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Abstract: The study of local adaptation is a main focus of evolutionary biology since it may contribute 
to explain the current species diversity. The genomic scan procedures permit for the first time to study
the connection between specific DNA patterns and processes as natural selection, genetic drift, recom-
bination, mutation and gene flow. Accordingly, the information on genomes from non-model organ-
isms increases and the interest on detecting the signal of natural selection in the DNA sequences of dif-
ferent populations also raises. The main goal of the present work is to explore a sequence-based meth-
od for detecting natural selection in divergent populations connected by migration. In doing so, we rely 
on a recently published statistic based upon the definition of haplotype allelic classes (HAC). The orig-
inal measure was modified to be more sensitive to intermediate frequencies in non-model species. A linkage-
disequilibrium-based method was also assayed and individual-based simulations were performed to test the methods. The 
results suggest that the HAC-based methods and, specifically, the new proposed method are quite powerful for detecting 
the footprint of moderate divergent selection. They are also robust to reasonable model misspecification. One obvious ad-
vantage of the new algorithm is that it does not require knowledge of the allelic state.

Keywords: Local adaptation, Single nucleotide polymorphism, Selective sweep, Detection of selection, Gene flow, Divergent 
populations.

INTRODUCTION 

The recent development of genomic scan procedures has 
allowed for the searching of the mark of positive selection in 
the DNA of some model species [1, 2]. Now we are facing 
the application of such techniques to non-model organisms 
[3, 4]. However, the new bunch of information posses vari-
ous problems to deal with. For example, several genomic 
patterns will arise due to the combination of different evolu-
tionary processes such as natural selection, genetic drift, re-
combination, mutation and gene flow. Thus, understanding 
the connection between such processes and the specific DNA 
patterns found in genomes is a main objective of current evo-
lutionary biology [5-7]. The detection of signatures of diver-
gent selection in DNA sequences from populations with gene 
flow will be a key to future studies of ecological speciation 
scenarios. Although the study of the genomic patterns behind 
such kind of processes is still in its infancy for most organ-
isms [8] there is an increasing evidence indicating that the 
footprint of early divergent selection and speciation process-
es can be widespread in genomes including species that co-
exist in complete sympatry [9]. Accordingly, as the infor-
mation on genomes or partial-genomes from non-model or-
ganisms increases, it also increases the interest in detecting 
the signal of selection throughout DNA sequences of these 
species. The problem is that the processes of divergence and 
speciation in presence of gene flow are expected to generate
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quite heterogeneous patterns of genomic differentiation; hin-
dering the identification of specific selection footprints [10-
12]. The existing methods for detecting the signature of se-
lection in structured populations of non-model species use 
the information of molecular markers to compare the genetic 
differentiation among populations [13-15] or genotype-
environmental correlations ([16, 17] and references therein).
Such strategies have as main caveat the high rates of false 
positives [16, 18-20].

On the contrary, genome-based methods for detecting 
divergent selection in non-model organisms have not been 
applicable due to the absence of appropriate sequence and 
demographic information. Currently, there are several meth-
ods for detecting the footprint of selection at genomic level 
(reviewed in [21-23]) which were mainly developed for 
model species having enough phylogenetic information on 
the involved variability (knowledge about ancestral versus 
derived alleles). Hence, the detection of divergent selection 
with migration can be complicated because the sustained 
gene flow between divergent alleles may hide the signal of 
selection [5, 10, 12, 24-27]. For that reason, it is not ex-
pected that methods based on detecting linkage disequilibri-
um (LD) signature (such as EHH [28]) or frequency spec-
trum (such as DH [29]) work well under some scenarios of 
divergent selection and local adaptation. 

The main goal in this study is to set up a sequence-based
method for detecting local ongoing processes in which natu-
ral selection is working in different directions. The involved 
populations may be 'invaded' by alternative alleles from their 
neighborhood populations. In doing so, we rely on the defi-
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nition of haplotype allelic classes (HAC, see Material and
Methods section and [30]). A previous HAC-based statistic, 
called Svd, takes advantage from the assumption that a puta-
tively selected allele will be linked more often with the ma-
jor (the most frequent) alleles than with the minor alleles of 
neutral positions. Consequently, Svd is able to detect ongo-
ing processes of positive selection [30]. Thus, this method 
does not perform specific LD measures but a normalized 
comparison of variances of haplotype classes. The partition 
into classes is performed depending on the presence of the 
putatively selected allele. This is interesting since selective 
sweeps may produce additional patterns of variation other 
than those measured by LD [31]. Because of the flexibility 
provided by the HAC method, it seems appropriate for sce-
narios undergoing disruptive selection and gene flow. It is 
worth mentioning that the original statistic does not perform 
well when the frequency of the selected allele is intermediate 
[30] and also has the drawback of needing information on 
the allelic state (ancestral or derived). Moreover, it does not 
provide a clear indication about the optimal window size to 
use when working at genomic level. In consequence, we 
have modified the original measure to be more sensitive to 
intermediate frequencies and applicable to non-model spe-
cies without information about the state of the alleles. This 
new measure is called SvdM. We have also automatically 
chosen as optimal window size that one giving the highest 
score. Both Svd and SvdM have an expected value of equal 
or less than 0 under the standard neutral model. However, in 
the presence of selection, the value of the statistics should be 
higher than 0 (although some demographic scenarios can 
also generate higher values). Individual-based simulations 
were performed to test the original Svd and its modification 
as well as a LD-based method implemented in the Omega-
Plus software [32]. We chose the LD-based method because 
it has been reported as the best one under equilibrium and 
non-equilibrium conditions [21]. However, it requires the 
selection to be strong enough and is quite dependent on the 
timing of the selective sweep and on the number of segregat-
ing sites [33].

To perform the simulations as real as possible, a model 
that resembles a biological scenario of two populations or 
microhabitats connected by gene flow was implemented
while undergoing divergent selection. There are several 
known examples of adaptation to contrasting environments 
with ongoing gene flow, such as the intertidal marine snail L.
saxatilis, that is a well-known example of ecomorphological 
diversification [34] but also the wild populations of Salmo
Salar [35] or Lake whitefish species (Coregonus spp. Salm-
onidae [36]) or even tree species as Cork Oak (Quercus su-
ber [37]).

The most favorable conditions for the rapid formation of 
ecotypes, under local adaptation with gene flow, imply mod-
erate selection pressures and few loci with large effects ra-
ther than many with small effects [12, 38]. Because simulat-
ing biological systems as real as possible has proven to be a 
useful strategy� [38], we incorporate relevant� demographic
information from L. saxatilis such as migration rates and 
population sizes estimated from field data. Then we use the 
sequence samples obtained from the simulations to check the 
HAC-based methods both at the initial steps (hundred of 
generations) of the divergent selection process and also when 

the number of generations has been large enough for equilib-
rium to be reached (5-10N generations).

MATERIAL AND METHODS 

Statistic for Haplotype Allelic Class (HAC) Patterns Un-
der Divergence 

For each haplotype, the HAC-based statistics compute a 
distance with respect to a reference configuration. This dis-
tance is called the haplotype allelic class (HAC [30]). The
reference configuration is represented as the haplotype carry-
ing only the major frequency alleles of its constituting SNPs. 
Therefore, the HAC of a given haplotype will be the number 
of minor frequency alleles it carries [30]. Haplotypes with 
the same HAC distance will be grouped. Given a candidate 
SNP, we may assume that if the new (derived) allele is at 
highest frequency then it is the positively selected one. Con-
sequently, the data can be partitioned into those haplotypes 
carrying the major allele of the SNP under evaluation and 
those carrying the minor allele. We can compute the variance 
V1 of the HAC distances for the haplotypes in the partition 
with the major allele and similarly V2 in the partition with the 
minor allele. The summary statistic developed by Labuda 
and co-workers [30] is based on the normalized variance 
difference: 
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where f is the frequency of the derived allele and S is the 
number of SNPs considered in the variance estimation (win-
dow size). This statistic, while efficient for strong ongoing 
positive selection, would fall short when the selective sweep 
is at low frequency (i.e., the selected allele has not reached 
intermediate frequencies [30]). Another issue is that Svd 
needs to distinguish between derived and ancestral alleles, 
but this is not always possible when working with non-
model species. To solve these problems, the Svd statistic was 
modified to be independent of the state, ancestral or derived, 
of the selected allele and at the same time to have its highest 
power at intermediate frequencies. This might be of special 
interest when the evolutionary scenarios involve divergent 
selection and migration. We call the new statistic SvdM:
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Note that when computing these statistics throughout the 
genome, the maximum value is returned. However, other 
measures could be assayed such as for example the average 
of positive Svd (SvdM) values.

Simulations 

To test the ability of the Svd and SvdM methods for de-
tecting the footprint of selection, the program GenomePop 
[39] was used to simulate two populations of facultative 
hermaphrodites under divergent selection and migration. 
Each individual consisted of a diploid chromosome of length 
1Mb of biallelic loci. There was only one selected locus that 
had the derived allele as beneficial in population 1 and the 
ancestral allele as beneficial in population 2. Thus, natural 
selection acts in opposite directions in the two populations. 
In population 1 the favored derived allele was initially at low 
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frequency (1/1000), while in population 2 the favored ances-
tral allele was initially fixed. In population 1 (selective allele 
at low frequency) we checked that the allele was not lost in 
the first generations, if so we discarded that run. The fitness 
model was w = (1-hs) where h had a value of 0.5 in the het-
erozygote and 1 in the homozygote. Ancestral alleles had 
always coefficient s = 0 (w = 1), while if the derived allele 
was favorable (population 1) the coefficient was s = -0.15 (if 
h = 1, w = 1.15); and if the derived was non-favorable (popu-
lation 2) then s = 0.15 (if h = 1, w = 0.85). Within each popu-
lation the mating was at random and both populations were 
connected by migration with Nm =10 migrants per genera-
tion. The position of the selective locus was at the center 
(relative position 0.5) of the chromosome, although some 
extra cases (positions 0, 0.01, 0.1 and 0.25) were performed 
to assess the effect of locating the selective locus between 
the extreme and the center of the chromosome. 

Concerning other evolutionary parameters such as popu-
lation mutation � = 4N� and recombination � = 4Nr rates,
we simulated different scenarios (Table 1). The population 
selection rate � = 4Ns was 0 (neutral cases), 600 (weak se-
lection) or 6000 (strong selection). It was assumed that the 
long-term simulations, number of generations t = 5N or 10N,
reached equilibrium. Due to computational efficiency, strong 
selection was studied only for the short-term (non-
equilibrium) cases. For each selective case assayed, 1000 
replicates of the corresponding neutral case were also run. 
After the evolutionary process finished, 50 sequences were 
sampled from each population. These sequences were ana-
lyzed using an in-house C++ implementation of the methods 
Svd and SvdM (available upon request to AC-R) and the 
program OmegaPlus [32], in order to compare the behavior 
of the distinct methods for detecting natural selection in a 
local adaptation scenario.

Table 1. Parameter values in the simulations. 

N t s �  �  

1000 100 0 12 0

10000 500 ± 0.15 60 4

5000 12

10000 60

N: Population size; t: number of generations; s: coefficient of selection; �: mutation 
rate, �: recombination rate.

Phasing Errors 

To check the robustness of the methods to inaccuracy in 
the haplotype phase, some simulations (t = 10N) were per-
formed as follows: we compared the number of SNPs be-
tween each sample of individuals (diploids) and a sample of
gametes from such individuals. There is always a possibility 
that some SNPs were lost when sampling the gametes (be-
cause the rare allele was in the discarded chromosome). In 
the case that a SNP was lost in this way, the state of the allele 
was changed in order to recover the SNP. Therefore, the 
same SNP number as in the individuals’ sample, was main-

tained at the prize of introducing phasing error in some of 
the gametes. In equilibrium populations, this implied error 
percentages of about 2% in most of the haplotypes and up to 
20% in a few of them.

Data Analysis and Statistical Significance 

As the simulated data correspond to two populations, 
different analyses can be performed. For example, the popu-
lations can be analyzed separately and afterwards the data
can be joined to just evaluate one metapopulation. In the 
latter we can study both, every SNP or just those that are 
shared by the two populations. The difference will depend on 
the rate of gene flow. In our case the results were very simi-
lar so, when considering the metapopulation scenario, we 
focused on the whole set of SNPs. Hence, as already men-
tioned, the maximum value of the statistics was considered 
but the average of positive values (since the neutral expecta-
tion is negative or zero) or indeed a combination of maxi-
mum and average of positives, could also have been used. 

Neutrality was rejected when the value obtained with the 
statistic (Svd, SvdM or OmegaPlus) was higher than a criti-
cal value. We used the 95th percentile of each statistic under 
the simulated neutral scenarios as threshold value. To study 
the neutral data with the HAC-based methods we fixed the 
window size to the value obtained when previously analyzed 
the candidate data under the automatic sliding window mode 
(which in our implementation uses as window size that giv-
ing the maximum value of the statistic).

RESULTS 

Long-term Simulations: Detection of Weak Selection 

Under equilibrium conditions (t = 10,000) the results of 
both populations were very similar, so we present only the 
results for population 1 (Table 2). The results with t = 5,000 
also had a similar pattern as that shown in (Table 2). The 
HAC-based methods (Svd and SvdM) show acceptable per-
formance with detection power of about 60-79%. An excep-
tion corresponds to the non-recombinant cases where per-
formance is quite poor. Recall (see Material and Methods) 
that we force the selective allele to be present in the first 
twenty generations which in general suffices to avoid its loss 
by random drift during the initial steps of the evolutionary 
process. Note however that, in non-recombinant cases, it is 
easier that haplotypes carrying the selective variant became 
quickly fixed or even lost during the evolutionary process, 
which explains the worst performance in this case. Regard-
ing the window size, a clear relationship appears with respect 
to the mutation rate. The lower the mutation rate the lower 
the window size that produces the highest HAC statistic and 
vice versa. In fact, when increasing five times the mutation 
rate, the window size expands approximately by this same 
factor (e.g. 411/81 for � 60/12 in Table 2). The effect of re-
combination is not so clear although a pattern of slightly 
more detection under the higher recombination rate seems to 
occur, especially for SvdM.

The data were also analyzed with the OmegaPlus pro-
gram using different parameterizations and finally choosing 
the one giving the best results (last column in Table 2). How-
ever, not surprisingly, the performance was not good with, at 
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the best, powers of about 20%. This occurs because of two 
reasons: first, the selection corresponds to � = 600 while 
OmegaPlus requests for values about ten times higher [33]
and second, the timing of the selective sweep may not im-
print a clear footprint in this kind of scenarios as needed by 
OmegaPlus. The performance under short-term conditions 
was not better, again as expected, because in such scenarios 
the selective sweep is at its very initial steps. Thus, from 
herein we skip the LD-based method and just focus on the 
HAC-based ones.

As stated in the Material and Methods section, we have 
tentatively checked the effect of haplotype phasing inaccura-
cy on these data. Our findings show that low average error 
percentages of 2-5% had no qualitative effect as we obtain 
values very similar to those in (Table 2). Additionally, single-
tons were discarded, as it has been already recommended for 
the Svd method [30].

When the two populations were considered as one (meta-
population scenario) the statistic SvdM performs quite well 
(Table 3). However, Svd performs worse than under the two-
population scenario. This is not surprising since SvdM is 
more sensitive to intermediate frequencies and we may ex-
pect intermediate frequencies for some loci when consider-
ing jointly two diverging populations. Note that the relation-
ship between the window size (S) and the mutation rate 
(�)  still holds and a five-fold increase in the mutation rate 
produces the corresponding expansion in the window size. 
The effect of recombination seems clearer now, showing that 
the higher its rate, the higher the power of detection.

Short-term Simulations: Detection of Weak and Strong 
Selection 

Under these conditions (100 or 500 generations) there is 
an ongoing conflict between the increase in frequency of the 
favored allele in population 1 while arriving the maladaptive 
one from population 2. At the same time in population 2, the 
favored allele decreases in frequency due to an increasing 
gene flow of the deleterious one from population 1. Thus, the 
detection of selection occurs only in population 1 where the 
favored allele is increasing in frequency. The percentages of 
detection in population 2 are below 5-10% and, therefore, we 
are giving results only from population 1 (except when the 
metapopulation setting is considered).

Table 3. Performance for the HAC-based selection detection 
methods in the long-term (t = 10,000) and weak se-
lection (� = 600) cases. Data from populations 1 and 
2 joined (metapopulation scenario). Values corre-
spond to percentages of detection through replicates. 
Threshold for each test is between brackets. 

S �  � %Svdmetapop %SvdMmetapop 

103 12 0 19 (0.64) 42 (1.0)

102 12 4 40 (0.38) 64 (0.54)

97 12 12 50 (0.22) 80 (0.29)

523 60 0 11 (3.80) 43 (5.83)

511 60 4 39 (2.70) 75 (2.02)

449 60 60 69 (0.40) 94 (0.40)

S: Window size in the selective case. �: Mutation rate. �: Recombination rate.

The previously observed relationship between the ratio of 
the window size and the mutation rate does not longer hold. 
Now, more complex interactions appear involving also the 
recombination rate (Tables 4 and 5). When weak selection 
and low mutation rate are considered under the first 100 gen-
erations, the detection is at best of 60% under the metapopu-
lation scenario (Table 4). This is not surprising since there is 
too little time and not enough variation for the effect of se-
lection to leave the adequate footprint in the sequences. With 
higher mutation rate and some recombination, the percent-
ages are slightly improved, especially for SvdM. This fact is 
expected because SvdM is more sensitive to medium-low
frequencies of the favored allele.

The situation does not get much better when t = 500. Alt-
hough it improves for the cases with recombination and 
higher mutation rate resulting in detection power about 60-
70% (Table 5). Additionally, in the case without recombina-
tion, Svd performs clearly better than SvdM. This is proba-
bly due to the extreme linkage favoring higher frequencies or 
the opposite, the eventual loss of alleles during the evolu-
tionary process. The SvdM method is more susceptible to 
this situation since the medium-low frequency alleles have 
more probability to be lost. 

Table 2. Performance for the different selection detection methods in the long-term (t = 10,000) and weak selection (� = 600) cases. 
Data from population 1 (initial frequency of favored allele 1/1000). Values correspond to percentages of detection through 
replicates. Threshold for each test is between brackets. 

S �  � %Svd %SvdM %Omega 

81 12 0 35 (1.43) 27 (2.03) 4.86 (8.42)

82 12 4 70 (0.67) 61 (0.86) 4.60 (8.46)

78 12 12 67 (0.45) 69 (0.47) 4.32 (9.40)

411 60 0 44.5 (6.64) 37.5 (9.55) 19.84 (164.84)

408 60 4 79 (3.51) 71 (4.28) 14.58 (212.08)

374 60 60 63 (0.84) 78 (0.57) 23.95 (232.36)

S: Window size in the selective case for the HAC-based methods. �: Mutation rate. �: Recombination rate. OmegaPlus conditions: Grid 1000; Minwin 1000; Maxwin 20000.
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Table 4. Performance for the HAC-based selection detection methods in the very short-term (t = 100) and weak selection (� = 600) 
cases. Data from population 1 (initial frequency of favored allele 1/1000) or from the metapopulation (last column). Values 
correspond to percentages of detection through replicates. Threshold for each test is between brackets. 

S �  � % Svd %SvdM %SvdMmetapop 

48 12 0 15 (0.22) 54 (0.13) 59 (0.08)

50 12 4 41 (0.16) 40 (0.19) 37 (0.13)

33 12 12 35 (0.11) 26 (0.14) 21 (0.10)

104 60 0 14 (0.17) 5 (0.26) 9 (0.21)

113 60 4 46 (0.18) 59 (0.17) 37 (0.13)

182 60 60 45 (0.31) 57 (0.27) 60 (0.18)

S: Window size in the selective case. �: Mutation rate. �: Recombination rate.

Table 5. Performance for the HAC-based selection detection methods in the short-term (t = 500) and weak selection (� = 600) cases. 
Data from population 1 (initial frequency of favored allele 1/1000) or from the metapopulation (last column). Values corre-
spond to percentages of detection through replicates. Threshold for each test is between brackets. 

S �  � % Svd %SvdM %SvdMmetapop 

38 12 0 46 (0.17) 5 (0.27) 6 (0.28)

31* 12 4 8 (0.15) 3 (0.21) 3 (0.14)

36 12 12 58 (0.15) 36 (0.19) 21 (0.16)

125 60 0 43 (0.20) 21 (0.22) 20 (0.41)

153 60 4 79 (0.15) 70 (0.22) 59 (0.18)

165 60 60 69 (0.22) 67 (0.19) 61  (0.15)

S: Window size in the selective case. �: Mutation rate. �: Recombination rate. *: in the selective case only 37 replicates having a minimum of 25 SNPs.

To explore whether such results would change if selec-
tion is stronger, we studied the cases with � = 60 increasing 
the selection pressure up to 10 times (� = 6000, Table 6). Not 
surprisingly the percentage of detection is, in general, higher 
for both methods. However, when recombination is absent, a 
strange pattern of detection appears with better detection 
after 100 generations that seems to vanish under 500 genera-
tions. This may be caused by a lack of variability since only 
half of the runs had a minimum number of 25 SNPs we re-
quired for the statistics to be applied. For the rest of the cases 
(t = 100 or 500, � = 4 or 60) SvdM performed quite well, 
especially when recombination is high (� = 60).

Robustness and False Positives 

The misspecification of the neutral distribution is a gen-
eral issue for any selection detection method that needs to 
simulate the neutral demography. In the case of HAC-based
algorithms, we have considered both robustness and the rate 
of false positives.

Robustness

What happens if the neutral distribution is misspecified 
by assuming e.g. � = 60 for a data set that in fact corresponds 
to � = 12? By comparison of rows 2 and 5 from (Table 2), it 
can be appreciated that for low recombination rate (� = 4) 
the critical values are very different whether � is 12 (critical 

values 0.7 – 0.9) or 60 (critical values 3.5 – 4). Thus, if the 
second set of critical values was used with a data set that 
corresponds to � = 12, the researcher may have very low 
detection power (less than 3% in this example). An obvious 
solution is to estimate adequately the � parameter. However, 
this is not always possible as it could be necessary to esti-
mate different parameter values and may have wrong or not 
enough information at hand. Fortunately there is a simple 
and easy solution that would work even if the neutral model 
is misspecified; we can take advantage on the strong de-
pendence of the HAC statistics on the window size. In (Table 
2) we see that the optimal window size was also very differ-
ent depending on the � parameter (S = 82 vs. 408). The strat-
egy proposed all through this work consisted of computing 
the neutral distribution fixing the window size to the value 
obtained when computing the HAC statistics for the problem 
data. And the same applies for this case. When computing 
the HAC-statistics for the neutral distribution, the window 
size obtained for the candidate data should be applied. If we 
do so, the method seems quite robust to the parameter mis-
specification (80% of detection with the misspecified neutral 
model, i.e. using � = 60 instead of 12, in this example).

False Positives

The drawback of getting false positives when using the 
HAC-based statistics is the reverse to that exposed above for 
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robustness. Imagine a candidate set of neutral data so that it 
could not be real selection at work. However, under some 
settings, these data can give a high HAC-based optimum e.g. 
under a window size of 408 as computed for the neutral cas-
es corresponding to � = 60 and � = 4 (Table 2). In this case 
the values of the statistics are higher than zero (mean value 
1-1.5 and 95th percentile 3.5 – 4 for Svd and SvdM respec-
tively). Therefore, consider that this neutral set is the prob-
lem data and hence the neutral demography is misspecified 
to be � = 12, � = 4. The first concern the researcher has to 
face occurs because the analysis returns a window size of 
408 and when trying to simulate a neutral demography under 
low mutation rate, � = 12, most runs will not reach enough 
number of SNPs to define such window size. Thus, the au-
tomatic optimal window size must be computed for that spu-
rious neutral demography. When doing so, an average win-
dow size value of S = 73 is obtained. Now, if the critical val-
ues from this simulated neutral demography are used to ana-
lyze the candidate (neutral) data (window size S = 408), a 
large number of false positives is obtained (60-65% in this 
example). The solution is, as before, to use the same window 
size for both the problem data and the neutral distribution. 
Then, if HAC is computed for the candidate data using S =
73, the false positive rate is far below 1%. Thus, as a rule of 
thumb, if we are not able of computing the HAC neutral dis-
tribution with the window size provided by the candidate 
data, we can get the optimal window size for the neutral and 
compute again the HAC using this new window size. In do-
ing so we are going to be protected from false positives even 
under model misspecification. Note however that now, due 
to misspecification of the neutral model, it is necessary to 
use the simulated neutral data to fix the window size for the 
problem data. 

Positional Effect of the Selective Site 

To finish this work, we raise the question about if the 
position of the selective site in the genome affects the ability 
of the HAC-methods to detect selective patterns. This kind 
of question has been rarely considered because a common 
approach is to put the candidate at the center of the genome 
(but see [40]). Thus we focused on two matters: first, to 
study the power of detection and second, to investigate how 
well is the selective effect localized in the genome depending 

on the position. Concerning the detection power, no clear 
effect was noticed in general. However, under equilibrium 
conditions and maximum mutation and recombination rates 
(� = � = 60) there is a positive relationship between the posi-
tion and the power of detection (Fig. 1). A similar pattern 
was also detected under non-equilibrium conditions with � =
60 and � � 4. The maximum power occurs when the selec-
tive position is located in the middle and diminishes as the 
position approach the extremes of the chromosome.

Fig. (1). Power to detect selection under equilibrium conditions (t =
10,000) when the selected locus is localized at different positions in 
the genome. Svd: continuous line. SvdM: dashed line. S = 390. � =
600. � = � = 60. 

Regarding the second question, that is, how well is the 
localization of the selective site achieved? It is worth men-
tioning that under neutral conditions, the maximum Svd and 
SvdM values are expected to be localized at random in the 
genome so that the distribution of positions is uniform be-
tween 0 and 1. Then the expected mean and variance of the 
maximum HAC-value under neutral conditions are 0.5 and 
0.08 respectively. This is exactly what we find in the neutral 
simulation data (not shown). Therefore, the evaluation of the 
ability of the methods to locate the selective site is not easy 
if the site was fixed at the center of the chromosome. We 
find a similar pattern for both Svd and SvdM statistics. In 
(Table 7) the absolute value of the difference between the 
real candidate position and that estimated by SvdM is given. 

Table 6. Performance for the HAC-based selection detection methods in the short-term (t = 100-500) and strong selection (� = 
6000) cases. Data from population 1 (initial frequency of favored allele 1/1000) or from the metapopulation (last column). 
Values correspond to percentages of detection through replicates. Threshold for each test is between brackets. 

S t �  � % Svd %SvdM %SvdMmetapop 

155 100 60 0 76 (0.09) 81 (0.15) 61 (0.10)

73 500 60 0 28 (0.08)* 15 (0.16)* 14 (0.15)

198 100 60 4 30(0.45) 81.5 (0.19) 82.5 (0.12)

40 500 60 4 63 (0.038) 65 (0.035) 59 (0.07)

194 100 60 60 30 (0.375) 76 (0.19) 78.5 (0.11)

67 500 60 60 90 (0.14) 96 (0.09) 70 (0.13)

S: Window size in the selective case. t: number of generations. �: Mutation rate. �: Recombination rate. *: only 46 runs having a minimum of 25 SNPs.
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This difference is called Dsel for the selective data and Dneu
for the neutral one. It can be appreciated that, for sites locat-
ed at the center of the genome (Ps = 0.5), both values Dsel
and Dneu tend to be zero, as expected, because of the above 
mentioned uniform distribution effect. However, for other 
localizations (Ps from 0 to 0.25), the real selective position is 
best localized for the highest recombination cases (� = 60). 
Note that in neutral cases, the value of Dneu tends to be the 
difference between the real position (Ps) and the central posi-
tion. This is expected if, as mentioned, the distribution of 
positions of the maximum value of the statistic has mean 0.5.
For the selective cases, the best localization is attained when 
Ps = 0.25 with a difference of 50Kb (Dsel = 0.05) with respect 
to the real one.

Table 7. Difference (Dsel) between the real position of the selec-
tive site and the localization of the maximum SvdM 
value. And the same difference in the neutral case 
(Dneu). Populations in equilibrium (t = 10,000), � = 600, 
�  = 60. 

� Ps Dsel Dneu

0

0

0.448 0.471

4 0.400 0.469

60 0.294 0.494

0

0.01

0.467 0.460

4 0.413 0.462

60 0.283 0.486

0

0.1

0.354 0.374

4 0.301 0.370

60 0.164 0.392

0

0.25

0.219 0.221

4 0.164 0.220

60 0.051 0.246

0

0.5

0.042 0.028

4 0.009 0.030

60 0.012 0.006

DISCUSSION 

In the present work we studied a genome-wide sequence-
based method for detecting divergent selection with gene 
flow in non-model organisms. Currently, one of the limita-
tions of the sliding window selection detection methods is to 
fix the window size. This should be considered because both 
computational efficiency and the results (robustness and 
false positives), may be highly compromised by this choice 
[30, 32]. Here we contribute to solve this question by auto-
mating the process of deciding the window size just by 
choosing the one that gives the maximum value of the statis-
tic for a given data set. Our results indicate that the HAC-

based methods and specifically the one we propose (SvdM) 
are quite powerful to detect the footprint of moderate diver-
gent selection in presence of gene flow. They are also robust 
to reasonable model misspecification.

A LD-based detection method has also been tested. The 
results show that the LD-based omega statistic is not ade-
quate for the kind of scenario assayed, probably due to the 
intermediate-low level of selection involved and because the 
selective sweep is incomplete. The latter violates the as-
sumptions of this method [33]. Moreover, the positive selec-
tion process may be hidden because it involves two connect-
ed populations undergoing selection in opposite directions. 
For the two HAC-based statistics, the original (Svd [30]) and 
the new (SvdM) performed similarly, although SvdM seems 
best fitted for this kind of scenario especially in the long 
term (Tables 2 and 3). In this case, we were able to detect 
selection for the different mutation (� = 12 or 60) and re-
combination (� = 4, 12 or 60) values with power between 70-
80% or even more when using the metapopulation scenario. 
In general both HAC-methods worked reasonably well pro-
vided that enough variation is at hand. The obvious ad-
vantage of SvdM is that it does not require knowledge of the 
allelic state.

Regarding the short-term scenario, the signal of selection 
was not detected in population 2. The explanation is that 
positive selection is detected on the basis of an increase in 
allelic frequency. In the studied scenario, in population 2, the 
favored allele is already at maximum frequency so selection 
cannot be detected at the beginning of the process. Only 
when the gene flow of the maladapted allele coming from 
the neighbor population has diminished the frequency of the 
well-adapted, can selection to be detected as it occurs on the 
long-term simulations. This could be a problem when work-
ing with real data. A promising solution is to perform the 
analysis at the metapopulation level since in this case there is 
more power to detect selection in both populations (Tables 4,
5 and 6).

The characterization of patterns of genome divergence is 
not easy. A particular genome footprint can arise in different 
ways due to combinations of distinct evolutionary forces. In 
addition, the setting of an appropriate neutral model is far 
from easy [41]. We have shown how to apply the HAC-
based methods in a robust manner by using a step-wise ap-
proach. Basically, we analyze the candidate-data to compute 
the statistics and fix the window size that will be used in a 
second step to simulate the neutral distribution in order to get 
an adequate statistical threshold. When working in this way, 
the effect of reasonable neutral model misspecification 
seems to be minimized and the same is true for the type I 
error.

One remaining issue of sequence-based methods applied 
at a large scale, is the high impact of the recombination rate 
on the genomic patterns and, consequently, in the statistics. 
On the one hand, the combination of selection and migration 
favors the reduction of recombination to preserve stable clus-
ters of linked alleles [7, 12]. This is not the case in the pre-
sent work because we defined only one selective site. In fact, 
under equilibrium conditions, extreme differences as � = 4 or
60 have little impact on the percentage of detection. On the 
other hand, the interaction between population subdivision 
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and selective sweeps critically depends on the recombination 
rate [41-43]. Indeed recombination seems to have an im-
portant effect on the critical thresholds (see Table 2), so that 
a large misspecification of the recombination rate could pro-
duce the failure of the tests. Fortunately, improved methods 
are coming to allow the precise estimation of recombination 
from genome wide data [44].

Concerning the migration rate, we have used a value (Nm
= 10) which is the expected in the ecotype model of L. saxat-
ilis [45]. Given this value and the allele effect (s = 0.15), the 
gene flow is far below the migration threshold [12, 42]. Thus, 
it is not surprising that the favorable allele spreads in popula-
tion 1 overcoming the homogenizing effect of migration. 

We have also studied the impact of the position of the 
selective site onto the detection methods. The relative posi-
tion between selected and neutral sites has great impact on 
the LD generated by a selective sweep [31]. We were able to 
localize the selective site when the real position is not in the 
middle. At best we localized the candidate site in a range of 
50Kb with respect to the real one, which is not a bad result 
for a total chromosome length of 1Mb in a sample size of 
only 50 sequences [22]. Noticeably, a point is raised about 
the fact that the precise localization when the selective site is 
at the middle of the chromosome (Table 7) might be an arti-
fact, since the real position coincides with that expected un-
der the neutral distribution of the statistics. Clearly, the abil-
ity to precisely localize the selective positions still needs 
further improvement [6].

Currently, there is controversy about distinguishing be-
tween divergent or directional selection. For example, the 
LD-based tests can be improved when combined with outlier 
methods in order to make the distinction between both types 
of natural selection [46]. In the present work, we are able to 
discriminate between directional versus (bidirectional) di-
vergent selection at least in the long-term cases, because we 
detect the signature of selection in both populations separate-
ly which is not expected if the selection is acting only in one 
of the populations. Additionally, the HAC-based tests seem 
to take advantage of the unusual patterns of variation that the 
selective sweeps may produce apart from its influence in LD 
[31]. Unfortunately, it is still necessary to simulate the em-
pirical neutral distribution to assess significance. The devel-
opment of an automatic test is work in progress.

Finally, the modification of the statistic that we propose 
may be useful for detecting clues of divergent selection in 
the chromosomes of non-model organisms. There are various 
algorithms that already combine sliding-window approaches 
with FST ones [23]. It might be of interest to further include 
the HAC-based methods for detecting the footprint of diver-
gent selection in the sequences at genomic level. Of course it 
is important not to forget that the ultimate goal is going from 
the DNA patterns to the evolutionary scenario, where the 
causes and effects of changes in the genomes can be mod-
eled in order to gain a better knowledge of the mechanisms 
of evolution and life [7, 23]. In this way, we think that HAC-
based methods may help to the progress of the study of the 
evolutionary processes that underlie the patterns of genomic 
differentiation. 
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