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Abstract

Background: Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen
dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it
was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-
1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed
this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with
cell death.

Methodology/Principal Findings: In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using
LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also
demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since
NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC),
inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in
NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC.
Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells
expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited.

Conclusions/Significance: Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS
levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR
inhibition.
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Introduction

Prostatic carcinoma is one of the most common male cancers.

Prostate cells growth is regulated by hormones, growth factors and

their respective receptors. Among the most frequent group of

receptors implicated in human cancers is the ErbB subfamily of

receptor tyrosine kinases [1,2,3]. This family includes four

receptors ErbB-1-ErbB-4. Whereas ErbB-1 receptor (known as

epidermal growth factor receptor, EGFR), is activated by EGF

and EGF-like ligands, ErbB-3 and ErbB-4 receptors are activated

by NRG/neuregulin isoforms and ErbB-2 receptor has no known

ligand [4]. These receptors are expressed in the prostate

epithelium, whereas, ErbB-1 ligands are expressed in the stroma

and NRGs are expressed in the stroma and in the basal and

secretory epithelium [5].

Activation of ErbB-1 signaling by EGF and EGF-like growth

factors plays an important role in prostate cancer cell proliferation

and addition of EGF to cultures of prostate cancer cells stimulates

their growth [6]. Moreover, ErbB-2 overexpression is a common

event that appears to confer a selective advantage to several types

of carcinomas including prostate cancer [3,7]. Normally, ErbB-2 is

expressed in prostate epithelial cells [7,8]. Higher levels of ErbB-2

as compared to normal tissues were observed in prostatic tumors

[9,10]. In addition, overexpression of ErbB-2 and ErbB-3 has been

implicated in the neoplastic transformation of prostate cancer [11].

Although the exact role of these oncogenes and growth factors in

prostate carcinoma is still unclear, overexpression of ErbB-1 and

ErbB-2 has been related to poor prognosis and distant metastasis

[12].

Autophagy, a process of regulated turnover of cellular

constituents, is important for normal growth control but may be

defective in diseases [13,14]. Under limited nutrients or growth

factors conditions, this process is essential to maintain energy

production for cell survival [15]. Autophagy can also serve as a

mechanism by which cells rid themselves from defective organelles

and recycle proteins [16]. On the other hand, autophagy can lead

to non-apoptotic type of cell death (type II cell death) playing a

role in developmental cell death and death from toxic stimuli [17].
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The formation of autophagosomes is controlled by several atg

proteins. Atg8 protein (the human homolog is MAP-LC3) is

associated with the autophagosomal membrane and serves as a

marker for autophagosome formation [18]. Formation of the

autophagosome also requires class III phosphatidyl inositol 3-

kinase (PI3K) [19]. Autophagy mediated by PI3K depends on

interaction of the latter with atg6 protein, of which Beclin 1 is the

human homolog [20]. Beclin 1 was shown to act as a tumor

suppressor gene by controlling the process of autophagy [21]. Its

interaction with the anti-apoptotic protein Bcl-2 [22] inhibits

autophagy [23]. Down-regulation of Bcl-2 can apparently promote

autophagy [24], suggesting that Beclin 1-mediated autophagy

might be inhibited by its interaction with Bcl-2. More recently,

several studies identified the Bcl-2 interacting domain in Beclin 1

(a BH3 domain) [25,26,27].

Previous studies demonstrated that NRG (ErbB3 and ErbB4

ligand) inhibits growth of the androgen dependent LNCaP

prostate cancer cells when cultured in complete medium [28]

while in the absence of androgen, NRG induced death of LNCaP

cells [29]. Interestingly, PI3K inhibitor (3-methyladenine) that also

inhibits autophagy, inhibited NRG-induced cell death, suggesting

that NRG may induce autophagic cell death in these cells [29]. In

the present study, we addressed the hypothesis that NRG mediates

autophagy in LNCaP cells and studied the signaling pathways that

mediate NRG induced autophagy and cell death. By using LC3 as

a marker, we demonstrate that NRG increases LC3-II levels.

However, the levels of p62/SQSTM1 protein, that bind LC3 and

is degraded by autophagy [30], were not reduced by NRG

treatment, indicating that autophagy induced by NRG is

incomplete.

We also demonstrate that inhibition of reactive oxygen species

(ROS) by N-acetylcysteine (NAC) inhibits NRG-mediated autoph-

agy and cell death. Our results indicate that NRG activates class I

PI3K, Akt, mTOR and pS6K pathway, a known autophagy

inhibitory pathway, which is not inhibited by NAC. In addition,

we demonstrate that NRG induces JNK activation, which is

inhibited by NAC. Moreover, JNK inhibitor, Beclin 1 silencing

and Bcl-2 overexpression, inhibited NRG-induced autophagy and

cell death. Thus, we propose a model by which NRG-induced

autophagy and cell death of LNCaP cells involve Beclin 1 and

JNK signaling pathways and is independent of PI3K/Akt/mTOR

signaling pathway inhibition.

Results

NRG Induces Autophagy, which is Inhibited by 3-
methyladenine (3-MA) in LNCaP Cells

LNCaP is an androgen-responsive prostate carcinoma cell line

that expresses the ErbB receptors [29]. Previously, we demon-

strated that NRG induces cell death that was inhibited by 3-MA, a

PI3K inhibitor [29], and is caspase independent (Not shown and

[29]). It was also demonstrated that NRG induces morphological

changes in LNCaP cells that were inhibited by 3-MA (Video S1

and [29]). In the present study, we analyzed the effect of NRG on

autophagy and cell death of LNCaP cells grown without androgen

mimetic. In order to determine autophagy induction, we used LC3

protein as a marker. As shown in Figure 1A, LNCaP cells treated

with NRG for 14 h and 24 h, exhibited enhanced conversion of

LC3-I to LC3-II, which was inhibited by 3-MA, indicating that

indeed NRG induces autophagy in LNCaP cells. To further

demonstrate autophagy induction, we used LNCaP cells stably

expressing GFP-LC3 expression vector. As shown in Figure 1B,

NRG induced enhanced autophagosome formation as reflected by

enhanced punctuated staining of GFP-LC3. As a positive control,

cells were treated with rapamycin, which also induced autophagy

in LNCaP cells (Figure 1B). Thus, LNCaP cells respond to NRG

by increased autophagy induction. To further study autophagy

induced by NRG, we examined the expression level of p62/

SQSTM1. The p62/SQSTM1 protein binds LC3-II and is

degraded by autophagy [30]. Surprisingly, NRG treatment did not

enhance p62 degradation indicating that autophagy induced by

NRG may be incomplete. As a control, cells were treated with

Earle’s balanced salt solution (EBSS) and the levels of LC3-II and

p62 were determined by Immunoblot (Figure S1). As shown,

EBSS induced LC3-II elevation and p62 degradation as expected.

Of note, 3-MA treatment reduced LC3-II levels in NRG treated

cells as well as p62 levels in the absence of NRG. The explanation

for these results are yet unknown.

NRG-induced Autophagy is Incomplete
NRG treatment induces autophagy but also leads to an increase

in p62 levels, indicating that the autophagy induced by NRG is

incomplete (Figure 1). To further confirm these results, LNCaP

cells stably expressing LC3-GFP fusion protein were either treated

with NRG for 24 h or incubated with EBSS medium for several

hours. Cell lysates were immunoblotted with anti-GFP antibody to

detect the levels of GFP-tagged LC3-I and LC3-II. As shown in

figure 2A, both EBSS and NRG induce autophagy, as judged by

the increase of LC3-II-GFP levels compared to the untreated cells.

However, in cells incubated with EBSS, LC3-II-GFP levels

decreases over time, while in cells treated with NRG the levels

of LC3-II-GFP are relatively high even after 24 h incubation.

Furthermore, in the presence of bafilomycin-A1 (inhibitor of

autophagosome-lysosome fusion) the accumulation of LC3-II-GFP

is significantly higher in the EBSS treated cells compared to NRG

treated cells (Figure 2B). Taken together, these finding indicate

that NRG-induced autophagy is incomplete.

NRG-induced Autophagy and Cell Death of LNCaP Cells is
Inhibited by Reduction of Reactive Oxygen Species (ROS)
Levels

It was previously demonstrated that autophagy induction

depends on the formation and accumulation of ROS

[23,31,32,33]. Therefore, to characterize the effect of ROS on

NRG-mediated autophagy and cell death, LNCaP cells were

stimulated with NRG in the presence or in the absence of the

general anti-oxidant N-acetylcysteine (NAC) [34], and LC3 and

p62 levels were determined by immunoblot (Fig. 3A). Pre-

incubation with NAC completely inhibited NRG-induced LC3-

II elevation, indicating that NRG-induced autophagy is ROS-

dependent. Next, we examined whether NAC can protect from

NRG-induced cell death. LNCaP cells were pre-treated with NAC

with and without NRG treatment, and cell viability was

determined using the methylene blue staining assay. As demon-

strated in Figure 3B, the presence of NAC prevented the decrease

in cell viability induced by NRG. Two additional methods for

detection of cell death (Hoecsht dye exclusion assay and flow

cytometry) further supported these results. NRG induced en-

hanced cell death, as evident by the increase in sub-G1 population

(Figure 3C) or by the high percentage of Hoecsht-positive cells

(Figure 3D). This cell death was markedly inhibited by NAC.

Furthermore, NAC treatment inhibited NRG-induced morpho-

logical change (S5). Hence, our findings clearly demonstrate that

NAC inhibits the LC3-II accumulation, cell death and morpho-

logical changes induced by NRG in LNCaP cells.

NRG-Induced Autophagy
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Figure 1. Neuregulin induces autophagy in LNCaP cells. (A) LNCaP cells were treated with 100 ng/ml neuregulin (NRG) in the presence or in
the absence of 10 mM 3-methyladenine (3-MA) for the indicated time period. Whole cell lysates were prepared and subjected to an immunoblot

NRG-Induced Autophagy
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analysis with anti-LC3 and anti-p62 antibodies. Upper panel, representative results. Lower panel, densitometric analysis is presented as fold induction
over the control untreated cells (n = 3; means 6 S.D; *p,0.05). (B) LNCaP cells stably expressing LC3-GFP were treated with 50 nM rapamycin for
overnight or with 100 ng/ml NRG for 5 h. The cells were fixed with 4% paraformaldehyde and nuclei were stained with bisdenzimide (Hoecsht
33258). Following fixation and staining, the cells were photographed using Nikon optical fluorescence microscope Model TE-2000S
(606magnification). Upper panel, representative images. Lower panel, autophagy was quantified by counting the number LC3 dots per cell using
the ImageJ software. The result shown is representative of two independent experiments. 70–80 cells were analyzed per treatment; data presented as
mean 6 S.D (*p,0.05).
doi:10.1371/journal.pone.0036828.g001

Figure 2. NRG-induced autophagy is incomplete compared to starvation-induced autophagy. (A) LNCaP cells stably expressing LC3-GFP
were treated with 100 ng/ml NRG for 24 h or incubated with EBSS medium for the indicated time periods. Whole cell lysates were prepared and
subjected to an immunoblot analysis with anti-GFP antibody. (B) LNCaP cells stably expressing LC3-GFP were treated with 100 ng/ml NRG for 24 h or
incubated with EBSS medium for 2 and 4 h. Treatments were performed in the presence or absence of 10 nM bafilomycin-A1 (Bafilo-A1). Whole cell
lysates were prepared and subjected to an immunoblot analysis with anti-GFP antibody. Upper panel, representative blot. Lower panel, densitometric
analysis is presented as fold induction over the control untreated cells (left graph; *, p,0.05 and **, p,0.02 compared with the control) or as
difference between the measured values with or without 10 nM Bafilo-A1 in each group (right graph; *, p,0.05 and **, p,0.02 compared with NRG
tretment) (n = 3; means 6 S.D).
doi:10.1371/journal.pone.0036828.g002

NRG-Induced Autophagy
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Figure 3. N-acetylecysteine inhibits NRG-induced autophagy and cell death. (A) LNCaP cells were treated with 100 ng/ml NRG with or
without 10 mM N-acetylcysteine (NAC) for 24 h. Whole cell lysates were prepared and subjected to an immunoblot analysis with anti-LC3 and anti-
p62 antibodies. Left panel, representative results. Right panel, densitometric analysis is presented as fold induction over the control untreated cells
(n = 6; means 6 S.D; *p,0.05). (B) LNCaP cells were tested for cell viability using the methylene blue staining assay. Cells were treated with 100 ng/ml
NRG in the presence or in the absence of 10 mM NAC. Methylene blue assay was performed 60 h later. Results are presented as % of control, and are
the mean 6 S.D of 4–6 determinations (**p,0.0001). This experiment was repeated three times with similar results. (C) LNCaP cells were treated with
100 ng/ml NRG with or without 10 mM NAC. Cells were harvested 60 h later and analyzed for their DNA content by flow cytometry. The percentage
of cells at various cell cycle stages is indicated. (D) LNCaP cells were treated with 100 ng/ml NRG in the presence or in the absence of 10 mM NAC for
60 h. The cells were stained with the fluorescent DNA dye bisbenzimide (Hoecsht 33258, 1 mg/ml) to assess the number of dying cells. Following
staining, the cells were photographed using Olympus optical inverted phase-contrast microscope Model IX70 (206magnification; scale bars, 50

NRG-Induced Autophagy
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NRG-induced LC3-II Elevation and Cell Death in LNCaP
Cells is Independent of Akt/mTOR Signaling Pathway

In order to determine the signaling pathway leading to NRG-

induced autophagy and cell death, we first examined the Akt/

mTOR signaling pathway. LNCaP cells express PTEN mutation

that leads to Akt activation [35,36]. Akt activates mTOR, which

is a known negative regulator of autophagy [37,38]. Thus, it was

reasonable to examine the phosphorylation and activation of

these proteins. LNCaP cells were treated with NRG for 24 h and

the activation of Akt and mTOR were examined using anti-

phospho Akt and anti-phospho S6K antibodies. As shown in

Figure 4A, basal level of phosphorylated Akt and S6K was

observed in the control untreated cells, however, NRG treatment

increased the level of phosphorylated Akt and S6K. NAC, which

inhibits NRG-induced autophagy, had no effect on the

phosphorylation levels of neither Akt nor S6K. These results

may suggest that NRG-induced autophagy is independent of

mTOR inhibition. To further explore the signaling pathway

involved in NRG-induced autophagy in LNCaP cells, we next

examined the activation of Erk and JNK, two known mitogen

activated protein kinases (MAPKs) which are downstream

signaling components of ErbB receptors [39]. Specific anti

phospho-protein antibodies to Erk1/2 and JNK were used. As

shown in Figure 4, NRG induced an increase in the phosphor-

ylation of Erk1/2 and JNK. NAC, which inhibits NRG-induced

autophagy, had no effect on Erk1/2 phosphorylation, indicating

that Erk activation is not involved in NRG-induced autophagy or

that NAC acts downstream to Erk activation. On the other hand,

JNK phosphorylation was strongly reduced in the presence of

NAC, indicating that JNK may be a potential mediator of NRG-

induced autophagy.

Since NRG induced S6K phosphorylation but also induced

autophagy, we next compared autophagy induced by mTOR

inhibition to the autophagy induced by NRG. The mTOR

inhibitor, rapamycin, was previously shown to induce autophagy

by downregulating mTOR activity [37,40]. We found that

rapamycin treatment as well as NRG treatment induced

autophagy, as judged by the increased LC3-II/LC3-I ratio

(Figure 5A and B) and by enhanced LC3 puncta formation

(Figure 1B). However, as expected, S6K phosphorylation was

increased following NRG treatment but reduced following

rapamycin treatment. In addition, NAC treatment inhibited

autophagy induced by rapamycin and NRG, however it had no

effect on NRG-induced S6K phosphorylation. Interestingly,

rapamycin treatment although inhibited cell growth [29], had

no effect on cells morphology, while NRG caused a dramatic

morphological change as previously described [28,29] and as

demonstrated in Figure 5C and Figure S1 (round and detached

cells). These results demonstrate that NRG-induced autophagy

differs from autophagy triggered by rapamycin. Next, we

examined the effect of NRG and rapamycin co-treatment on

autophagy-inducion in LNCaP cells (Figure 5D). As shown,

combined treatment induced higher levels of LC3II compared to

each treatment alone, suggesting that rapamycin and NRG

might act through different signaling pathways to induce

autophagy.

NRG-induced Autophagic Cell Death in LNCaP Cells
Depends on JNK Activation

Because mTOR pathway is not involved in NRG-induced

autophagy and cell death, we searched for other possible

mediators. We chose to examine the involvement of JNK, since

NRG induced JNK phosphorylation, which was inhibited by

NAC. Therefore, we first examined the effect of JNK inhibitor

SP600125 on NRG-induced autophagy (Figure 6A). As shown, in

the presence of SP600125, NRG-induced autophagy was inhib-

ited, as judged by the decreased LC3-II/LC3-I ratio. Yet,

SP600125 treatment had no effect on p62 levels. Next, we

examined the effect of JNK inhibitor on cell viability using

Hoecsht dye exclusion and methylene blue staining assays (Fig. 6B

and C, respectively). As shown, in the presence of JNK inhibitor,

NRG-induced cell death was inhibited; indicating that JNK

activation by NRG may be important for the induction of

autophagy and cell death of LNCaP cells.

Beclin 1 is Necessary for and Bcl-2 Confers Resistance to
NRG-induced Autophagy and Cell Death

Beclin 1, a component of the class-III PI3K complex, is a major

known regulator of autophagy [41,42]. To determine the

involvement of this pathway in NRG-induced autophagy, LNCaP

cells were transfected with sh-Beclin 1 or control scrambled sh-

RNA expression vectors. As shown in Figure 7A, NRG treatment

enhanced autophagy in the control cells. However in sh-Beclin 1

transfected cells, NRG-mediated autophagy was reduced com-

pared to the control cells. These results indicate that Beclin 1

protein is involved in NRG mediated autophagy in LNCaP cells.

Members of the Bcl-2 anti-apoptotic family were previously

shown to inhibit the autophagy-promoting activity of Beclin 1

[23]. It was also demonstrated that during autophagy the

interaction between Bcl-2 anti-apoptotic proteins and Beclin 1 is

inhibited. Assuming that Beclin 1 is involved in NRG-induced

autophagy and cell death, we hypothesized that overexpression of

Bcl-2 would protect LNCaP cells from NRG-induced autophagy

and cell death. Thus, we next examined the effect of Bcl-2-GFP

overexpression on NRG-mediated autophagy of LNCaP cells

(Figure 7B). As shown, autophagy in naive LNCaP cells was

increased after 16 h and 24h of NRG treatment, while in LNCaP

cells stably overexpressing Bcl-2-GFP, NRG treatment had no

effect on the levels of autophagy induction. Furthermore, Bcl-2-

GFP overexpressing LNCaP cells were resistant to NRG-induced

cell death compared to naive LNCaP cells (Fig. 7C). Taken

together, our results strongly suggest that in addition to JNK

activation, Beclin 1 is also essential for the autophagic process

promoted by NRG.

Discussion

Prostate cancers typically start as androgen-sensitive lesions but

frequently develop into androgen-insensitive lesions with the

progression to advanced stages. The LNCaP androgen-dependent

cell line expresses high levels of ErbB-2 and ErbB-3 compared to

other human prostate cancer cells [28]. In addition, these cells do

not express NRG but they do express TGF-a and EGF, which can

function as autocrine activators of the EGFR [28]. Previously, it

was demonstrated that in LNCaP cells grown without androgen

mimetic, NRG but not EGF induces cell death. This effect of

micrometer). Left panel, representative images. Right panel, percentage of dying cells was estimated by counting the number of Hoecsht-positive cells
compared to the number total cells in each field (10–15 fields for each treatment, 100–200 cells per field). Results are presented as mean 6 S.D
(**p,0.0001).
doi:10.1371/journal.pone.0036828.g003

NRG-Induced Autophagy
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NRG on cell death is mediated by ErbB-2/ErbB-3 heterodimers

[29]. It was also demonstrated that the cell death induced by NRG

is inhibited by PI3K inhibitors, indicating that NRG may induce

autophagic cell death [29]. In the present study, we demonstrate

for the first time that NRG indeed induces autophagy in LNCaP

cells, using two assays: immunoblot analysis with anti-LC3

antibodies and microscopic analysis of LC3-GFP staining in

LNCaP cells. This effect of NRG was also inhibited by 3-MA.

However, the autophagy induced by NRG is incomplete since no

degradation of p62 protein following NRG treatment was

detected. Thus, NRG activating ErbB2/ErbB3 heterodimers

induces incomplete autophagy and cell death in LNCaP cells.

Figure 4. NRG-mediated signaling in LNCaP cells. (A) LNCaP cells were treated with 100 ng/ml NRG with or without 10 mM NAC for 24 h.
Whole cell lysates were prepared and subjected to an immunoblot analysis with the indicated antibodies. (B) Densitometric analysis of several repeats
is presented as fold induction of the control untreated cells. The means of bands intensity were standardized compared to the total
unphosphorylated protein signals (Data are the mean fold induction 6 S.D; *p,0.05).
doi:10.1371/journal.pone.0036828.g004

NRG-Induced Autophagy
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Reactive oxygen species (ROS) were implicated in the signaling

pathways initiated by receptor tyrosine kinases, including ErbB

receptors [43,44]. Several line of evidence demonstrates that

reactive oxygen species (ROS) play a role in autophagy. First,

ROS are required for starvation-induced autophagy, apparently

due to regulation of Atg4 activity [32]. Second, ROS themselves

can induce autophagy in certain cell lines [31,45]. Our results

indicate that NRG-induced autophagy is sensitive to ROS levels,

Figure 5. Analysis of NRG-induced autophagy compared to Rapamycin-mediated autophagy. (A) LNCaP cells were treated with either
100 ng/ml NRG or 50 nM rapamycin (Rapa) for 24 h, in the presence or in the absence of 10 mM NAC. Whole cell lysates were prepared and
subjected to an immunoblot analysis with anti-LC3, anti-phospho-S6K and anti-S6K antibodies. (B) Densitometric analysis of the results described in A
is represented as fold induction of the control untreated cells (n = 3, means 6 S.D). (C) Representative images of cell morphology following
treatments with NRG and rapamycin are shown (Olympus, 206magnification). (D) LNCaP cells were treated with either 100 ng/ml NRG, 50 nM
rapamycin or both for 24 h. Whole cell lysates were prepared and subjected to an immunoblot analysis with anti-LC3 antibodies. This experiment was
repeated three times with similar results.
doi:10.1371/journal.pone.0036828.g005

NRG-Induced Autophagy
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Figure 6. SP600125 inhibits NRG-induced autophagy and cell death. (A) LNCaP cells were treated with 100 ng/ml NRG for 24 h with or
without 20 mM SP600125. Whole cell lysates were prepared and subjected to an immunoblot analysis with anti-LC3, anti-p62, anti-p-JNK and anti-JNK
antibodies. Left panel, representative results. Right panel, densitometric analysis is presented as fold induction over the control untreated cells (n = 5;

NRG-Induced Autophagy
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since in the presence of the general antioxidant NAC, NRG-

induced autophagy and cell death were inhibited.

It was previously shown that mTOR serves as a negative

regulator of autophagy by suppressing the activity of Atg13/Atg1

complex [46]. Thus, growth factors and certain hormones exert

their anti-autophagic effect by activating the class-I PI3K/Akt/

mTOR pathway [47]. On the other hand, pro-autophagic stimuli,

such as nutrients starvation and rapamycin treatment, lead to

mTOR inactivation followed by autophagy induction. Indeed,

inhibition of mTOR by rapamycin induced autophagy in LNCaP

cells. On the same cells, our results demonstrate that NRG induces

mTOR activation as evident by the phosphorylation of S6K, and

its upstream regulator Akt. In addition, it was previously

demonstrated that NRG induces ErbB2/ErbB3 heterodimer

formation and class-I PI3K activation in LNCaP cells [28]. Taken

together, it appears that NRG activates an anti-autophagic

signaling pathway, namely the ErbB/class-I PI3K/Akt/mTOR

pathway and yet promotes autophagy induction in LNCaP cells.

NAC, which completely blocks the NRG-induced autophagy, did

not affect the phosphorylation of neither Akt nor S6K. Hence, we

suggest that NRG-induced autophagy is independent of mTOR

inhibition.

NRG induces activation of various signaling pathways. It was

previously shown that in LNCaP cells, NRG activates among

other signaling pathways also the MAP kinases: Erk, p38, JNK and

the PI3K signaling pathways [28]. We attempted to follow the

signaling pathway leading to NRG induced autophagy and cell

death. Our results indicate that JNK is involved in NRG-induced

autophagy and cell death. Indeed, increasing body of evidence

exists regarding the role of JNK as a mediator of autophagy

induction following various stimuli [48,49,50]. In agreement with

these findings, we showed that JNK phosphorylation increases

following NRG treatment in LNCaP cells. We also found that

NAC, an inhibitor of NRG-induced autophagy and cell death,

blocks JNK phosphorylation. Taken together, we suggest that JNK

mediates the pro-autophagic effect of NRG. Indeed, in the

presence of JNK inhibitor SP600125, NRG-induced cell death

and autophagy were inhibited.

The nucleation and assembly of the autophagosome requires

activation of class-III PI3K complex, which is composed of the

PI3K (vps34), vps15, atg14 and atg6 (Beclin 1 in mammalian cells)

[19,20]. Beclin 1-mediated autophagy is negatively regulated by its

interaction with Bcl-2 anti apoptotic proteins. Upon autophagy

initiation, the interaction between Bcl-2 and Beclin 1 is inhibited,

the class-III PI3K complex turns active and autophagy is

promoted [23]. Our results support the involvement of this

pathway in NRG-mediated autophagy induction. First, we

demonstrated that NRG-induced autophagy is blocked by 3-

MA, an inhibitor of class-III PI3K complex. Second, upon

silencing of Beclin 1, the autophagy induced by NRG treatment

decreases. Finally, we found that Bcl-2 overexpression inhibits

NRG-dependent autophagy and cell death. Several studies

proposed that JNK-mediated Bcl-2 phosphorylation induces the

dissociation of Bcl-2 from Beclin 1, thus promoting autophagy

[49,50]. Therefore, it might be that NRG exerts its pro-autophagic

effect through inhibition of the interaction between Beclin 1 and

Bcl-2 anti apoptotic proteins.

In summary, we demonstrated that NRG induces incomplete

autophagy and cell death of LNCaP cells. The induction of

autophagy by NRG is mediated via JNK and Beclin 1 signaling

pathways. The autophagy induced by NRG is mTOR-indepen-

dent. The autophagy and cell death induced by NRG can be

blocked by JNK inhibition, Bcl-2 overexpression, Beclin 1

downregulation and NAC, indicating the requirement of JNK,

Beclin 1 and ROS for the process. Since inhibition of NRG

induced autophagy rescue from cell death, we suggest that the

incomplete autophagy may be linked to the observed cell death.

Materials and Methods

Materials and Buffers
Antibodies were obtained from the following sources: mono-

clonal mouse anti Bcl-2 (Santa Cruz Biotechnology, sc-7382),

polyclonal rabbit anti Beclin 1 (Santa-Cruz Biotechnology, sc-

11427), polyclonal rabbit anti Erk2 (Santa-Cruz Biotechnology,

sc-154), polyclonal rabbit anti Akt (Santa-Cruz Biotechnology, sc-

8312), monoclonal mouse anti p62/SQSTM1 (Santa-Cruz

Biotechnology, sc-28359), monoclonal mouse anti b-tubulin1

(Sigma, T7816), polyclonal rabbit anti LC3B (Sigma, L7543),

polyclonal rabbit anti phospho-Thr389-S6 kinase (Sigma, S6311),

polyclonal rabbit anti S6 kinase (Sigma, S4047), monoclonal

mouse anti phospho-Erk1/2 (Sigma, 8159), polyclonal rabbit anti

JNK (Cell Signaling, 9252), polyclonal rabbit anti phospho-

Ser473-Akt (Cell Signaling, 9271), polyclonal rabbit anti phospho-

Thr183/Tyr185-JNK (Cell Signaling, 9251), monoclonal mouse

anti caspase 9 (Cell Signaling, 9508). Proteins and reagents are as

follows: human recombinant NRG (NRG, R&D System Inc. 396-

HB/CF), Bafilomycin A1 (Sigma, B1793), Rapamycin (Calbio-

chem, 553210), 3-methyladenine (3-MA, Sigma, M9281), N-

acetylcycteine (NAC, Sigma, A8199), SP600125 (Sigma, S5567),

EBSS (Sigma, E3024).

Cell Line
The human LNCaP prostate cell line was obtained from

American Type Culture Collection, MA, USA. Cells were grown

in RPMI-1640 (Biological Industries, 01-100-1) supplemented with

antibiotics and 10% heat-inactivated fetal bovine serum (FBS,

Hyclone, CH30160.03). Cells were incubated at 37oC in 5% CO2

in air, and the medium was changed every 3–4 days. Cells were

passaged when 70% confluent using trypsin/Di-sodium ethylene-

diaminetetra-acetic acid (Biological Industries, 03-045-1). Two

days before each experiment, cells were cultured at 30%

confluence in phenol red-free RPMI-1640 (Biological Industries,

01-104-5) supplemented with 5% dextran-coated charcoal-

stripped FBS (Biological Industries, 04-201-1).

Stable and Transient Transfections
For stable transfections, the jet-PEI reagent was used according

to the manufacturer’s instructions (Polyplus transfection, 101–10).

In brief, LNCaP cells were incubated in phenol red-free RPMI-

means 6 S.D; *p,0.05). (B) LNCaP cells were treated with 100 ng/ml NRG in the presence or in the absence of 20 mM SP600125 for 60 h. The cells
were stained with the fluorescent DNA dye bisbenzimide (Hoecsht 33258, 1 mg/ml) to assess the number of dying cells. Following staining, the cells
were photographed using Olympus optical inverted phase-contrast microscope Model IX70 (206magnification; scale bar, 50 micrometer). Left panel,
representative images are shown. Right panel, percentage of dying cells was estimated by counting the number of Hoecsht-positive cells compared
to the number total cells in each field (10–15 fields for each treatment, 100–200 cells per field). Results are presented as mean 6 S.D (**p,0.0001). (C)
LNCaP cells were tested for cell viability using the methylene blue staining assay. Cells were treated with 100 ng/ml NRG in the presence or in the
absence of 20 mM SP600125. Methylene blue assay was performed 60 h later. Results are presented as % of control, and are the mean 6 S.D of 4–6
determinations (**p,0.0001). This experiment was repeated three times with similar results.
doi:10.1371/journal.pone.0036828.g006
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Figure 7. NRG-induced autophagy is Beclin-1 dependent. (A) LNCaP cells were transfected with Beclin 1 sh-RNA (3 mg) or control scrambled
sh-RNA (3 mg) and incubated in normal medium for 72 h. The cells were then treated with 100 ng/ml NRG for additional 24 h. Whole cell lysates were
prepared and subjected to an immunoblot analysis with anti-LC3 and anti-Beclin 1 antibodies. Left panel, representative experiment is shown. Right
panel, quantification of the results is shown. The results are presented as fold induction compared to the control untreated cells (n = 3; means 6 S.D;
*p,0.05). (B) Naı̈ve or Bcl-2-GFP stably expressing LNCaP cells were treated with 100 ng/ml NRG for the indicated time periods. Whole cell lysates
were prepared and subjected to an immunoblot analysis with anti-LC3 and anti-Bcl-2 antibodies. Left panel, representative blot is shown. Right panel,
quantification of the results is presented as fold induction compared to the control untreated cells (n = 3; means 6 S.D; *p,0.05). (C) Naı̈ve and Bcl-2-
GFP stably expressing LNCaP cells were tested for cell viability using the methylene blue staining assay. Cells were treated with 100 ng/ml NRG and
the methylene blue assay was performed 60 h later. Results are presented as % of control, and are the mean 6 S.D of 4–6 determinations
(**p,0.0001). This experiment was repeated three times with similar results.
doi:10.1371/journal.pone.0036828.g007
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1640 supplemented with 5% dextran-coated charcoal-stripped

FBS and containing 3 mg plasmid DNA and 6 ml jet-PEI reagent

for overnight. Then, the medium was replaced with fresh RPMI-

1640 supplemented with 10% FBS. Stable clones expressing LC3-

GFP or Bcl-2-GFP were selected and cultured in 400 mg/ml

geneticin (G-418, Calbiochem, 345810). sh-RNA for human

Beclin 1 was gifted from Prof. Adi Kimchi (Weizmann Institute,

Israel). For transient transfections with sh-RNA against human

Beclin 1, the Lipofectamine 2000 reagent was used (Invitrogen,

11668-019). The cells were incubated with 4 mg plasmid DNA and

8 ml transfection reagent for 8 h, and then the medium was

replaced.

Cell Survival Assays
Cells were plated at 105 cells/ml, in phenol red-free RPMI-1640

supplemented with 5% dextran-coated charcoal-stripped FBS and

treated without or with 100 ng/ml NRG in the presence or in the

absence of the indicated drugs for 60 h. Cell viability was

determined by methylene blue assay. The cells were fixed with

4% formaldehyde in phosphate buffered saline (PBS) for 2 h,

washed once with 0.1 M boric acid (pH = 8.5) and incubated with

the DNA-binding dye methylene blue (1% in boric acid; Sigma,

M9140) for 20 min at room temperature. Cells were washed three

times and then lysed using 0.1 M HCl. Absorbance was measured

at 595 nm using the Tecan Spectrafluor Plus spectrophotometer.

Cell viability was calculated as the ratio of absorbance in the

treated cultures compared to the control untreated cultures.

Staining of nuclei with the fluorescent DNA dye bisbenzimide,

(Hoechst 33258) was used to estimate the number of dying cells.

Hoechst staining was performed on live cells by incubation with

Hoechst solution (1 mg/ml; Sigma, B2883) for 10 min. Following

staining, cells were photographed using the Olympus optical

inverted phase-contrast microscope Model IX70 (620 magnifica-

tion). Nuclear staining and nuclear morphology scored dead cells.

Percentage of dead cells was estimated by calculating the number

of nuclei stained with Hoecsht 33258 compared to the total cells

number in each field.

Cell Cycle Analysis
For cell cycle analysis, cells were seeded at 105 cells/ml in

phenol red-free RPMI-1640 supplemented with 5% dextran-

coated charcoal-stripped FBS. The cells were treated as indicated

for 60 h. After which, 106 cells were washed once with PBS,

permeabilized using 0.1% triton X and stained with 50 mg/ml

propidium iodide (Sigma, P4170). The stained cells were analyzed

in a fluorescence-activated cell sorter (FACScan; Becton and

Dickinson) within 30 min. the percentage of cells at different stages

of the cell cycle was determined using the WinMDI 2.9 program.

Lysate Preparation and Immunoblotting
Cells were grown for 48 h in serum free phenol red-free RPMI-

1640 and then were exposed to the indicated stimuli. After

treatment, cells were solubilized in lysis buffer (50 mM HEPES

pH = 7.5, 150 mM NaCl, 10% glycerol, 1% triton X, 1 mM

EDTA pH = 8, 1 mM EGTA pH = 8, 1.5 mM MgCl2, 200 mM

Na3VO4, 150 nM aprotinin, 1 mM leupeptin, 500 mM AEBSF).

Lysates were cleared by centrifugation and a boiling gel sample

buffer was added to cell lysates. Lysates were resolved by SDS-

polyacrylamide gel electrophoresis through 7.5–12.5% gels and

electrophoretically transferred to nitrocellulose membrane. Mem-

branes were blocked for 1 h in TBST buffer (0.05 M Tris HCl

pH 7.5, 0.15 M NaCl and 0.1% Tween 20) containing 6% milk,

blotted with primary antibodies for 2 hours, followed by secondary

antibody linked to horseradish peroxidase for 1 h. Immunoreac-

tive bands were detected with the enhanced chemiluminescence

reagent.

Statistical Analysis
All experiments were performed at least three times. Results are

presented as mean 6 SD. One-tailed Student’s t-test was used to

assess the differences between means. Results were considered

statistically significant when P-value was ,0.05.

Supporting Information

Video S1 Morphological changes induced by NRG over
20 h treatment. LNCaP cells were treated with 100 ng/ml

neuregulin. After 2 h of treatment, 25 mM HEPES was added to

the growth medium and the cells were observed for additional

20 h in 37uC using time-lapse phase-contrast microscopy (the

method is described in Materials and Methods S1).

(WMV)

Figure S1 LC3 and p62 levels after starvation of LNCaP
cells. LNCaP cells were incubated with RPMI-1640 10% FCS

for 24 h (CTRL) or with EBSS medium for the indicated time

period. Whole cell lysates were prepared and subjected to an

immunoblot analysis with anti-LC3 and anti-p62 antibodies.

(TIF)

Materials and Methods S1

(DOC)
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