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a b s t r a c t 

Evidence accumulation clustering (EAC) is an ensemble clustering algorithm that can cluster data for arbitrary 

shapes and numbers of clusters. Here, we present a variant of EAC in which we aimed to better cluster data 

with a large number of features, many of which may be uninformative. Our new method builds on the existing 

EAC algorithm by populating the clustering ensemble with clusterings based on combinations of fewer features 

than the original dataset at a time. Our method also calls for prewhitening the recombined data and weighting 

the influence of each individual clustering by an estimate of its informativeness. We provide code of an example 

implementation of the algorithm in Matlab and demonstrate its effectiveness compared to ordinary evidence 

accumulation clustering with synthetic data. 

• The clustering ensemble is made by clustering on subset combinations of features from the data 
• The recombined data may be prewhitened 
• Evidence accumulation can be improved by weighting the evidence with a goodness-of-clustering measure 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

a r t i c l e i n f o 

Method name: Combinatorial evidence accumulation clustering 

Keywords: Ensemble clustering, k -means clustering, Combination clustering 

Article history: Received 24 October 2019; Accepted 3 May 2020; Available online 14 May 2020 

h

2

(

∗ Corresponding author. 

E-mail address: William.Wong1@monash.edu (W. Wong). 

ttps://doi.org/10.1016/j.mex.2020.100916 

215-0161/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. 

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.mex.2020.100916
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2020.100916&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:William.Wong1@monash.edu
https://doi.org/10.1016/j.mex.2020.100916
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 W. Wong and N. Tsuchiya / MethodsX 7 (2020) 100916 

 

 

w  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifications table 

Subject Area Computer Science 

More specific subject 

area 

Unsupervised machine learning 

Method name Combinatorial evidence accumulation clustering 

Name and reference of 

original method 

Evidence accumulation clustering: 

A.L.N. Fred, A.K. Jain, Combining Multiple Clusterings Using Evidence Accumulation, IEEE 

Trans. Pattern Anal. Mach. Intell. 27 (2005) 835–850. 

Resource availability 

Method details 

We developed a novel clustering method for a study [15] where we were faced with the problem

of clustering a set of data, composed of 54 observations of over 50,0 0 0 raw variables, in an

unsupervised manner. A smaller number of attributes (approx. 2,500) or “features” were extracted for 

each observation, but a majority of the features were still unlikely to be informative for clustering—

e will call these “dubious feature sets”. The lack of ground truth combined with the stipulation to

not disregard any of the features a priori , for reasons specific to our study, meant that there was

a high risk of producing clusters conditioned on the noise rather than on any underlying structure.

Our proposed clustering method, which we call combinatorial evidence accumulation clustering 

(or combination clustering for short in this article), is a variant of evidence accumulation clustering

(EAC) that attempts to mitigate the influence of dubious features in order to obtain better results in

unsupervised clustering. 

EAC is an algorithm for finding data clusters of arbitrary shapes and numbers [3] . It belongs to

the class of consensus, or ensemble, clustering algorithms [4 , 13] in that it combines the results of

multiple individual clusterings of the same data to produce a partitioning solution that can be more

accurate than those of the individuals. In EAC, an individual clustering is the result of applying some

clustering algorithm to the data with variation imparted on either the algorithm itself or the data

representation. Each of these individual clusterings are therefore considered pieces of evidence of 

how data are organised, which the EAC algorithm uses to determine the optimal clustering solution.

Here, we shall call the clusterings making up the evidence “sub-clusterings ” so as not to confuse

them for the ultimate clustering step of EAC, which we will call “evidence accumulation ”. In Fred &

Jain’s implementation, henceforth referred to as ordinary EAC , sub-clustering consisted of multiple, 

randomly-seeded runs of k -means clustering [7] . The evidence is combined and expressed in a

similarity matrix called the co-association matrix ( C), which counts the frequency of data points

pairwise occurring in the same sub-cluster in each piece of evidence. The co-association matrix is

then hierarchically clustered using the single- or average-linkage criterion, giving the final EAC result: 

this is the evidence accumulation step. 

To address the specific problem of clustering a data set with many dubious features, our

combination clustering method incorporated the following improvements to Fred & Jain’s [3] EAC 

method: 

a) Sub-clusterings are performed on subset combinations of features of data. 

b) Evidence is weighted by a goodness-of-clustering measure of the originating sub-clustering and 

by the inverse number of total sub-clusterings within its dimensionality. 

c) Data in each sub-clustering are prewhitened. 

In the next section, we explain the motivation behind these improvements using simple examples. 

Motivation 

The 1-dimensional case 

Given a data set with only one feature (or dimension, as we use here interchangeably),

improvement b) is the only applicable factor to consider. Both ordinary EAC and combination
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lustering produce a clustering ensemble composed of the results of other clusterings (i.e., sub-

lusterings). Let us take an ensemble to be composed of O number of k -means clusterings, with

ariation between them given by different parameters and/or initialisations of the clustering algorithm

s in Fred & Jain’s [3] original description. 

When sub-clustering n number of objects, we will represent the result of the lth sub-clustering as

n n × n similarity matrix, 

S l = ( s l ( i, j ) ) ∈ { 0 , 1 } n ×n 
, (1)

here S l signifies the entire matrix, and s l ( i, j ) (for i = 1 , . . . , n and j = 1 , . . . , n ) is the entry for object

air i, j in the i th row of the jth column. When there is a co-association between the i th and jth objects

ue to being sub-clustered together, the corresponding entries of the similarity matrix are given a

alue of 1 (i.e., s l ( i, j ) = 1) , and otherwise 0 when the objects do not co-associate. The result S l from

ub-clustering l constitutes one piece of evidence. The total number of sub-clusterings is given by O
thus, l = 1 , . . . , O). We obtain the clustering ensemble E as the set of all similarity matrices resulting

rom sub-clustering: 

E = { S 1 , . . . , S O } . (2)

In ordinary EAC, the co-association matrix C is produced by taking the average of the evidence

n E. With improvement b), we propose to weight each piece of evidence by a measure of its sub-

lustering’s goodness-of-clustering . The goodness-of-clustering for sub-clustering l shall be given by

 l . Thus, to implement improvement b), the co-association matrix entry at the i th row and jth column

ill be given by 

C ( i, j ) = 

1 
O 

O ∑ 

l=1 

g l s l ( i, j ) . (3)

We would expect that, compared to ordinary EAC, our weighted EAC should better cluster the

ata as long as g l reflects the true goodness-of-clustering. To understand how this might be the case,

onsider that some parameters or initialisations of sub-clustering may produce evidence from local

inima that are non-conducive to the optimal solution. For such cases, we would want to excise or

enalise the evidence depending on how poor it were to be. In other words, if we can estimate the

uality of the evidence, conceivably we can downweight poor-quality evidence to boost the quality of

he clustering ensemble. We illustrated this concept in Fig. 1 . 

The choice of method to measure goodness-of-clustering depends on the nature of the clustering

roblem, and is a discussion outside the scope of this paper. Here, we provisionally present a simple

ethod to measure goodness-of-clustering based on the averaging of silhouette values. The silhouette

alue for object i is defined by Rousseeuw [11] as 

s ( i ) = 

b ( i ) −a ( i ) 
max { b ( i ) , a ( i ) } , (4)

here a (i ) is the average dissimilarity (e.g., the Euclidean distance in feature space) of object i to all

ther members of its cluster, and b (i ) is the average dissimilarity of object i to all members of the

ext nearest cluster. s (i ) takes a value on the interval [ −1 , 1 ] , with higher values corresponding to

loser association with its own cluster, and negative values corresponding to closer association with

he other cluster. Thus, the value of s (i ) averaged over all objects i = 1 , . . . , n will be high when well-

eparated clusters exist and cluster memberships are correctly identified. It will be low when clusters

re poorly-separated, do not exist, or when cluster memberships are incorrectly assigned. 

We measure goodness-of-clustering by taking the mean of these silhouette values over all objects

f the data, indexed by i , and then applying a ramp function to the result (to ensure that sub-

lusterings with negative means do not contribute to evidence accumulation), as follows: 

g l = max 

{(
1 
n 

n ∑ 

i =1 

s l ( i ) 

)
, 0 

}
. (5)

ith g l and s l , we can now find co-association matrix C via Eq. 3 . Any clustering method may then

e applied to C for the evidence accumulation step: this will produce the algorithm’s final clustering

esult. 
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Fig. 1. Application of improvement b) in the 1-dimensional case. A set of data is illustrated as circles, whose coordinates along 

the real number line represent its value magnitudes for a single feature. In this example, two different sub-clusterings are 

produced due to using different initial parameters for the sub-clustering subroutine. The clusters are represented by groups of 

empty or filled circles. The sub-clustering on the left is an example of a relatively poor sub-clustering result, which is estimated 

by a goodness-of-clustering measure. The clustering ensemble, which is the collection of all sub-clusterings, may therefore be 

improved by weighting the contribution of individual sub-clusterings by their goodness-of-clustering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 2-dimensional case 

With data represented by two features, we can explain improvement a) of combination clustering. 

Let us first represent the set of all features in the data as F = { f 1 , f 2 } , where f m 

is one of

those features for m = 1 , 2 . Improvement a) permits sub-clusterings to be performed on subset

combinations of features: that is, on f 1 or f 2 alone, or both f 1 and f 2 . All possible subsets are given

by the power set of F , ignoring the null set; in this case, they are P 

+ ( F ) = { ( f 1 ) , ( f 2 ) , ( f 1 , f 2 ) } . 
To understand the motivation behind improvement a), consider a data set with two clusters that

are well separated in the first dimension ( f 1 ), but randomly mixed in the second ( f 2 ). The second

dimension is essentially noise, which adds variance to the data. Since the expected distance separating

the clusters in f 1 is not changed from the addition of f 2 , the signal-to-noise ratio decreases overall

in ( f 1 , f 2 ) . For ordinary EAC, whose sub-clusterings are all performed within the whole feature space,

clustering effectiveness is thereby reduced. In contrast, combination clustering may collect evidence 

based on subset combinations of the features, which includes the more informative ( f 1 ) combination.

This information boost can then be leveraged by the weighting procedure proposed earlier, which by a

goodness-of-clustering metric, effectively selects for sub-clusterings with combinations of informative 

features and against those with uninformative features. In our hypothetical 2-D example, we expect 

the weighting procedure to automatically put more weight on sub-clusterings using only ( f 1 ) than

those using ( f 1 , f 2 ) , which may only be partly informative. We furthermore expect it to put much

less weight on sub-clusterings using only ( f 2 ) , as they would only produce spurious, uninformative

sub-clusters associated with an ideally low goodness-of-clustering measure. We illustrate this concept 

in Fig. 2 . 

Recall that the possible combinations of F are { ( f 1 ) , ( f 2 ) , ( f 1 , f 2 ) } . You will notice that there are

twice as many combinations of one feature than there are of two. Looking beyond the 2-dimensional

case, as the number of features in F increases, the number of possible combinations of features grows

factorially. Among n candidate features, the number of ways to choose k features without repetition

is given by the binomial coefficient ( 
n 

k 
) = 

n ! 
k !( n −k )! 

, which is maximal when k approaches half of n .

Thus, there can be very large imbalances in the number of sub-clusters for each dimensionality of
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Fig. 2. Application of improvement a) in the 2-dimensional case. A set of data is illustrated as circles in 2-D space. In the 

application of improvement a), Feature 1, Feature 2, and Feature (1, 2) are used separately by different sub-clusterings. In this 

example, Feature 1 is informative of the underlying groups in the data while Feature 2 is uninformative. Concordantly, the 

sub-clustering results from only Feature 1 tend to reflect the underlying groups, while results from only Feature 2 tend to be 

uninformative. Results from both features tend to be intermediately informative. This improvement contrasts with ordinary EAC 

in which Feature (1, 2) would be used by all sub-clusterings. As per improvement b) (see Fig. 1 ), the poor sub-clustering result 

based on Feature 2 (middle sub-clustering) produces a relatively low goodness-of-clustering measure, which correspondingly 

downweights the sub-clustering’s contribution to the clustering ensemble. Similarly, the sub-clustering based on Feature 1 (left 

sub-clustering) has a better goodness-of-clustering measure than the other two’s, hence it has more influence in the clustering 

ensemble. 
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eatures if they are exhaustively sampled. We can mitigate this problem by proportionately decreasing

he contribution of sub-clusterings by the total number of sub-clusterings that has its order of

imensionality—this becomes part of the weighting procedure. 

To be methodical, we shall sort the sub-clusterings into sets according to the number of features

hey use: that is, their order of dimensionality . Say that our clustering ensemble is composed of all

ossible combinations of two features: { ( f 1 ) , ( f 2 ) , ( f 1 , f 2 ) } . We should gr oup t og ether ( f 1 ) and ( f 2 )

ue to their being combinations of one feature: making the set F 1 = { ( f 1 ) , ( f 2 ) } . We call these “first-

rder combinations” of features. Combination ( f 1 , f 2 ) would be called a “second-order combination”,

nd should be put in a separate set as its only member: F 2 = { ( f 1 , f 2 ) } . More generally, we would say
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that all k -order combinations used for sub-clustering belong to set F k , where 

F k ⊆ { f ∈ p + ( F ) | | f | = k };
identically F k ⊆

(
F 

k 

)
. (6) 

Thus, when we denote the total number of combinations O k = | F k | , we may balance the number

of sub-clusterings in proportion to the total number of sub-clusterings that has its order of

dimensionality by weighting the contribution of all k -order sub-clusterings by 1 / O k . 

Sub-clustering using the k-means algorithm with prewhitening 

Fred & Jain [3] explored the use of k -means clustering for sub-clustering in EAC, and provided

recommendations on the number of sub-clusterings and choice of k to achieve better convergence. We

make an additional recommendation to prewhiten the data for each combination of features before 

sub-clustering. 

k -means clustering achieves better results when clusters are described by multiple features that 

are uncorrelated with each other. However, the empirical data that we aimed to cluster were usually

correlated among its features. Prewhitening data is known to result in better clustering with the k -

means algorithm [5 , 8] , as it effectively reveals any data relationships arising from the combination of

features that is otherwise obscured by their strong correlation. We applied it in our method for each

sub-clustering using zero-phase component analysis [1] . This method is also equivalent to performing

k -means clustering using Mahalanobis distances [6] . We provide experimental results demonstrating 

the effectiveness of prewhitening later in this paper. 

Description 

Now, we describe our method for the general case of data with any number of features. Given a

data set of n objects with N number of features, the set of all available features is 

F = { f 1 , . . . , f N } . (7) 

We construct a clustering ensemble ( E) by sub-clustering on the data in many k -order

combinations of F (for various chosen k ). Among all possible k -order combinations of features, we

may use a subset of them—numbering O k —which forms a set F k ( Eq. 6 ). For each combination, we

prewhiten the data before performing sub-clustering on them. Out of practicality, we may consider 

only feature combinations of chosen order N 

′ and lower (i.e., k = 1 , . . . , N 

′ ), where N 

′ < N if N is

infeasibly large. 

Each sub-clustering result, or evidence, is encoded as an n × n distance matrix, 

S kl = ( s kl ( i, j ) ) ∈ { 0 , 1 } n ×n 
, (8) 

where l = 1 , . . . , O k (i.e., the lth sub-clustering of the k th order of feature combinations) for i = 1 , . . . , n

and j = 1 , . . . , n (i.e., the co-association between objects i and j of the data: which is 1 if they belong

to the same sub-cluster, and 0 if not). The set of all evidence is the clustering ensemble 

E = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

S 1 , 1 , S 1 , 2 , . . . , S 1 , O 1 , 
S 2 , 1 , S 2 , 2 , . . . , S 2 , O 2 , 

. 

. 

. 

S N ′ , 1 , S N ′ , 2 , . . . , S N ′ , O 
N ′ 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

. (9) 

Note that E is not a matrix, since O 1 , . . . , O N ′ are not necessarily the same. 

Next, we measure the goodness-of-clustering of each sub-clustering in E by its ramped average 

silhouette value, 

g kl = max 

{(
1 
n 

n ∑ 

i =1 

s kl ( i ) 

)
, 0 

}
, (10) 
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t corresponding indices k, l. 

Finally, we find the co-association matrix as the average of all evidence in E, weighted by their

oodness-of-clustering and the inverse of the number of sub-clusterings of the same order. 

C ( i, j ) = 

1 
N ′ 

N ′ ∑ 

k =1 

1 
O k 

O k ∑ 

l=1 

g kl s kl ( i, j ) (11)

n implementation 

We provide code of an example implementation of combination clustering as a function for

he Matlab software platform [14] in Table 1 . A summary overview of the algorithm is shown

n Fig. 3 with some omissions. Notably, our implementation declares variables for all selected

ombinations prior to sub-clustering, preallocates memory for ensemble-related variables (e.g., E and

 ), and parallelises the sub-clustering loop for efficiency. 

The function, CombClust , takes as arguments X , k , and combinations . Argument X should be a

atrix describing the data, consisting of n objects with N features, with dimensions n × N . Argument

 should be the number of clusters for the desired final clustering result. Argument combinations is

 logical matrix, with N columns and O rows, specifying the combinations of features used by each

ub-clustering. O is the total number of sub-clusterings over the whole ensemble. The N columns
able 1 

xample Matlab implementation of combination clustering. The subfunction “Whiten” by original author Colorado Reed is 

ncluded. 

( continued on next page ) 
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Table 1 ( continued ) 

( continued on next page ) 
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Table 1 ( continued ) 

( continued on next page ) 
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Table 1 ( continued ) 

( continued on next page ) 
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Table 1 ( continued ) 

( continued on next page ) 
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Table 1 ( continued ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

correspond to the N features extracted from data X . Each row of this matrix is a logical vector that

specifies which features of X constitute a combination to be used for one sub-clustering. For example,

a first-order combination of features would be specified by a row containing one entry that is True ,

and all other entries that are False . 

CombClust takes three further arguments: Boolean flags doGood , doWhiten , and doWeightOrder . 

They respectively control whether to perform weighting by goodness-of-clustering, prewhitening, and 

weighting by the number of sub-clusterings within each order of dimensionality of their combination 

of features. 

CombClust returns variables clusters , C , E , g , and Ns . Variable clusters is a vector of size n that

assigns integer labels to each object representing the final clustering result of the algorithm. C is the

final co-association matrix (sized n × n ) resulting from evidence accumulation and weighting. Ns is a

vector listing all orders of dimensionalities used in the clustering ensemble; let us use N ’ to denote

its length. E contains the evidence resulting from the ensemble of all sub-clusterings. It is an N ’ × 1

cell array where the lth cell corresponds to an order of dimensionality given by Ns ( l) and contains the

evidence from all sub-clusterings of that order. This evidence is conditioned as an n × n ×O l logical

array, formed as the concatenation of all applicable n × n distance matrices of logical type in the third

dimension. Variable g is also an N ’ × 1 cell array, containing the goodness-of-clustering values from

the ensemble for each order of dimensionality, conditioned as vectors. 

The sub-clustering routine uses Matlab’s kmeans function for the k -means clustering with initial

seeds randomly chosen from the sample. The number of sub-clusters k is also chosen at random

between the user-given k and user-given k + 1; according to Fred & Jain [3] , such variation increased

the robustness of the ensemble solution. 

We also set a default behaviour for combination selection based on exhaustive/random selection. 

This particular strategy was used because sub-clustering of all possible combinations of features is 

computationally infeasible for large numbers of features. Thus, the strategy selected all possible k -

order combinations for tractable values of k , and a limited number of combinations for intractable

values of k . To prevent a systematic bias in the latter case, those combinations were selected

randomly. By default, all possible combinations of features would be selected up to and including the

9 th order, with a maximum of 1,0 0 0 combinations per order and a minimum of 50. For orders whereof

the number of possible combinations exceeds this limit, 1,0 0 0 would be selected randomly. For those

whereof the number subceeds the limit, additional combinations would be selected at random to 

make up 50. For comparison, Fred & Jain [3] reported being able to achieve convergent results for

simple data sets using 50 sub-clusterings, and for complex data sets using 200 sub-clusterings. 

In the evidence accumulation step, the co-association matrix is converted to a distance matrix 

and clustered using hierarchical clustering with the average linkage criterion [12] until k clusters are

produced. 

Experimental results 

We tested the effectiveness of our proposed method in four experiments. In the first experiment,

we compared the clustering performance of combination clustering to ordinary EAC; in the 

second experiment, we made a broader comparison between the two algorithms for a range of
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Fig. 3. Conceptual flowchart of a combination clustering algorithm. Each pass through the primary loop adds another sub- 

cluster to the ensemble (E) with a corresponding goodness-of-clustering measure (g). This loop may be paralellised. 
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ignal-to-noise (SNR) distributions among features of the data; in the third experiment, we contrasted

he 

erformance of combination clustering with and without the prewhitening procedure; and in

he fourth experiment, we contrasted the performance of combination clustering with and without

he evidence weighting factors. 

Our experiments were performed with synthetic data, generated to represent data sets of varying

umbers of features and SNR distributions. We used the Matlab implementation of combination

lustering, given in Table 1 , and its default parameters throughout the experiments unless stated

therwise. Clustering performance was measured as normalised mutual information—also used in Fred

 Jain [3] —but between the clustered groups and the true groups. Its formula is given in Eq. 4 of their

aper. 

For the first experiment, we compared the performance of combination clustering to ordinary

AC with respect to the number of features of the data set being clustered. We wrote a Matlab

mplemention for ordinary EAC based on Fred & Jain’s [3] description, whose evidence also derived

rom k -means clustering. Here, the data were sub-clustered verbatim over 1,0 0 0 runs with randomised

eeds; the values of k were chosen between the user-given k and user-given k + 1, the same as in
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Fig. 4. Comparison of the performance between the original EAC and combination clustering. As the number of noisy features 

increased, both the original method (red squares, dotted line) and our method (blue circles, solid line) degraded in performance, 

measured by normalised mutual information. Our proposed method performed significantly better than the old method for 

numbers of features in the range 3–50 (one-tailed sign tests, W ( 10 ) ≥ 9 , p adj < . 024 , Benjamini–Hochberg correction). Error 

bars are bootstrapped 95% confidence intervals; curves are fitted generalised logistic functions [10] . 

 

 

 

 

 

 

 

 

 

 

 

 

our combination clustering implementation. The evidence accumulation step was also identical. The 

total number of sub-clusterings performed is about an order of magnitude larger for the combination

clustering than ordinary EAC. This difference was also reflected in their computational times (see

supplementary material Table S2). In our environment, 1 the typical computational times for data 

of 50 objects with 300 features was 0.5 seconds for ordinary EAC and 6.7 seconds for combination

clustering. 

Data were generated as consisting of one informative feature that separated two underlying groups 

of objects (each n = 25 ) with a 10:1 SNR, and the remaining features having zero SNR. All the

features were normalised to have zero mean and variance of one; noise components were generated

as independent Gaussian processes with zero covariance between the components. We tested the 

performance of both clustering algorithms over 11 feature set sizes ranging from 1 to 2,0 0 0—each

randomly generated 10 times. We plot the average of their performance in Fig. 4 . The curves here and

throughout the experiments were generalised logistic functions, fitted using the trust-region method 

[9] , with a fixed upper asymptote of 1, and where the independent variable was the number of

features (log-transformed). 

As may be expected, clustering performance generally decreased with increasing number of 

features carrying no clusterable information. The performance of our proposed method outperformed 

ordinary EAC over a larger range of set sizes: statistically significantly over the range 3–50 features

(one-tailed, paired sample sign tests, W ( 10 ) ≥ 9 , p adj < . 024 , Benjamini–Hochberg correction). 

In the next experiment, we repeated our initial experiment with differently generated data sets. 

Here, we generated data sets with a distribution of SNRs among the features following Zipf’s law.

Zipf’s law originally related the frequency of words in a corpus of natural language as inversely

proportional to its rank, but has since been found to describe many other real-world observations

[2 , 16] . Its discrete probability distribution may be given by 

Z ( k ; s, N ) = 

k −s ∑ N ( n −s ) 
, (12) 
n =1 

1 A PC workstation with one CPU (Intel Core i7-6700, 4 physical or 8 logical cores at 3.40 GHz) and 16 GB of RAM, running 

with MATLAB (R2018a Update 4) with a parallel pool of 8 local workers in the Windows 10 Enterprise (64-bit) operating system. 

One GPU was installed but not used. 



W. Wong and N. Tsuchiya / MethodsX 7 (2020) 100916 15 

Table 2 

Combination clustering advantage over ordinary EAC for varying Zipf exponent ( s ). For 

each tested s , the proportion of data sets that resulted in higher normalised mutual 

information by the combination clustering algorithm is given, after collapsing over all 

feature set sizes and discarding tied performances. 

s Proportion better (%) Sign test statistic (paired sample, two-tailed) p

0 52 W ( 50 ) = 26 .888 

1 49 W ( 49 ) = 24 1 

2 60 W ( 60 ) = 36 .155 

3 66 W ( 73 ) = 48 .010 ∗

4 65 W ( 81 ) = 53 .007 ∗

∞ 64 W ( 87 ) = 56 .010 ∗
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here, in this context, k is the SNR rank of the features, N is the total number of features, and the

erm of the denominator is a normalisation factor. Parameter s controls the steepness of the SNR

istribution as a function of k . When s = 0 , all features are equally informative. When s = ∞ , only 1

eature is informative, equivalent to the situation in the first experiment. Using this probability mass

unction, we fixed the feature-wise SNR distribution of our generated data sets to Zipfian distributions

ith varied s and N. 

Like in the first exerpiment, we explored 11 values of N ranging from 1 to 2,0 0 0. In addition, we

lso systematically varied s = 0 , 1 , 2 , 3 , 4 , ∞ . Thus, 66 parameter combinations were used to generate

he data sets. 

The results of the second experiment are summarised in Fig. 5 . Note that the first experiment’s

esults are replotted in the curves for where s = ∞ . In general, we observed that combination

lustering performance was superior to ordinary EAC’s for larger numbers of features (statistics given

n Table 2 ), and this advantage diminishes for smaller s . These results are consistent with our intention

f making EAC more robust to data that have many uninformative features. 

We additionally observed that the rate of clustering failure with respect to the number of features

as slower in combination clustering compared to ordinary EAC, as signified by the shallower slope

f the fitted curves belonging to the combination clustering condition. We numerically computed and

ompared the maximum slopes of each curve. In this way, we found that all six slopes of the tested

 parameters, except for s = 4 , were shallower for combination clustering than ordinary EAC, and the

ean slope difference was statistically significant (one-tailed, paired sample t -test, t(5) = 2 . 14 , p =
 043 ). This suggested that some residual clustering of the true underlying groups was exhibited by

ombination clustering at numbers of features where ordinary EAC had practically reached asymptotic

inimum (e.g., at 500 features for s = 0 , Fig. 5 ). 

For the third experiment, within the combination clustering method, we looked at the effect of

rewhitening the recombined data of each sub-clustering. In the previous experiments, because there

as no noise covariance between the feautres, we would not expect prewhitening have much effect

n clustering performance (see supplementary material Figure S1). Therefore, for this experiment, we

enerated data sets that do have correlated noise between the features. 

We controlled the covariance in our data sets with a five-step procedure. First, we generated N

ndependent noise components like in previous experiments. Second, we scaled the relative variances

f the noise components to follow a Zipfian distribution ( s = 1 ). At this step, the resulting noise

ovariance matrix would have diagonal values given by Z( k ; 1 , N ) , and zeroes in all other entries.

hird, we applied a random rotation to the matrix to introduce non-zero covariance between the

eatures. Fourth, we normalised their means to zero and variances to one. Fifth, we added the signal

omponent as in the first experiment, and then normalized this final set of features. 

We compared the clustering performance of combination clustering over the same range of feature

et sizes as previous experiments, with and without prewhitening, by setting the doWhiten flag of

ur method implementation accordingly. We randomly generated 30 sets of each number of features

nstead of 10 (like in the previous experiments). We plot the average of their clustering performance

n Fig. 6 . 
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Fig. 5. The performance of combination clustering and ordinary EAC for various SNR distributions via the Zipf exponent ( s ). The 

results are identical to Fig. 4 where s = ∞ . Error bars are bootstrapped 95% confidence intervals; curves are fitted generalised 

logistic functions [10] . The bottom panel plots the number of features where the fitted curves reached 0.5 normalised mutual 

information, for each clustering algorithm and Zipf exponent. 
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Fig. 6. Effect of prewhitening within combination clustering for dubious data sets with correlated noise. Prewhitening generally 

improved clustering performance; this was statistically significant for feature sizes 2–10 (one-tailed, paired sample sign tests, 

p adj ≤ . 014 , Benjamini–Hochberg correction). 
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For dubious feature sets with correlated noise, we found that prewhitening of the sub-clustering

ata did produce generally improved clustering performance, most notably for feature set sizes of 2–

0. The difference was statistically significant for sizes of 2–10 features (one-tailed, paired sample sign

ests, p adj ≤ . 014 , Benjamini–Hochberg correction). 

For our fourth and final experiment, we examined the effect of evidence weighting on clustering

erformance. We generated data sets in the way that we did in the first experiment, but randomly

enerated 20 sets of each number of features rather than 10. Through the setting of the doGood

nd doWeightOrder flags of our combination clustering implementation, we clustered over four

onditions: with no weighting (“none”), with weighting by “order of dimensionality”, with weighting

y “goodness-of-clustering”, and with weighting by both order of dimensionality and goodness-of-

lustering (“both”). We plot the average of their resulting performance in Fig. 7 . 

We observed a small difference between the weighting conditions after factoring out feature

et size (Friedman test, χ2 (3) = 10 . 1 , p = . 018 ). The largest apparent difference was seen for data

ets of 10 features (Friedman test, χ2 (3) = 28 . 7 , p < . 001 ). In both views, the “none” condition

ad the lowest median performance; and two conditions, “goodness-of-clustering” and “both”, had

igher median performances than the remaining conditions, “none” and “order of dimensionality”.

hese results suggest that weighting by goodness-of-clustering improves clustering performance, and

eighting by order of dimensionality neither improves nor worsens the performance—at least for

hese generated data sets. Given our original reasoning for weighting by order of dimensionality, we

uspect it may still be useful for other types of data sets; however, this matter shall have to be left

or a future investigation. 

inal remarks 

We have proposed, and given an implementation for, a variant of EAC that was designed to handle

ubious data consisting of many features that are uninformative to clustering. Our experiments have

hown that our proposed method is superior to ordinary EAC for a range of data set characteristics—

articularly when informative components are concentrated in only a few of the features, and for

arger feature set sizes. 
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Fig. 7. Effect of evidence weighting on clustering performance. Weighting by “goodness-of-clustering” and “both” resulted in better clustering performance most notably for data sets 

consisting of 10 features (Friedman test, χ2 (3) = 28 . 7 , p < . 001 ). The right panel plots the number of features where the fitted curves reached 0.5 normalised mutual information, for 

each weighting condition. 
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