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Abstract: Modern flax cultivars are susceptible to many diseases; arguably, the most economically
damaging of these is the Fusarium wilt fungal disease. Over the past decades international flax
breeding initiatives resulted in the development of resistant cultivars. However, much remains to be
learned about the mechanisms of resistance to Fusarium infection in flax. As a first step to uncover
the genetic factors associated with resistance to Fusarium wilt disease, we performed a genome-wide
association study (GWAS) using 297 accessions from the collection of the Federal Research Centre
of the Bast Fiber Crops, Torzhok, Russia. These genotypes were infected with a highly pathogenic
Fusarium oxysporum f.sp. lini MI39 strain; the wilt symptoms were documented in the course of
three successive years. Six different single-locus models implemented in GAPIT3 R package were
applied to a selected subset of 72,526 SNPs. A total of 15 QTNs (Quantitative Trait Nucleotides) were
detected during at least two years of observation, while eight QTNs were found during all three
years of the experiment. Of these, ten QTNs occupied a region of 640 Kb at the start of chromosome
1, while the remaining QTNs mapped to chromosomes 8, 11 and 13. All stable QTNs demonstrate
a statistically significant allelic effect across 3 years of the experiment. Importantly, several QTNs
spanned regions that harbored genes involved in the pathogen recognition and plant immunity
response, including the KIP1-like protein (Lus10025717) and NBS-LRR protein (Lus10025852). Our
results provide novel insights into the genetic architecture of flax resistance to Fusarium wilt and
pinpoint potential candidate genes for further in-depth studies.

Keywords: fusarium wilt; resistance; flax; GWAS; immune response; disease severity index

1. Introduction

Flax (Linum usitatissimum L.) is a valuable crop cultivated for oil and fiber. One of
the major flax pathogens affecting the world’s crop production is the fungus of the genus
Fusarium, Fusarium oxysporum f.sp. lini. The primary fungal infection occurs through the
roots. Next, the pathogen colonizes the xylem and blocks the flow of water and nutrients
causing the yellowing and wilting of the leaves, vascular tissue damage and, ultimately,
plant death [1]. As a result of the disease outbreak, 80–100% of flax harvest could be lost.
Moreover, the fungus chlamydospores can survive for up to 50 years in the infected soil
and are extremely difficult to eliminate [2].

Flax wilt management is achieved through various agricultural practices, pesticides [3,4]
and breeding efforts that aim to cultivate resistant crop varieties [5–8]. Pesticides used
in excess and irresponsibly are hazardous for human health [9]. Furthermore, they reduce
biodiversity; therefore, they are detrimental to the structure and function of an ecosystem [9,10].

In view of the above, the best approach for effective disease control is a cultivation of
resistant genotypes in rotation with other crops. The majority of modern flax varieties show
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high or moderate resistance towards Fusarium wilt [7,8]. However, there is a significant
risk of disease development due to variations of pathotypes in fungal populations and
a substantial genetic erosion of varietal material. This situation is further aggravated by
global warming. Climate change and other natural, human-induced stressors, may lead to
a rise in aggressiveness of individual pathogen races, as well as to the loss of resistance
by the varieties determined by one or two genes. Therefore, it is of utmost importance,
to take proactive steps, and to create varieties with different effective pathogen-resistant
genes, as well as with optimal combinations of these genes to ensure long-term and efficient
crop protection.

The mechanisms of flax resistance to Fusarium wilt have never been fully understood,
although resistance to the disease was developed by selection and recombination [7,8].
The cornerstone of a plant’s immune system is represented by two classes of receptors
that recognize pathogens and protect plant tissues against fungal invasions [11]. At the
initial stage of the plant–pathogen interaction, pattern recognition receptors (PRRs) play an
important role in pathogen perception and early immune response. All well-characterized
PRRs are evolutionary, conserved, membrane-localized, receptor-like kinases. They trigger
the PAMP, i.e., pattern-triggered immunity (PTI) by recognizing pathogen-/microbial-
associated molecular patterns. PTI plays important role in basal resistance that generally
develops after the successful infection of an adapted pathogen [12]. The second class of re-
ceptors involved in the establishment of the next level of defense, i.e., the effector-triggered
immunity (ETI) is activated when a plant R-gene protein recognizes an effector encoded by
the avirulence (Avr) gene of the pathogen [13,14]. R genes belong to five classes formed
by genes encoding nucleotide-binding domain, leucine-rich, repeat-containing (NBS-LRR)
proteins, receptor-like kinase genes, genes producing receptor-like transmembrane proteins
or serine threonine kinases, and atypical R genes [15]. To date, over 300 R genes have been
characterized and cloned. Of these, more than 60% contain NBS and LRR domains [16,17].
Both PTI- and ETI-resistant regulatory cascades overlap in downstream signaling path-
ways, which include MAP kinase (MAPK) cascades, calcium fluxes, reactive oxygen species
(ROS) production and alterations in hormone networks [18]. Pathogen-related proteins,
components of the cell wall, transcription factors, secondary metabolites and antioxidants
all play essential roles in the response of flax to the F. oxysporum f.sp. lini infection, as
demonstrated by several transcriptomics experiments [19–21].

Identification of resistance genes and quantitative trait loci are key elements of a
successful breeding program. Due to its increased economic importance in the past couple
of decades flax has become a centre spot of attention and an object of intensive research
in the field of genomics. Recently numerous GWAS studies carried out in flax which
interrogated traits related to yield, phenology and fatty acid content were reported [22–29].
In addition, flax omics data analytics broadened our knowledge of wilt resistance genes
obtained with classical genetics approaches by adding data on QTL loci to a known gene set
(~10 genes) conferring wilt resistance in flax [7,8,30]. Specifically, Spielmeyer et al. [31,32]
identified two QTLs explaining 38% and 26% of phenotypic variations, located within
linkage groups 6 and 10. These loci were discovered in a population of double haploid
lines developed from crosses between flax wilt-resistant and susceptible parents. Overall,
this plethora of information could be further used in follow-up experiments to decipher
resistance mechanisms [33] or in breeding programs for the development of superior
cultivars [34].

In this study we aim to exploit flax natural variations to uncover genomic regions
controlling resistance to Fusarium wilt. We performed the whole-genome sequencing of
297 flax accessions at 10× depth coverage to characterize genetic diversity and population
structure specific to the most Russian varieties [35]. We evaluated the accessions for disease
resistance under controlled conditions and applied GWAS algorithms which relied on
different statistical models to reveal SNP trait associations. To our knowledge, this is the
first time that the GWAS approach was applied to interrogate Fusarium wilt resistance
in flax.
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2. Results
2.1. Evaluation Resistance to Fusarium Wilt in Flax

Flax resistance to highly virulent F. oxysporum MI39 was evaluated under greenhouse
conditions by calculating the Disease Severity Index (DSI) (Table S1). The DSI is a nor-
malized proportion of genotypes with identical disease symptoms (see Section 4). The
accessions were classified as resistant (42%), weakly susceptible (7%), moderately suscep-
tible (17%) and susceptible (34%) using average DSI values, across 3 years. DSI values
are strongly correlated across all three years of investigation (Figure 1), thus attesting
to the consistency of the phenotypic dataset. The DSI values obtained for flax cultivars
and breeding lines significantly differ from landraces (p-values for 2019–2021 years of
experiment were 7.1 × 10−6, 1.96 × 10−7 and 0.52 × 10−3, correspondingly) which may
be indicative of breeding efforts aimed at the development of wilt-resistant genotypes
(Figure 1).
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Figure 1. Fusarium wilt resistance in the dataset. (a) DSI index values in elite cultivars/breeding lines and landraces. Black
dots represent outlier values, (b) The between year correlation of DSI index.

2.2. Association Mapping of Fusarium Wilt Resistance

A total of 72,526 variants retained after SNP calling and filtering (thresholds for MAF
(Minor Allelle Frequency) and call rate were 0.05 and 0.85, respectively) were widely
distributed over 15 flax chromosomes (Figure S1a). Patterns of population differentiation
were analyzed using a principal components analysis, which did not produce a clear
separation of fiber and linseed genotypes (see bi-plot in Figure S1b,c).

The precision of the genetic association test depends on the scale of LD (Linkage
Disequilibrium), which implicitly defines the size of marker set required for analysis. With
a genome size of about 370 Mb and the mean LD decay of 8.6 Kb [35], the number of
markers in our dataset (i.e., 72,526 loci) was twice the minimal number of SNPs necessary
for an accurate genetic test.
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Genome-wide association analyses were performed using the following models: GLM,
MLM, CMLM, FarmCPU, SUPER, Blink as implemented in GAPIT3 R package [36]. Us-
ing both the GAPIT estimation of Bayesian information content and scree plot analysis,
(Figure S1b) we retained a total of five principal components to be used in GWAS.

The six aforementioned methods yielded 38 QTNs identified throughout the experi-
ment (FDR adjusted p-value 0.05, see Table S2). All models performed well in controlling
population and family structures, as confirmed by respective Q–Q plots where the observed
p-values deviated from the expected values at the end of distribution. Most of the QTNs
with the exception of Chr8:22560236, Chr11:6013057 and Chr13:4884610 were discovered
by several models. Fifteen QTNs were detected in at least two years (Table 1), while eight
QTNs were found in all years (Figure 2). Importantly, ten of these stable QTNs occupy a
region of 640 Kb in length at the beginning of chromosome 1 and explain about 7–10% of
the phenotypic variation for resistance to Fusarium wilt. The rest of QTNs are located on
chromosomes 8, 11 and 13. The majority of the identified QTNs demonstrate a significant
allelic effect across all 3 years (Figures 3, S2 and S3).
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Figure 3. Box plots of the allelic effects observed in stable QTNs in 2019 year. Numbers are p-values according to the
Mann–Whitney–Wilcoxon non-parametric test.

Negative alleles decrease the DSI index, while positive alleles increase it. The DSI
index value progressively decreases with the increase in the negative-effect allele number
in accession genotypes (see Figure 4), thus reflecting a stronger resistance to the pathogen.
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experiment, namely (a) year 2019, (b) year 2020, and (c) year 2021.

2.3. Fusarium Wilt Resistance Candidate Genes

Candidate genes involved in various processes associated with pathogen response
were identified within predefined regions with length adapted to the extent of LD decay
for a relevant chromosome (Figure S4) and centered on stable QTNs (Tables 1 and 2). Many
QTNs detected in this study are orthologous to well-characterized Arabidopsis genes. For
instance, Chr1:1288653 QTN is a missense variant of Lus10025717 gene orthologous to
A. thaliana’s AT2G22560 gene, which encodes the KIP1-like protein harboring the actin
binding domain. Likewise, QTN Chr1:1462137 is an upstream variant of Lus10025756 gene,
whose Arabidopsis ortholog encodes cytochrome P450 monooxygenase from the subfamily
CYP709B. Additionally, a missense variant Chr1:1528323 QTN is within the Lus10025773
gene, which is an ortholog of the AT1G53050 gene for protein kinase superfamily pro-
tein. Chr1:1722812 QTN is an intron variant within Lus10025823 gene orthologous to
the AT1G79750 gene encoding NADP-malic enzyme 4. Finally, Chr1:1854337 QTN is an
upstream transcript variant of Lus10025853 gene, where the A. thaliana ortholog encodes
exportin 1A. About 2.5 kb form this QTN is Lus10025852 gene, where an ortholog in
Arabidopsis (AT5G17890) encodes the DA1-related protein.
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Table 1. List of stable QTNs identified by several models and in at least two years.

Chromosome QTN Position REF/ALT Average PVE Average Effect Year MAF QTN Annotation
ID Number

CP027619.1 1 1213418 C/T 0.106 −0.53 2019 2020 2021 0.138 upstream_transcript_variant

CP027619.1 1 1288166 A/G 0.09 −0.74 2019 2020 2021 0.093 synonymous_variant
CP027619.1 1 1288616 C/A 0.10 −0.72 2019 2020 2021 0.112 synonymous_variant

CP027619.1 1 1288653 T/C 0.103 −0.76 2019 2020 2021 0.103 missense_variant

CP027619.1 1 1413812 T/A 0.102 −0.69 2019 2020 2021 0.131 intergenic_variant

CP027619.1 1 1462137 A/G 0.082 −0.66 2019 2020 0.099 upstream_transcript_variant

CP027619.1 1 1497939 G/C 0.075 −0.62 2019 2020 0.103 intergenic_variant

CP027619.1 1 1528323 C/G 0.078 −0.64 2019 2020 0.101 missense_variant

CP027619.1 1 1722812 C/G 0.105 −0.68 2019 2020 2021 0.131 intron_variant

CP027619.1 1 1854337 T/C 0.082 0.56 2019 2020 0.101 upstream_transcript_variant

CP027632.1 8 22560236 G/A 0.064 −0.53 2019 2020 0.185 upstream_transcript_variant

CP027632.1 8 22560290 C/A 0.077 0.50 2019 2020 2021 0.19 synonymous_variant

CP027621.1 11 6013057 A/G 0.097 −0.64 2019 2020 2021 0.144 intron_variant

CP027623 13 545286 A/G 0.07 0.52 2020 2021 0.127 intergenic_variant

CP027623 13 4884610 T/G 0.067 1.35 2020 2021 0.457 intergenic_variant
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Table 2. Candidate genes located near stable QTNs.

QTN Candidate Gene Position A. thaliana Orthologue Protein

Chr11:288653 Lus10025717 Chr1:1285554-1289474 AT2G22560 KIP1-like protein

Chr1:1462137 Lus10025756 Chr1:1463118-1465114 AT2G46950,
CYP709B2

Cytochrome P450, family 709,
subfamily B, polypeptide 2

Chr1:1528323 Lus10025773 Chr1:1527916-1531752 AT1G53050 Protein kinase superfamily protein

Chr1:1722812 Lus10025823 Chr1:1722251-1726433 AT1G79750, NADP-ME4 NADP-malic enzyme 4

Chr1:1854337 Lus10025852 Chr1:1851791-1853596 AT5G17890, CHS3, DAR4 DA1-related protein 4, nucleotide-binding, leucine-rich
repeat protein

Chr1:1854337 Lus10025853 Chr1:1854958-1870647 AT5G17020, XPO1A Exportin 1A

Chr8:22560236 Lus10015356 Chr8:22561110-22562338 AT5G62740, HIR1 SPFH/Band 7/PHB domain-containing,
membrane-associated protein family protein

Chr8:22560236 Lus10015357 Chr8:22562785-22565427 AT5G62740, VDAC1 Voltage-dependent anion channel 1

Chr8:22560236 Lus10015344 Chr8:22554684-22556269 AT5G40010, AATP1 AAA-ATPase 1

Chr8:22560236 Lus10015339 Chr8:22569641-22570539 AT3G01270 Pectate lyase family protein

Chr11:6013057 Lus10035917 Chr11:6011724-6014460 AT1G80230 Rubredoxin-like superfamily protein

Chr13:4884610 Lus10009330 Chr13:4886276-4888681 AT1G71400, RLP12 Receptor-like protein 12, RLK

Chr13:4884610 Lus10009332 Chr13:4890865-4893541 AT5G66880, SNRK2.3 Sucrose nonfermenting 1(SNF1)-related protein kinase 2.3
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Chromosome 8 contains Chr8:22560236 QTN, which is an upstream transcript variant
of the Lus10015356 gene orthologous to the A. thaliana HIR1 gene encoding a hypersen-
sitive induced reaction protein. Upstream of this QTN, at a distance of 5.5 kb is the
Lus10015354 gene orthologous to AT5G40010 gene encoding AAA-ATPase 1. Downstream
of Chr8:22560236 QTN are two genes, Lus10015357 and Lus10015359. The closest gene
(2.5 Kb), is the ortholog of the AT5G62740 gene encoding the voltage-dependent anion
channel (VDAC) 1 protein, while the other gene, which is 9.4 Kb further downstream, is
orthologous to the AT3G01270 gene for pectate lyase family protein. The Lus10035917
gene with the Chr11:6013057 QTN is located in the intron of an ortholog of AT1G80230
gene for rubredoxin-like superfamily protein (Table 2). On chromosome 13, two candidate
genes were detected. The Lus10009330 encoding receptor-like kinase is 1.2 Kb downstream
of QTN Chr13:4884610 and is the ortholog of the A.thaliana RLP12 gene. The second
proposed candidate gene, Lus10009332, is the ortholog of AT5G66880 encoding sucrose
nonfermenting 1 (SNF1)-related protein.

3. Discussion

In contrast to flax rust which, being a model system for H.H. Flor’s series of elegant
experiments and a basis for the development of gene-for-gene theory [37], was extensively
studied in the past, flax wilt, as well as mechanisms leading to the infection, currently
remain unknown.

Recently, several high-throughput transcriptomics experiments provided a general
insight into flax resistance to pathogens [19–21]. However, the identification of potential key
candidate genes in the control of resistance is challenging due to a systemic effect inflicted
by infection and, consequently, an unfeasibly large number of genes to be interrogated in
focused follow-up studies. To gain an ultimate understanding of biology and mechanisms
underlying flax wilt disease, and to prioritize targets for further in-depth experiments, it is
essential to make the most of the available genomic and genetic resources, as well as the
analytical approaches such as GWAS.

To gain insight into the mechanisms of Fusarium wilt resistance in flax we applied
GWAS methods to a collection of 297 flax genotypes which encompassed elite cultivars,
breeding lines and landraces. Importantly, the fiber morphotype dominated over the
linseed by fifty percent. The disease resistance was estimated by means of the Disease
Severity Index (DSI). The DSI shows the normalized proportion of specimens with identical
disease symptoms. The genotypes analyzed in this study exhibited a wide variation in
resistance to the highly virulent MI39 F. oxysporum f.sp lini strain in all three successive
years of the experiment, thus providing a solid basis for dissecting the genetic architecture
of the trait. As expected, elite cultivar and breeding line accessions demonstrated a more
than three-fold decrease in DSI as compared to the genotypes with a different selection
status, thereby acknowledging the overall success of various breeding programs.

The accurate deciphering of the genetic architecture of a trait in a diverse population
is only possible if a statistical model accounts for the spurious associations arising from
population structure and family relatedness. Currently, the most popular approach to
control for false positives is the incorporation of the population structure and a kinship
matrix, which captures family relatedness as covariates in the mixed linear models (MLM).
However, all of the MLMs developed to date are single-locus models testing one marker
at a time. Such approaches are one-dimensional approximations of a true genetic model
of a complex trait controlled by many loci simultaneously and, therefore, they could be
inaccurate in controlling false positive associations and estimations of marker effects [38].
To cope with this problem, several single-locus models are generally applied and the asso-
ciations detected by several models are deemed as significant. We performed association
analyses for every year of trait evaluation with six different models: GLM, MLM, CMLM,
FarmCPU, SUPER, Blink, as implemented in GAPIT R package [26].
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The functional annotation of candidate genes was inferred from their Arabidopsis or-
thologs annotated in the TAIR database [39], as well as from the function of the orthologous
genes in other plant species as reported in the literature (Table 2).

The plant response to a pathogen attack involves several tiers of defense, including
pathogen sensing by receptor-like kinases (RLK) and R-gene proteins followed by down-
stream signaling via MAP-kinase cascades, G-proteins and calcium fluxes, which leads
to activation of defense and secondary metabolite genes, as well as to the rewiring of
hormonal networks. Changes in the calcium status of the cells trigger an oxidative burst.
The accumulation of reactive oxygen species (ROS) leads to a hypersensitive response,
cell wall protein cross-linking, phytoalexin production, callose deposition and systemic
acquired resistance [12,16]. The 640 Kb region on chromosome 1 contains several genes
potentially involved in Fusarium oxysporum recognition and plant immunity responses. Of
these, the Lus10022557 gene encodes the KIP1-like protein and contains three significant
SNPs singled out by the largest negative effects (Table 1). The KIP1-like proteins bind
actin [40] and may relay immune signals to inactivate pathogens and interact with RLKs.
Therefore, we consider this gene as the most promising candidate for further in-depth
downstream analysis [41].

Other potentially promising candidate genes encode the NBS-LRR protein (Lus10025852),
protein kinase superfamily protein (Lus10025773), exportin A1 (Lus10025853), NADP-malic
enzyme 4 (Lus10025823) and cytochrome P450 monooxygenase from CYP709B subfamily
(Lus10025756). These five proteins are known as significant players in pathogen responses
in other plants. First, protein kinases play a central role in signalling during pathogen recog-
nition and the subsequent activation of plant defence mechanisms [42]. The second protein,
exportin Xpo1 in N. benthamiana is required for elicitor-induced phytoalexin production
and the induction of cell death [43]. The third protein, NADP-malic enzyme (NADP-ME),
provides the building blocks and energy for the synthesis of two defence-related secondary
metabolites, flavonoids and the lignin precursor, monolignol. Moreover, NADP-ME can
produce NADPH for synthesis of ROS [44]. Finally, cytochrome P450 monooxygenases
from subfamily CYP709B play important roles in plant defence through their involvement
in biosynthesis of phytoalexin and some other secondary metabolites [45].

On chromosome 8, we identified four candidate genes in the vicinity of Chr8:22560236
QTN. Two of them, Lus10015356 and Lus10015357, encode a hypersensitive induced reac-
tion (HIR) protein and voltage-dependent anion channel (VDAC) 1 protein, respectively.
These genes are likely to be involved in programmed cell death induced by a pathogen
attack [46–48]. Of the two other genes, Lus10015354 encodes AAA-ATPase 1, which plays
an important role in the salicylic acid-mediated defence response against the blast fungus
Magnaporthe oryzae [49] in rice. Finally, Lus10015359 encodes the pectate lyase superfamily
protein. This enzyme degrades pectin, a major component of the plant cell wall. During
infection, pathogens not only secrete pectin-degrading enzymes, but also hijack the host
signalling pathways to induce cell remodelling by plant-derived enzymes [50].

Lus10035917, a candidate gene containing Chr11:6013057 QTN, encodes rubredoxin-
like superfamily protein (Table 2). In plants, it regulates the reactive oxygen species balance.
As a result of the plant response to a pathogen attack and abiotic stresses their levels are
increased [51–53].

Two candidate genes, Lus10009330 and Lus10009332, were detected downstream of
Chr13:4884610 QTN. Lus10009330 encodes the receptor-like kinase. RLp12, the A. thaliana
ortholog of this gene, encodes the CLAVATA2-relted protein implicated in innate immunity
to microbe and nematode infections [54]. The other gene, Lus10009332 encodes the su-
crose nonfermenting 1 (SNF1)-related protein kinase 2.3. (SnRK). SnRK1 regulates carbon
metabolism and responds to hormonal signals. In soybean, SnRK promotes resistance to
oomycete Phytophthora sojae potentially working through the accumulation of salicylic acid
(SA) and induction of SA-related genes [55].
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Overall, the candidate genes we pinpointed are involved in pathogen recognition,
downstream signaling and plant immunity response and, as such, provide excellent targets
for further downstream analyses.

4. Materials and Methods
4.1. Plant Material Collection and Phenotyping

A total of 297 flax genotypes were selected from the collection of the Federal Research
Center for Bast Fiber Crops (Torzhok, Russia) (Table S1). The dataset included 179 fiber flax
accessions, 117 linseed flax accessions and 1 accession of unknown morphotype. Oilseed
group was further subdivided into the following subgroups: 98 intermediate accessions,
4 large-seeded accessions and 15 crown accessions. There were landraces, elite cultivars
and breeding lines in the dataset.

The accessions were evaluated for Fusarium oxysporum resistance under greenhouse
conditions in randomized complete block design. Three evaluations were performed
during 2019–2021. In each evaluation, each specimen was replicated 16 times by sowing
all the seeds in cross-container rows. The container dimensions were 550 × 85 × 20 cm.
Two genotypes, AP5 and I-7, were used as susceptible and resistant genotypes to Fusarium
wilt controls. The infection background was created by introducing 400 g of a pure culture
of MI39 Fusarium oxysporum f.sp. lini strain into a container. The seeds were planted on a
12 day after the inoculation with the pure fungal culture.

The pure culture inoculum was prepared by first growing MI39 on beer-wort agar-agar
medium with a subsequent incubation on the oat grain substrate (the grain to water ratio
of 1 to 1.75) for 3–4 weeks; such a time period was sufficient for macro and microconidia
development. After three to four weeks, when oats were completely infected by the fungus,
the pathogen was introduced into the soil. The required amount of the introduced infection
for a container (550 × 85 × 20 cm) was established experimentally. The indicator of the
reliability of the infectious background was the standard varieties (resistant and susceptible
genotypes), which were sown along the edges and in the middle of each container (16 seeds
per row).

The evaluation of the disease severity was carried out during the harvesting period in
the phase of early yellow ripeness. The DSS (Disease Severity score) grades ranged from 0
to 3, where the 0 value stood for a healthy plant, 1 indicated a partial plant browning or
stem browning from one side, 2 indicated a fully browned plant with bolls, and, finally,
3 corresponded to a fully browned plant that collapsed prior to the formation of bolls.
Proceeding from these grades the Disease Severity index (DSI) was calculated using the
standard formula accepted in phytopathology [56]:

DSI =
Σab
AK

100%,

where a is the number of plants with identical DSS, b is the estimated DSS; A is the total
number of plants and K is the highest DDS grade (i.e., 3).

The plants were considered resistant if DSI ≤ 20%, as weakly susceptible in the case of
20% < DSI ≤ 30%, as moderately susceptible if 30% < DSI ≤ 50% and, finally, as completely
susceptible when DSI value exceeded 50%. The phenotype values were quantile normalized
prior to GWAS analyses.

4.2. DNA Sequencing and Variant Calling

DNA was extracted from collected leaves with DNeasy Plant Mini Kit (Qiagen, Stan-
ford, CA, USA). DNA sequencing was performed at the BGI (Hong Kong, China) using
Illumina protocol, generating paired-end reads 150 bp in length. 1143.850625 GB of raw
data comprising 7.626 billon reads with an average of 9.3× coverage or 3.7 Gbp per sample
were generated. Processed reads were aligned to NCBI flax reference genome assembly
ASM22429v2 with bwa-mem using default parameters [57]. Variant calling was run using
NGSEP [58] (v. 4.0) and identified 3416829 biallelic SNPs, which were further filtered using
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VCFtools [59] to obtain a minor allele frequency (i.e., MAF) > 5% and genotype call rate
>85%. A total of 72,526 SNPs passed all filters and remained for further analysis.

4.3. Genetic Data Analyses

Principal component analysis (PCA) was conducted using the PCA tools R pack-
age [60]. SNP depth and distribution across chromosomes was plotted using rMVP pack-
age [61].

The linkage disequilibrium (LD) decay was evaluated using squared Pearson’s corre-
lation coefficient (r2). The PopLDdecay [62] version 3.4.1 was run to calculate r2 in a 500 kb
window. The LD decay was calculated based on r2 and the distance for each pair of SNPs
using an R script in accordance with Hill–Weir approximation [63].

We applied Mann–Whitney–Wilcoxon test [64] to make group comparisons.

4.4. GWAS

The genome-wide association analyses were performed with GAPIT3 R package [36].
We selected the following models: GLM, MLM, CMLM, FarmCPU, SUPER, Blink according
to the workflow proposed by the package authors for multiple models testing. The FDR
adjusted p-value threshold for candidate QTNs selection was set at 0.05.

4.5. Candidate Genes

A function of the candidate genes containing the identified QTNs was inferred from
the function of their Arabidopsis orthologs in the TAIR database, from flax genome anno-
tations kindly provided by Cloutier group (Ottawa Research and Development Centre,
Canada) [65], as well as from the function of the homologous genes in other plant species,
as described in the literature. We also searched for candidate genes within a window
surrounding detected QTNs, where width was defined as proceeding from the LD decay
estimated for each chromosome (Figure S4).
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