 2A, middle, black dashed
curve). However, we see that if we calculate the entropy rate from
our 100 points signal with the quadratic extrapolations method
(Figure 2A, middle, light gray), the curve obtained is far from
ideal: it is unable to reach the proper value of 1 for maximum
entropy. This is another example of sampling disaster. We have to
increase the number of points in our signal up to 10,000 points to
obtain a maximum entropy rate corresponding to the maximum

ideal entropy rate (Figure 2A, middle, middle gray and dark gray).
Then, we saved the same signals to PNG files, measured their size
on the hard drive and divided by the number of pixels to obtain
the PNG Rates of each signal. Finally, we normalized the obtained
curves to compare their shapes (Figure 2A, right). We can see
that the obtained curve progressively fits the ideal entropy rate
curve when the number of points increases (Figure 2A, right),
but at a slower rate than the direct method. In fact, even with
10,000 points, the curve obtained by the PNG method does not
fit perfectly the ideal curve.

As an illustration of the effect of the number of points on each
method, we generated white-noise-like signals with increasing
number of possible values from 0 to 256 (thus entropy rates from
0 to 8 bits per point) and we increased the number of points
in these signals from 1,000 to 1,000,000 points (Figure 2B). We
used the quadratic extrapolations method to calculate the entropy
rates, and saved the same signals as PNG files to obtain the PNG
rate. When plotted against the ideal entropy rate, we can see
that these two methods yield different behaviors (Figure 2B).
When calculating the entropy rate by the quadratic extrapolations
method, the sampling bias dramatically modifies the high values
of entropy rate and we obtain biphasic curves (Figure 2B, left).
This indicates that we cannot estimate high entropy values with
short signals. However, the values are perfectly accurate for low
entropy rates or if the number of points in the signal is sufficient
(around 100,000 points in this case). When plotting the PNG rate,
we can see that the relationship between PNG Rate and the ideal
Entropy Rate is always linear, but the number of points affects
the slope and intercept of the obtained curve (Figure 2B, right).
This relationship converges toward a stable curve for long signals
(around 100,000 pixels). This means that if we have multiple
signals of the same size, PNG Rate can properly estimate the
modifications of entropy rate between them as the relationship
PNG Rate/entropy rate is linear. However, if we have signals of
different sizes, we have to check before if the PNG rate converged
to a stable value to be able to compare them.

To estimate the number of points needed for a correct entropy
rate estimation of a given signal, we generated white-noise-like
signals of 100, 500, 1,000, 5,000, 10,000, and 20,000 points. Those
signals could present either 2 possible values (1 bit per point,
Figure 2C, left) or 4 possible values (2 bits per point, Figure 2C,
right). First, we calculated their entropy rates by the quadratic
extrapolations method and plotted them versus their number
of points (Figure 2C, white circles). When using a white-noise-
like signal with 2 possible values (ideal entropy rate of 1 bit
per point), 500 points were enough to find the optimal value of
entropy rate by the quadratic extrapolations method (Figure 2C,
left, white arrowhead). If we increase the number of values in
our generated signal to 4 possible values (ideal entropy rate of
2 bits per point), the quadratic extrapolations method needs 1,000
points to find the optimal value of entropy rate (Figure 2C,
right, white arrowhead). As expected, when the entropy rate of
the signal increases, the quadratic extrapolations method needs
more points to find a stable value of the entropy rate. Second, we
saved all the generated signals to PNG files, measured their size
in Bytes on the hard drive and divided these sizes by the number
of pixels in the image file to get the PNG Rates of the signals.
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Then, we plotted the PNG Rates versus the number of points
in the signals (Figure 2C, black squares). When using a white-
noise-like signal with 2 possible values (ideal entropy rate of 1 bit
per point), we can see that the PNG Rate reaches a stable value
around 10,000 pixels (Figure 2C, Left, black arrow). With a white-
noise-like of 4 possible values (ideal entropy rate of 2 bits per
point), the PNG rate reaches a stable value around 10,000 pixels
as well (Figure 2C, Right, black arrow). By this experiment, we
concluded that both methods converge toward a stable solution
when the number of points in a signal increases. However, the
quadratic extrapolations method is much quicker to converge
than the PNG Rate method.

From these examples, we conclude that the number of points
in the signal is critical to capture its entropy rate. In the case of
short signals, the quadratic extrapolations method gives biphasic
relationships with the Entropy Rate, making it unsuitable to
calculate high entropy values. The PNG Rate method stays linear
to the Entropy Rate, which allows comparing files of the same
size in a wide range of entropy values. Both methods converge
to a stable solution when increasing the number of points in the
signal, but the PNG Rate method convergence is slower. Both
methods allow comparing multiple signals of different sizes, as
long as the stable value is reached.

Entropy Estimation in
Electrophysiological Signals
In order to test the ability of the PNG Rate method to estimate
the entropy of electrophysiological signals, we created a single
compartment model in NEURON 7.7. The model contained
sodium and potassium voltage-dependent channels to allow the
spiking (see Methods for model description). The model was
stimulated using various numbers of EPSPs with amplitudes
chosen randomly in a log-normal distribution described in Lefort
et al. (2009). By increasing the number of synapses stimulating
the model, we could increase the spiking frequency.

We ran simulations of 5 s with an increasing number of
synapses, to obtain model traces ranging from 1 to 20 Hz
AP frequency (Figure 3A, left). For each spiking frequency
condition, we ran 20 trials with the same synaptic inputs (a small
gaussian noise current was added to induce variability among
trials). We used the quadratic extrapolations method to calculate
the Entropy Rate on all our model traces. In parallel, we saved
these traces as 8-bits PNG files (256 possible values) and divided
by the number of points in the image to obtain the PNG Rate. As
expected, the PNG Rate has a linear behavior versus the Entropy
Rate (Figure 3A, right). Therefore, the PNG Rate is suitable to
estimate entropy rates variations in electrophysiological signals.
As a control, we measured the Entropy Rate and the PNG Rate
for different sizes of model traces at 1, 10, and 20 Hz, ranging
from 1 s to 400 s. In our conditions, the Entropy Rate measured
by the quadratic extrapolations method converges to a stable
value in around 5 s of recordings (or 50,000 points, Figure 3B,
left), whereas the PNG Rate needs around 40 s of recording (or
400,000 pixels, Figure 3B, right). These can be considered as the
minimal time needed if one wants to compare multiple files of
different sizes. Interestingly, as the PNG algorithm works with

linearized data, there is no difference between 40 s of recordings
and 8 sweeps of 5 s each. This means that in our model case, 20
trials of 5 s each were largely enough to estimate the stable value
of the PNG Rate.

Mutual Information Estimation in
Electrophysiological Data
Most of the time, the experimenter is not interested in the
entropy itself, but in the mutual information between two
variables X and Y. The mutual information “IXY ” measures
the statistical dependence by the distance to the independent
situation (Shannon, 1948; Cover and Thomas, 2006) given by

IXY =
∑

i,j

p
(
xi, yj

)
log2

(
p
(
xi, yj

)
p (xi) p

(
yj
)) (4)

Therefore, when X and Y are independent p
(
xi, yj

)
= p (xi)×

p
(
yj
)
, so IXY = 0 bits.

The mutual information can also be rewritten as the difference
between the entropy of X and the conditional entropy of X given
Y :

IXY = H (X)−H(X|Y) (5)

Where H(X) is the entropy already described (Eq. 1) and

H (X|Y) = −
∑

j

p
(
yj
)∑

i

p
(
xi|yj

)
∗ log2 p

(
xi|yj

)
(6)

If a neuron is stimulated several times by the stimulus, we can
define X as the response of the neuron to the stimulus and Y
as the stimulus received by the neuron (Borst and Theunissen,
1999). In that case, H(X) is the entropy of the neuronal response
(quantifying the total variability of the neuronal response) also
called the total entropy: HS. H(X| Y) is the entropy of the
neuronal response given the stimulus. As the same for each
trial, the only source of variability is the intrinsic noise of the
neuron. In that case, H(X| Y) can be interpreted as the noise
entropy HN , quantifying the variability of the neuronal response
which is still present even if the neuron is submitted to the same
stimulus at each trial. So, in the case of a neuron stimulated
with the same stimulus during different trials, HS quantifies the
average variability of the neuronal response during one trial and
HN quantifies the variability of the neuronal response across the
trials. In that case the mutual information between the stimulus
and the neuronal response is given by:

ISN = HS −HN (7)

Where Hs is the averaged entropy of the neuronal response over
every trial and:

HN = −

〈∑
i

p (xi)τ ∗ log2p (xi)τ

〉
τ

(8)

where p (xi)τ is the probability of finding the configuration xi at a
time τ over all the acquired trials of an experiment (Strong et al.,
1998; Juusola and de Polavieja, 2003; de Polavieja et al., 2005).
Finally, we can obtain the information transfer rate R, by using
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the quadratic extrapolations method and dividing by the time
sampling (Strong et al., 1998; Juusola and de Polavieja, 2003; de
Polavieja et al., 2005), as:

R = RS − RN = lim
T→∞

1
T

lim
v→∞

lim
Size→∞

(
HT,v,Size

S − HT,v,Size
N

)
(9)

where RS is the entropy rate of the signal and RN is the entropy
rate of the noise (see Methods for description of the quadratic
extrapolations method). In practical terms, this means to acquire
multiple recordings of the same experiments, apply the quadratic
extrapolations method first on each trial and average the results
to obtain RS. Then, to apply the same method across the trials
for every time point τ and average the results to obtain RN .
The information transfer rate R is thus the rate of the mutual
information transferred between the stimulation protocol and the
acquired trials.

In order to apply this method to electrophysiological signals,
we used the same model as in the section “Entropy estimation in
electrophysiological signals.” In a first step, the synapses number
was chosen to obtain a spiking frequency of 1 Hz. We ran 20 trials
of 5 s with the same train of synapses (Figure 4A, left). In order
to introduce some randomness in the spiking between trials,
a small Gaussian noise current was also injected (Figure 4A,
left). We calculated RS and RN using the quadratic extrapolations
method (Figure 4A, middle) and subtracted RN to RS to obtain
the information transfer rate (here presented in bits/s; Figure 4A,
right). We then reproduced this protocol with various numbers
of synapses to obtain different spiking frequencies. As expected,
when we increased the number of synapses, we increased the
spiking frequency and the information transfer rate between our
stimulation and the response (Figure 4A, right). This measure
follows a linear trend, similar to previous results obtained in
literature (Juusola and de Polavieja, 2003; de Polavieja et al.,
2005).

As already described (Figure 1D, right), the PNG format
is line-wise. The compression algorithm will thus be sensitive
to the orientation of the image we have to compress. To
estimate the PNG Rate of the signal, we converted our voltage
signals to an 8-bits PNG image (256 levels of gray). As our
signals are 20 trials of 5 s at 10 kHz sampling, this yielded
a 1,000,000 pixels of 256 gray scale image (Figure 4B, left).
We saved this first version of the image, measured the size
of the files on the hard drive, divided this number by the
number of pixels in the image and multiplied the value by
the sampling (10 kHz) to obtain the PNG Rate of the signal
in Bytes/s. To estimate the PNG Rate of the noise, we simply
rotated the image 90 degrees and saved it again to PNG
format. This rotation constrains the algorithm to calculate the
entropy through the acquired trials and not through the signal
itself, thus estimating the entropy rate at each time point
across all the trials (as for RN in the quadratic extrapolations
method; Figure 4B, middle). We measured the size of the
newly generated file, divided again by the number of pixels in
the image and multiplied the value by the sampling (10 kHz)
to obtain the PNG Rate of the noise in Bytes/s. Finally, we
subtracted the PNG Rate of the noise to the PNG Rate of the
signal. As we can see, this difference of PNG Rates follows a

linear behavior, increasing with AP frequency similarly to the
direct measure of the information transfer rate (Figure 4B,
right). We concluded that the PNG method allows accurate
estimation of information transfer rate modifications through
different conditions in electrophysiological data (here different
spiking frequencies).

Synaptic Information Efficacy Estimation
As a second example, we reproduced the protocol made by
London et al. (2002) to estimate the information transfer between
one synapse and the postsynaptic neuron spiking (also called
Synaptic Information Efficacy, SIE). In this study, the authors
showed that a larger synapse drove the postsynaptic spiking in a
greater manner, which increases the SIE. To reproduce this result,
we used the model described in the previous paragraphs. We
stimulated the model during 5 s with 750 synapses to get a spiking
frequency around 5 Hz. Moreover, we added a supplementary
synapse stimulating the model regularly every 200 ms. When the
EPSP size of this supplementary synapse (wSyn_supp) was weak,
this synapse did not drive the spiking of the model (Figure 4C,
up left). However, when wSyn_supp was strong, this synapse
drove the spiking of the model (Figure 4C, down left). We made
100 trials for each wSyn_supp and at each trial the onset time
and amplitude of the others synapses were chosen randomly to
introduce spiking variability. We down-sampled our signal to
3 kHz and binarized it to 0 and 1, depending on the presence
of APs or not similarly to London et al. (2002). After calculating
the information rate transfer using the quadratic extrapolations
method, we obtained a sigmoid curve similar to previously
published results (London et al., 2002; Figure 4C, middle). To
calculate the PNG Rate on binarized signals, we first converted
our voltage signals to a 1-bit PNG image (2 levels of gray). As
our signals are 100 trials of 5 s at 3 kHz sampling, this yielded
an image of 15,000 × 100 (=1,500,000) pixels of 2 possible
values. Similar to what has been described in section “Mutual
Information estimation in electrophysiological data,” we obtained
the PNG Rate of the signal measuring the size of the PNG file,
dividing it by the number of pixels and multiplying it by the
sampling to obtain a value in Bytes/s. To obtain the PNG entropy
rate of the noise, we rotated the image 90 degrees, measured
the size of this new file, divided it by the number of pixels and
multiplied it by the sampling to obtain a value in Bytes/s. As
expected, the difference between the PNG Rate of the signal and
the PNG Rate of the noise followed a sigmoid curve similar
to the one calculated by the quadratic extrapolations method
(Figure 4C, right).

From this, we concluded that by saving multiple trials of
the same experiment as a single PNG file, we can estimate
the PNG Rate of the signal. And by simply rotating this
same file 90 degrees and saving it again, we can estimate the
PNG Rate of the noise. The difference between those two
values follows the same behavior as measuring the information
transfer rate between the stimulation protocol and the multiple
recorded responses. Therefore, PNG Rate method is suitable to
compare the Synaptic Information Efficacy of synapses displaying
various strength.
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Application to Place Fields
Some hippocampal cells have their firing rate modulated by
the animal position, discharging specifically at a spatial region
known as the place field of the cell (O’Keefe and Dostrovsky,
1971). Properly identifying these cells requires estimates of the
information contained in spikes about navigational features (i.e.,
position, speed, and head angle). The main metrics used to
estimate this type of information were proposed by Skaggs et al.
(1993) and are derivations from Shannon’s mutual information.
By definition, the experiment conditions are less controlled than
in our previous simulations, as the experimenter cannot be
certain that the animal will explore its full environment.

We generated a set of data mimicking an animal running
randomly in an enclosed environment (Figure 5A). This closed
environment was divided in 20 × 20 bins of space; the mock
animal was put at a random point in the environment and was
let to stay in for different durations. Animal speed and occupancy
were considered constant over time and of 1 s per bin. We
defined a simple “random walk” algorithm where at each time, the
next position of the animal was chosen randomly between the 8
adjacent space bins and its own bin. This gives a random pathway
exploring only some part of the environment, passing through the
same space bin multiple times, etc. At each step, white noise of 1
spike was emitted with a chance of 0.1. In addition we set a mock
place field, where until 20 spikes could be emitted following a
Gaussian-like centered in the middle of the environment (SD = 3
bins). This place field had an increasing chance to fire (from 0
to 1), in order to mimic place fields of increasing strengths. This
gave a crude but versatile place field simulation, where we could
not control the path of the mock animal (Figure 5A).

To estimate the spatial information contained in the firing rate
of each cell, we computed the Isec metric as described in Skaggs
et al. (1993), Souza et al. (2018), as it is equivalent to the Mutual
Information from the average firing rate (over trials) in the N
space bins using the following definition:

MI ≈ ISEC =

N∑
i=1

piλi log2
λi

λ
(10)

Where λi is the mean firing rate in the i-th space bin and pi
the occupancy ratio of the bin, while λ is the overall mean
firing rate of the cell. Isec measures information rate in bits per
second (Skaggs et al., 1993). This way of computing MI looks
extremely simple, but by using it the user makes four essential
assumptions: (i) The information is purely encoded by the spike
frequency; (ii) The position of the animal is the only parameter
which could influence the spike frequency; (iii) The binning in
time and space is ideal, and (iv) The spiking frequency of the
noise and the place field will be similar between animals [But
see Souza et al. (2018) for an attempt to correct for this bias].
By doing so, we can simplify our entropy and MI calculations to
a single probability space and obtain Eq. 9. The direct methods
(such as the quadratic extrapolations method) and the source
compression methods (such as the PNG Rate) are generic ways of
calculating entropy, without making any assumptions. However,
in these simulated data we know that the position will be the only

parameter affecting the spiking frequency, and thus the PNG Rate
method should give equivalent results to Eq. 9.

We ran 10 simulations of 10,000 steps for each value of place
field strength and calculated the MI according to (Eq. 9). We
obtained an increase of the MI with the strength of the place
field (Figure 5C, left), as expected. To use our PNG algorithm,
we simply traversed all the space bins with a pairing function,
accumulating the spike values if there was one (Figure 5B).
Briefly, we constructed a table with in x-axis the position bins of
the image and in y-axis the number of times the animal passed
into a given bin (Figure 5B, right). The value inside the case (i,j)
of the table is the number of spikes emitted by the cell at the
jth time the animal passed into the ith bin position (color from
blue to red in Figure 5B, right). This gave us a 2D image with a
20 × 20 = 440 maximum width and a height depending on the
number of times the mock animal went on the same position
(Figure 5B, right). There were “holes” as it never went through
every position the same amount of time, but we considered them
as empty with 0 spike (gray case in Figure 5B, middle). We
saved those images in both orientations, calculated the PNG rates
and subtracted one to the other. The obtained curve has similar
characteristics to the previously calculated MI (Figure 5C, right).

From this third test, we conclude that we can apply the same
algorithm to more complex data like Place Fields recordings.
Even if the data are not homogenous, a simple pairing transform
can map all 2D coordinates to unique 1D index, progressively
building a 2D image (Figure 5B). This image can then be saved
as PNG to estimate its Entropy Rate and Mutual Information.

Application to Histology
Another way to understand entropy is that it is a representation
of complexity of a signal (Cover and Thomas, 2006). Shannon
entropy is linear by design as the original work was about
coding messages through a communication line. However,
multiple attempts have been made to generalize it to 2D signals
(Larkin, 2016; Azami et al., 2019; Sparavigna, 2019) and for
example, Gavrilov et al. (2018) used shearlet transformation
(Brazhe, 2018) to characterize entropy and complexity in
two-dimensional pictures of astrocytic processes. The PNG
format has been used with the same idea (Wagstaff and
Corsetti, 2010) to evaluate the complexity of biogenic and
abiogenic stromatolites.

In the same spirit, we used the ddAC Neuron example from
the FIJI distribution of the ImageJ software (Schindelin et al.,
2012). This reconstructed drosophila neuron (Figure 6Aa) is a
classic example used for Sholl analysis (Sholl, 1953; Ferreira et al.,
2014)6. This analysis estimates the complexity of an arborization
by drawing concentric circles centered on the soma of the neuron
and counting the number of intersections between those circles
and the dendrites. The more intersections, the more complex
is the dendritic tree. We realized a cylindrical anamorphosis
centered on the soma of the ddAC neuron (Figure 6Ab) and
saved each column of this new rectangular image as PNG
files. As a result, the size of those files grew with the distance
from soma, reaching the same peak as a Sholl analysis made

6See https://imagej.net/Sholl_Analysis
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FIGURE 6 | Application to 2D data. (A) a: ddAC Neuron from Fiji examples. b: The same neuron after a circular anamorphosis centered on the soma. Note how the
complexity of the dendritic arbor changes versus distance from soma. Arrow: each column of pixel was saved as a single PNG file. c: file size of these columns as
PNG, showing the growth in complexity of the dendritic arborization (black line). As a comparison, we performed a Sholl analysis of the same image with default FIJI
parameters (gray line). d: the original image was tiled in 10 squares, and each square saved as a PNG file. The sizes of these files reveal the heterogeneity of the
dendritic arborization. (B) Left and Middle: examples of MAP2 stainings of Brandner and Withers neuronal cultures at 2 and 7 Days in vitro. Note the growth in
dendritic arborization through time. Right: Each image was saved into a PNG file, and the file size divided by the number of visible somas. This gives us a file size
normalized by the density of the culture. This value increases with the number of Days in-vitro, revealing the dendrite growth.

with default settings in Fiji (Figure 6Ac). Of course, it is
also possible to simply tile the original image in smaller PNG
files and save them independently. The size of these files will
give an idea of the complexity of the area covered by the
tile (Figure 6Ad).

In a final example, we used a group of images made by
Dieter Brandner and Ginger Withers available in the Cell
Image Library7. These images are under Creative Common
Attribution License and show the growth of neuronal cultures
from 2 to 7 days In-Vitro. They show two stainings, for

7http://cellimagelibrary.org/groups/3006

tubulin and MAP2. They are suitable to our needs as all the
images have the same dimensions and resolution. We kept
only the MAP2 channel as it reveals the dendrite morphology,
converted the images to 8-bits gray scale (256 gray levels)
and thresholded them to remove the background (Figure 6B,
left and middle). We then saved all the images to PNG,
measured the size of the files on the hard drive and divided
this number by the number of visible somas, in order to make
a quick normalization by the culture density. As expected,
this ratio File Size / Number of Cells increases with the
number of days in culture, revealing the dendrite growth
(Figure 6B, right).
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From this fourth test, we showed that we can use the PNG
format to estimate the entropy of 2D images as well, and this can
be used to estimate dendrite growth or local entropy of an image.

DISCUSSION

Entropy measurement can be a tool of choice in neuroscience,
as it applies to many different types of data; it can capture
non-linear interactions, and is model independent. However, an
accurate measure can be difficult as it is prone to a sampling
bias depending of the size of the recorded signal, its quantization
levels and its sampling. There are multiple ways to compensate
for it, but none of them trivial. In this article, we showed that
it is possible to estimate the entropy rate of neuroscience data
simply by compressing them in PNG format, measuring the
size of the file on the hard drive and dividing by the number
of pixels. We called this measure the PNG Rate. The principle
relies on the Source Coding Theorem specifying that one cannot
compress a signal more than its entropy rate multiplied by its
size. We showed first that the PNG Rate correlates linearly
with the calculated Entropy Rate of white-noise-like signals
(Figure 1). Then, we showed that the PNG Rate needs a minimal
amount of data points to converge to a stable value. This
allows comparing different files of different sizes, as long as we
reached this stable rate (Figure 2). Moreover, we showed that
this PNG Rate method is suitable to replace methods used in
previously published articles, such as the role of AP frequency
in Entropy Rate [(de Polavieja et al., 2005), Figures 3, 4] or the
impact of synaptic strength on the postsynaptic firing [(London
et al., 2002), Figure 4]. Finally, we showed that this method is
applicable to the detection of place cells or the estimation of the
complexity of neuronal arborization (Figures 5, 6).

Drawbacks of the PNG Method
The main drawback of this method is that the PNG Rate is
not the absolute value of the entropy rate of the signal. Even if
entropy bits and computer bytes do share similar names, in no
cases should we exchange one for the other. The PNG Rate is a
way to estimate the evolution of entropy, considering all other
parameters unchanged. As so, PNG files must be of the same
dynamic range and saved with the same software. A PNG file is
composed of a header, critical chunks and non-essential ancillary
chunks (see section “Materials and methods”). Different software
will save different data in the ancillary chunks, may filter the
signal before compressing it and thus will change the size of the
file, independently of the compressed signal.

Other works described how to normalize the compressed
chain in order to infer the original entropy value (Avinery
et al., 2019). But the experimenter has to keep in mind that
compression algorithms perform better with long data chains and
convergence to entropy rate is slow [see Benedetto et al. (2002),
Goodman (2002), Khmelev and Teahan (2003), Baronchelli
et al. (2005) for an extensive discussion about the benefits and
drawbacks of compression algorithms]. We show here that as
long as we have enough pixels in the generated images, the PNG
Rate will converge toward a stable value (Figures 2, 3), which

allows comparing recordings of different lengths. This PNG Rate
value is not the Entropy Rate itself, but methods able to make
comparisons between conditions are often required and this
method fits in this situation.

Advantages of the PNG Method
The main advantage of this method is that it relies on previously
developed compression algorithms that were already shown as
optimal (Huffman, 1952; Ziv and Lempel, 1977). Moreover, it
does not need any specialized software or any knowledge in
programming language, as the PNG format is ubiquitous in
informatics. For example, the ImageJ software is widely used in
neuroscience and can export data as PNG.

A second advantage is the speed of execution. As an example,
the information transfer rates calculation (Figure 4) took a bit
more than 2 h for the quadratic extrapolations method. Saving
the same signals in PNG to calculate the PNG Rates took less than
30 s on the same laptop computer.

As so, this method is extremely easy, quick, and does not need
any knowledge in mathematics for correcting the sampling bias.
It is interesting to note that an experimenter will often acquire
multiple recordings of the same protocol in order to infer proper
statistics. This means that most of the times no supplementary
experiments are needed to calculate the entropy rate of a signal,
or the information transfer rate between a stimulation protocol
and its recorded result.

In conclusion, we propose the PNG method as a quick-
and-easy way to estimate the entropy rate of a signal or the
information transfer rate between stimulation and recorded
signals. It does not give the exact value of entropy rate or
information transfer rate, but it is related to these values in
a linear way which allows the evaluation of their evolution in
different experimental conditions.

When to Use It?
As shown in this study, the PNG Rate method is simple and can
be used as a back-to-the-envelope way to measure any change
in entropy rate or information transfer rate through different
experimental conditions. It does not give the absolute value of
entropy, but often the experimenter wants a simple comparison
to a control situation. This method can be virtually used on
every kind of neuroscientific data. Here, we showed examples
of applications on patch-clamp data, detection of place cells by
extracellular spiking recordings or histological data. Moreover,
if the experimenter needs to compare multiple files of different
lengths, it is possible to calculate the PNG Rate in portions of the
signal with different sizes and find the minimal number of points
needed for the PNG Rate to stabilize. If the number of points in
all experimental conditions is above this minimal number, their
PNG Rates can be compared to estimate the variation of entropy
rate in the different conditions. Several works used compression
algorithms to estimate absolute value of entropy. However, we
do not think they apply to our simple method. The first method
needs to have access to the dictionary created by the compression
algorithm (Baronchelli et al., 2005). However, with the PNG
algorithm we do not have access to the dictionary itself. The
second method needs to first estimate the maximum entropy

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2021 | Volume 15 | Article 596443

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-596443 June 9, 2021 Time: 17:35 # 16

Zbili and Rama Entropy Estimation by PNG Size

possible by the model (Avinery et al., 2019), which is possible as
well but will need more conventional algorithm to be determined.

Developments
We see multiple ways to improve this method. First, we saved our
data as 8-bits PNG files, which limits the dynamic range of the
file to 256 values. However, it is possible to save PNG natively as
1, 4, 8, 16, and 24 bits range, thus greatly increasing the dynamic
range of the saved signal. Second, with some programming skills
it is possible to remove the header and ancillary chunks of the
PNG format, thus removing the size overhead (but the file will
be unreadable by standard softwares). Finally, one possible way
of improving the estimation of entropy rate would be to choose
a better compression algorithm. We choose the PNG format
as it is widely used by common softwares and it is based on
LZSS and Huffman algorithms, which have been proven optimal.
However, some algorithms may give a better compression rate
depending on the quality of the data. As an example, the Rice
compression algorithm was originally developed for the NASA
Voyager missions (Rice and Plaunt, 1971). It is suboptimal but is
better suited for noisy signals of low values.

In a more general direction, it is important to note that this
method works with any entropy-coding compression algorithm,
as long as they are loss-less. This is the case of GZip algorithms for
example, used in many compression softwares such as WinRAR,
PKZIP, ARJ, etc. . . It is thus not limited to pictures in PNG,
although this format is useful for rotating the file and estimating
the mutual information easily. Moreover, we apply these
algorithms to 2D images, when actually the algorithm linearizes
the data and works only in linear way on one dimension. There
are some attempts to generalize Shannon entropy to 2D space
(Larkin, 2016; Brazhe, 2018; Azami et al., 2019; Sparavigna, 2019),
but they are out of the scope of this article.
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