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SUMMARY

The two oncogenes KRas and Myc cooperate to
drive tumorigenesis, but the mechanism underlying
this remains unclear. In a mouse lung model of
KRasG12D-driven adenomas, we find that co-activa-
tion of Myc drives the immediate transition to highly
proliferative and invasive adenocarcinomas marked
by highly inflammatory, angiogenic, and immune-
suppressed stroma. We identify epithelial-derived
signaling molecules CCL9 and IL-23 as the
principal instructing signals for stromal reprogram-
ming. CCL9 mediates recruitment of macrophages,
angiogenesis, and PD-L1-dependent expulsion of
T and B cells. IL-23 orchestrates exclusion of
adaptive T and B cells and innate immune NK cells.
Co-blockade of both CCL9 and IL-23 abrogates
Myc-induced tumor progression. Subsequent
deactivation of Myc in established adenocarcinomas
triggers immediate reversal of all stromal changes
and tumor regression, which are independent of
CD4+CD8+ T cells but substantially dependent on
returning NK cells. We show that Myc extensively
programs an immune suppressive stroma that is
obligatory for tumor progression.

INTRODUCTION

The 1983 discovery of oncogenic cooperation between acti-

vated Ras andMyc (Land et al., 1983) demonstrated the obligate

interdependence of individual oncogenic mutations. However,

30 years on, the mechanisms underlying Ras/Myc cooperation

remain elusive. Early studies focused solely on Ras and Myc’s

complementary cell-intrinsic outputs, such as their co-induction

and/or stabilization of cell cycle proteins (Born et al., 1994; Leone

et al., 1997; Wang et al., 2011) and Myc itself (Sears et al., 2000),

on the reciprocal abrogation of Ras-induced senescence by

Myc (Evan and Littlewood, 1998; Vaqué et al., 2005) and Ras-

dependent suppression of Myc-induced apoptosis (Evan and
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Littlewood, 1998; Tsuneoka and Mekada, 2000), or on the

capacity of Myc to overcome blockade to self-renewal in Ras-

driven cells (Dong et al., 2011; Ischenko et al., 2013). However,

co-transgenic in vivo studies in mice demonstrated that onco-

genic cooperation between Ras and Myc in diverse tissues

(Alexander et al., 1989; Andres et al., 1988; Boxer et al., 2004;

Compere et al., 1989; Podsypanina et al., 2008; Tran et al.,

2008; Yaari et al., 2005) necessarily involves modulation of

interactions between the tumor cells and their stroma.

Both Ras and Myc are implicated in human non-small cell

lung cancer (NSCLC). Oncogenic KRas mutations are thought

to be causal drivers in �30% of NSCLC, especially in smokers

(Rodenhuis et al., 1988), and correlate with poor prognosis

(Graziano et al., 1999). Mutant KRas is principally thought to

drive precocious mitogenic signaling but is also credited with

reprogramming tumor cell metabolism (Kimmelman, 2015),

suppressing apoptosis (Cox and Der, 2003; Kauffmann-Zeh

et al., 1997) and promoting migration, metastasis (Campbell

and Der, 2004), angiogenesis (Kranenburg et al., 2004;

Sparmann and Bar-Sagi, 2004), and inflammation (Karin,

2005)—the latter two presumably by indirect signaling, since

oncogenic Ras is confined to the epithelial tumor cell compart-

ment. Indeed, oncogenic KRas is a potent inducer of various

cytokines in many tumor types, including lung, where IL-8

(CXCL8) and IL-6 both contribute to lung cancer’s signature

inflammatory phenotype (Ancrile et al., 2008; Campbell and

Der, 2004; Ji et al., 2006; Kranenburg et al., 2004; Sparmann

and Bar-Sagi, 2004; Sunaga et al., 2012). Aberrant Myc expres-

sion is also implicated in lung cancer. It is demonstrably over-

expressed in >70% of NSCLC (Richardson and Johnson,

1993), with overt Myc gene amplification in the �20% of tumors

with poorest prognosis (Iwakawa et al., 2011; Seo et al., 2014;

Wolfer et al., 2010). Precocious Myc activity is causally impli-

cated in cancers principally through its capacity to drive tumor

cell proliferation; engage biosynthetic cell metabolism; and

promote angiogenesis, invasion, and metastasis (Dang, 2013;

Rapp et al., 2009; Shchors et al., 2006; Sodir et al., 2011;

Wolfer et al., 2010). Even in NSCLC not overtly driven by

mutations in Ras or Myc themselves, endogenous Ras and

Myc both play prominent, even obligate, roles as downstream

conduits for diverse upstream oncogenic drivers.
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Here, we specifically explore the cooperative contribution

made by Myc deregulation to the evolution and progression of

KRasG12D-driven lung tumors in vivo. Using a rapidly and revers-

ibly switchable genetic system (Murphy et al., 2008), we define

the causal sequence of events by which Myc drives conversion

of indolent adenomas to aggressive, inflammatory, and im-

mune-suppressed adenocarcinomas and by which subsequent

Myc de-activation triggers tumor regression. Our data show a

profound role for Myc in re-programming the tumor microenvi-

ronment—especially the inflammatory and immune components

of tumor stroma.

RESULTS

Myc Deregulation, without Elevated Expression,
Cooperates with KRasG12D to Accelerate Lung
Tumorigenesis In Vivo

To investigate Myc cooperation with KRasG12D in vivo, we used

mice heterozygous for the LSL-KRasG12D allele (Jackson et al.,

2001) and homozygous for Rosa26-lox-STOP-lox MycERT2

(R26LSLMycERT2) (Murphy et al., 2008). In these LSL-KRasG12D;

Rosa26-lox-STOP-lox MycERT2 mice (hereafter referred to as

KM), inhalation of Cre-recombinase-expressing adenovirus

(AdV) triggers sporadic coincident expression in lung of onco-

genic KRasG12D from its endogenous promoter and reversibly

activatable 4-OHT-dependent MycERT2 driven from the consti-

tutively active Rosa26 promoter at low, quasi-physiological

levels (Murphy et al., 2008).

As reported (Jackson et al., 2001), activation of endogenous

KRasG12D alone in lung epithelium elicits slow outgrowth of mul-

tiple independent lesions. Multiple small foci of atypical epithelial

and adenomatous hyperplasia are evident by 6 weeks after

AdV-Cre inhalation, progressing to indolent and non-invasive

adenomas by 12–18 weeks. Aggressive and invasive adenocar-

cinomas emerge sporadically much later, presumably through

additional oncogenic lesions. Activation ofMycERT2 (for 6weeks)

in 12-week-old indolent KRasG12D-driven lesions dramatically

accelerated tumorigenesis over that in KRasG12D-only controls

(Figures 1A, S1A, S2A, and S2B), resulting in highly proliferative,

invasive tumors heavily infiltrated with leukocytes and with

inchoate, nascent vasculature indicative of ongoing angiogen-

esis (Figures 1B–1D). Myc activation profoundly accelerated

lung tumor progression at every stage of adenoma evolution

(Figures S2A and S2B), triggering a precipitous drop in survival

(Figure S2C). Activation of MycERT2 in the absence of KRasG12D

elicited no discernible lung phenotype (Figure S2D), while

tamoxifen treatment alone had no effect on KRasG12D-only

lung tumors (not shown). The aggressive phenotypes of

KRasG12D tumors following MycERT2 activation were indistin-

guishable from those of KRasG12D tumors driven by constitutive

Rosa26-driven Myc (not shown).

Myc Deregulation in Tumor Cells Rapidly Induces
Diverse Stromal Changes
The lung tumors resulting from long-term combined KRasG12D

and Myc activity are more advanced and aggressive than the

indolent tumors driven by KRasG12D alone, being markedly

more proliferative, invasive, inflammatory, and angiogenic.
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Such dramatic stromal changes could either be indirect, passive

consequences of the disruption of normal lung architecture

caused by Myc-driven tumor growth or, alternatively, direct

proximal consequences of Myc activation within the adenoma

epithelial compartment. Hence, to determine howMyc activation

causally elicits its diverse phenotypic changes, we used the

rapid, synchronous, and reversible in vivo activation possible

with MycERT2 (Pelengaris et al., 2002; Shchors et al., 2006; Sodir

et al., 2011). Matched cohorts of adult KM mice were infected

with AdV-Cre, and 12 weeks later, tamoxifen was systemically

administered to activateMyc in the epithelial cells of the incipient

lung adenomas (Figure S1B). Myc activation triggered prolifera-

tion broadly across the whole adenomamass (Figure 2A), as well

as immediate and widespread changes in the tumor-associated

stroma. Within 24 hr of Myc activation, we saw a dramatic influx

of CD206+ macrophages (Figure 2B) into tumor masses and

concurrent loss of CD3+ T (Figure 2B) and B220+ B cells (Fig-

ure S3A). We also saw a rapid decline of NKp46+ natural killer

(NK) cells (Figure 2B) from the juxta-tumoral blood vessels and

tertiary lymphoid structures (TLS) to which they principally

localize (Fridman et al., 2012; Goc et al., 2013; Joshi et al.,

2015) and a fall in total NK cell numbers in the entire lungs (Fig-

ure S3B). This rapid expulsion of NK cells is especially intriguing

given that Myc activation also triggered a profound upregulation

of Rae-1 NKG2D ligands and downregulation of major histocom-

patibility complex (MHC) class I (Figure S3C)—both potent acti-

vating signals for NK-like cells (Morvan and Lanier, 2016)—in

lung adenoma cells. Finally, Myc activation triggered the

abrupt onset of angiogenesis, marked by loss of vessel integrity,

increased vessel leakiness, and relief of the widespread hypoxia

characteristic of the original indolent adenomas (Figures 2C and

S3D). All of these diverse changes in tumor and stroma preceded

overt Myc-induced tumor expansion, and all were sustained so

long as Myc activity was maintained (see below).

Myc-Induced Stromal Changes in Lung Tumors Are
Instructed by CCL9 and IL-23
To exclude the possibility that some of the phenotype we

observe might be a consequence of Cre induction of MycERT2

in long-lived resident alveolar macrophages we directly as-

sessed whether MycERT2 is expressed in the lung tumor-associ-

atedmacrophages using two independent macrophagemarkers

co-expressed on lung tumor-associated macrophages (Fig-

ure S3E)—the mannose receptor CD206 and EMR1, a GPCR

family adhesion molecule recognized by the F4/80 antibody.

First, we showed that abundant nuclear in situ MycERT2 RNA

signals, while evident across the entire adenoma epithelial

compartment of KM mice, are entirely absent from all CD206+

macrophages (Figure S3F). Second, analysis of lung macro-

phages harvested from disaggregated KM mouse lungs and

purified by F4/80 antibody affinity showed complete absence

of MycERT2 mRNA expression, all of which was confined to the

F4/80 negative lung cell fraction (Figure S3G). Hence, none of

the stromal changeswe observe are the result of direct activation

of MycERT2 in macrophages.

As MycERT2 is activated only in the epithelial compartment of

the KM lung adenomas, the rapid stromal changes that Myc

elicitsmust bemediated by signals released from those epithelial
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Figure 1. Deregulated Myc Cooperates Oncogenically with KRasG12D in Lung

(A) Representative H&E staining of lung sections 18 weeks after activation of KRasG12D either without (control) or with (tamoxifen) Myc deregulation for the final

6weeks. Dotted lines in top panels highlight ‘‘inflamed’’ regions. Boxed regions in the top row images are enlarged in the second row of panels, and boxed regions

in the middle panels are further enlarged in the bottom row. T = tumor. Black arrows indicate palisades of migratory tumor cells. Scale bars are representative for

rows of panels.

(B–D) Representative immunostaining for the pan-leukocyte marker CD45 (B), the proliferation marker Ki67 (C) and the endothelial cell marker CD31 (D) of lung

sections 12 weeks after activation of KRasG12D either with (tamoxifen) or without (control) Myc deregulation for the final 6 weeks. Higher magnifications of the

boxed areas are shown in the panels immediately below. T = tumor. Results shown in (C) and (D) are from serial sections. Scale bars are representative for rows of

panels.

(E) Quantification analysis of Ki67 and CD31 immunostaining of lung sections 12 weeks after activation of KRasG12D without (6 wks oil) or with (6 wks tam) Myc

activated for the last 6 weeks. FoV = field of view. n = 30 individual tumors (small symbols) from 6 total mice (large symbols) per time point. Error bars represent the

median with interquartile range. p values are based on Student’s t test. ****p < 0.0001.

See also Figures S1 and S2.
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cells. To identify them, we activated MycERT2 in adenoma-

bearing KM mice, harvested their lungs after 8 hr, and used

whole-lung protein extracts to interrogate an inflammation anti-

body array. Of 40 potential candidates, only two inflammatory

signals were detectably upregulated by Myc: the chemokine

CCL9 (a.k.a. MIP-1g) and the p40 subunit common to IL-12

and IL-23 (Figures 3A and 3B). This upregulation was confirmed

immunohistochemically: by 3 days post Myc activation, intense

cytoplasmic CCL9 immunostaining and cell surface immuno-

staining for the p19 subunit of IL-23 were evident (Figure S4A)

in TTF1+ epithelial cells (Stenhouse et al., 2004) while absent

from both non-tamoxifen-treated controls (Figure S4B) and

tamoxifen-treated KRasG12D-only-driven adenomas (not

shown). The extremely rapid induction of both CCL9 and IL-23

following epithelial Myc activation, plus their histological co-

localization, confirm the adenoma epithelial compartment as

the source of CCL9 and IL-23 production and secretion.

To determine whether CCL9 and IL-23 release is the proximal

trigger for the stromal changes that Myc activation elicits,

adenoma-bearing KM mice were pre-treated with CCL9- and/

or IL-23-blocking antibodies and Myc then activated by

tamoxifen administration (Figures S1C and S1D). Co-blockade

of both CCL9 and IL-23 sharply reduced Myc-induced macro-

phage influx; blocked the Myc-induced angiogenic switch; and

forestalled the loss of T, B, and NK cells (Figures 3C and S4C).

And while Myc-induced tumor cell proliferation was only

modestly suppressed, it was now accompanied by significant

tumor cell apoptosis (Figure 3C), resulting in significant reduction

in tumor burden by 7 days’ blockade (Figures 3D and 3E). To

define the individual roles of CCL9 and IL-23 in mediating Myc-

induced stromal changes, we used antibodies to inhibit each

signal individually. Blockade of IL-23 had no discernible impact

on either Myc-induced macrophage influx or angiogenesis but

profoundly blocked Myc-induced loss of T, B, and NK cells;

weakly suppressed tumor cell proliferation; and potently exacer-

bated tumor cell apoptosis (Figure 3C). By contrast, blockade of

CCL9 alone profoundly inhibited Myc-induced macrophage

influx, angiogenesis, and T cell loss but had no impact on

Myc-driven NK cell exclusion, weakly inhibited B cell loss, and
Figure 2. Deregulation of Myc in Epithelial Adenoma Cells Immediatel

(A) Quantitative and representative immunohistochemical analysis of Ki67 expres

compared to KRasG12D-only (oil-treated control). Boxed regions are magnified b

(B) Quantification and representative immunostaining for the activated macroph

sections of KRasG12D-driven adenomas at indicated time points after Myc activa

shown for CD206 and CD3, and quantitation is restricted to the areas within tumo

NK cells cluster principally in juxta-tumoral tertiary lymphoid structures (TLSs),

Hence, quantitation of NK cells includes both tumor area and tumor-associated

tumors are shown and higher magnifications of boxed regions are displayed as

thereof) or residing next to tumor-associated blood vessel and/or airway. T = tum

(C) Quantification and representative immunostaining using the endothelial cell m

(A). Grayscale insets are magnified from the panels immediately above. (Thir

fluorescein isothiocyanate (FITC)-conjugated Lycopersicon esculentum lectin (g

conjugated Ricinus communis agglutinin I (red), which binds to the endothelial bas

Myc activation (tamoxifen). (Bottom row) Tumor hypoxia assessed by hypoxypro

across each row.

Quantification graphs: FoV = field of view. n = 30 individual tumors (small symbols)

interquartile range (Ki67, CD206, CD3, CD31) or mean ± SD (NKp46). p values

(NKp46). NS = non-significant; *p < 0.05, ***p < 0.001, ****p < 0.0001.

See also Figures S1, S3, and S7.
only modestly inhibited tumor cell proliferation or exacerbated

apoptosis (Figure 3C).

To dissect further the causal sequence by which CCL9 and

IL-23 modify lung tumor stroma, we next examined the mecha-

nism behind Myc-induced angiogenesis. The rapid remodeling

of tumor vasculature that Myc triggers is a prototypical effect

of VEGF, and indeed, immunohistochemistry using the GVM39

monoclonal antibody that specifically recognizes VEGF bound

to its cognate VEGFR2 receptor (Brekken et al., 1998) indicated

rapid VEGF engagement of endothelial cell VEGFR2 following

Myc activation (Figure 4A). To identify the source of VEGF, we

assayed VEGFA expression in F4/80-affinity-isolated lung

macrophages, since macrophages are established drivers of

angiogenesis in diverse tumors (Pollard, 2004). VEGFA mRNA

expression was evident in the F4/80+ cell fraction of tamoxifen-

treated KM lungs (Figure 4B), but only after MycERT2 activation.

By contrast, expression of PD-L1, constitutive in F4/80+ KM lung

macrophages (Igarashi et al., 2016), was unaffected by Myc

activation status (Figure 4B). Together with our observation

that Myc-driven KM lung tumor angiogenesis is completely

absent when macrophage influx is abrogated by CCL9

blockade, our data identify macrophage-derived VEGF as the

principal instigator of Myc-induced lung adenoma angiogenesis.

Since CCL9 blockade prevented Myc-induced loss of T cells

from KM adenomas, we hypothesized that incoming macro-

phages might mediate T cell exclusion. Immunostaining showed

PD-L1 expression on lung macrophages but absent from the

adenoma epithelium, irrespective ofMyc status (Figure 4C). After

Myc activation, F4/80+ PD-L1+ macrophages rapidly accumu-

lated in the tumors (Figure 4D), coinciding temporally with loss

of CD3+ T cells (see Figure 2B). To test directly whether accumu-

lation of PD-L1-positive macrophages was causally responsible

for the T cell loss, we activated MycERT2 in adenoma-bearing

KM mice while concurrently administering PD-L1-blocking

immunoglobulin (Figure S1E). PD-L1 blockade completely abol-

ished Myc-induced T cell loss and partially suppressed B cell

loss but had no discernible impact onMyc-inducedmacrophage

influx, angiogenesis, or the rapid decline in juxta-tumoral NK

cells (Figure 4E). Moreover, PD-L1 blockade—and consequent
y Re-programs the Tumor Stroma

sion at indicated time points (0, 1, 3, and 7 days) after activation of Myc (tam)

elow. Scale bars apply across each row.

age marker CD206, the T cell marker CD3, and the NK cell marker NKp46 on

tion (tamoxifen). Two representative individual tumors from serial sections are

r boundaries. Boxed regions are shown at higher magnification directly below.

and/or adjacent to large tumor-associated blood vessels (V) and airways (A).

vasculature and TLSs. For NK cell staining (NKp46), lung regions with multiple

insets. Arrows indicate NK cells occupying tertiary lymphoid structure (or part

or.

arker CD31 (top two rows) in lung tumor tissue isolated from mice described in

d row) Visualization of vascular integrity and permeability in tumors—using

reen), which binds to the luminal surface of all blood vessels, and rhodamine-

ement membrane only of leaky nascent vessels—at indicated time points after

be immunostaining. Black arrows indicate hypoxic regions. Scale bars apply

from 6mice (large symbols) per time point. Error bars represent themedianwith

are based on Student’s t test (Ki67, CD206, CD3, CD31) or two-way ANOVA
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Figure 3. IL-23 and CCL9 Mediate Myc-Induced Remodeling of Lung Tumor Stroma

(A) Representative inflammation antibody arrays probed with whole-lung protein lysates from mice treated for 8 hr with oil (control) or tamoxifen to activate Myc.

(B) Quantification of IL12p40/70 and CCL9 signals derived from arrays shown in (A). Each individual data point represents a single mouse.

(legend continued on next page)
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persistence of T cells—had no measurable inhibitory impact on

tumor cell proliferation (Figure 4E), tumor growth, or tumor

burden (Figure 4F).

Taken together, our data delineate a causal sequence

whereby Myc activation in lung epithelial adenoma cells triggers

rapid release of IL-23 and CCL9. IL-23 drives the rapid exit of T,

B, and NK cells, and since IL-23 blockade triggers tumor cell

apoptosis, we infer its activity is required for outgrowth of

Myc-driven lung adenocarcinomas. CCL9 is principally respon-

sible for the rapid recruitment of PD-L1+ macrophages into the

tumor environment whose rapid induction and release of VEGF

drives the CCL9-dependent angiogenic switch while the PD-L1

they express is, along with IL-23, required for the rapid loss of

T, but not of NK, cells.

Lung Tumors, and Their Associated Stroma, Rapidly
Acquire Dependency upon Myc Activity for Their
Maintenance
Previous transgenic studies of tumors co-driven by oncogenic

Ras and Myc concur that such tumors are dependent on both

oncogenes for their maintenance. Acquisition of such depen-

dence, sometimes dubbed ‘‘oncogene addiction,’’ is a widely

reported phenomenon, although its underlying mechanistic

basis remains unknown.

To address whether KRasG12D-driven lung tumors acquire de-

pendency on Myc, we activated MycERT2 in adenoma-bearing

KM mice for 6 weeks and then de-activated it by tamoxifen

withdrawal (Figure S1F) (Wilson et al., 2014). Myc de-activation

triggered an immediate drop in tumor cell proliferation, rapid

exit of macrophages and re-entry of CD3+ T cells, an influx of

NKp46+ NK cells, and induction of tumor apoptosis (Figure 5A)

and tumor regression, evident by the appearance of voids within

the tumor masses and profound drop in overall tumor burden

(Figure 5B). Concurrently, tumor blood vessels ‘‘normalized’’

(Figure 5C) and hypoxia rose (Figure S5).

To ascertain how rapidly Myc dependency arises, Myc was

activated in adenoma-bearing KM mice for 7 days—sufficient

time to induce all stromal changes and for significant increase

in tumor load (Figures 6A and S1G). De-activating Myc, even

after this short period of Myc activity, triggered an immediate

drop in tumor cell proliferation, rapid efflux of macrophages,

normalization of vasculature, and repopulation by T and NK cells

(Figures 6B and 6C). Hence, the dependency of KRasG12D-driven

lung adenocarcinomas on deregulatedMyc activity arises imme-

diately across the whole tumor mass and across all tumors. Of

note, however, Myc de-activation failed to drive complete tumor
(C) Quantification and representative examples of immunostaining for CD206, CD

sham treated (IgG control), treated with either IL23p19- or CCL9-blocking antibo

areas in each image are shown enlarged in the panels directly below. Scale bars

(D) Quantification of tumor cell proliferation (Ki67, left) and cell death (TUNEL, righ

IgG control or co-treated with IL23p19- and CCL9-blocking antibodies.

(E) Quantification of fold change in tumor cell death (TUNEL) and proliferation (Ki67

mice co-treated with either IgG control or co-treated with IL23p19- and CCL9-b

Quantification graphs: FoV = field of view. Small symbols = individual tumors, large

anti-IL23p19 or anti-CCL9 treatment) or n = 5 mice and n = 30–50 tumors (IgG co

treatment point. (E) n = 6 mice per treatment group. Error bars represent the media

CD31, B220, Ki67, TUNEL) or two-way ANOVA (NKp46). NS = non-significant; *p

See also Figures S1, S4, and S7.
regression; rather, the tumors regressed back to their previously

indolent KRasG12D-only adenoma state and thereafter persisted

indefinitely (Figures 6D and S1H).

The tight temporal coincidence between tumor cell apoptosis

and re-entry of T and NK cells (Figure 6B) prompted us to address

whether T or NK cells play a causal role in Myc-de-activation-

induced tumor regression. To investigate this, we depleted KM

mice of either CD4+ helper and CD8+ effector T cells or NK cells

using appropriate antibodies (Figure S1I). Systemic anti-CD4/

CD8 treatment efficiently ablated all detectable circulating

and splenic T cells (Figure 7A) and completely abrogated the re-

population of tumors by CD3+ T cells following Myc de-activation

(Figure 7B). However, absence of CD4+/CD8+ T cells had no

measurable inhibitory effect on induction of tumor apoptosis

(Figure 7C), nor did it inhibit macrophage efflux or influx of NK

cells (Figure S6A). By contrast, systemic depletion of NKp46+

NK cells using asiolo-GM1 antibody (Figures 7A and 7B), while

having no impact on Myc deactivation-induced T cell influx

(Figure S6B), profoundly inhibited both efflux of macrophages

(Figure S6B) and induction of the apoptosis responsible for tumor

regression (Figure 7C).

DISCUSSION

To address the mechanism and dynamics of cooperation be-

tween oncogenic KRasG12D and Myc in discrete tissues in vivo,

we used KM mice that combine the well-characterized

LSL-KRasG12D mouse lung tumor model (Jackson et al., 2001)

with our Rosa26-LSL-MycERT2 mouse (Murphy et al., 2008).

Inhalation by KM mice of AdV-Cre sporadically co-induces

expression of both oncogenic KRasG12D and tamoxifen-switch-

able MycERT2 in bronchioalveolar epithelium; in the resulting

adenomas, oncogenic KRasG12D activity is expressed constitu-

tively while Myc activity may be reversibly superimposed at

will. Adeno-Cre activation of KRasG12D alone initiates formation

of sporadic dysplasias that slowly progress to indolent ade-

nomas and only rarely and sporadically evolve into aggressive

adenocarcinomas. Activation of Myc alone had no observable

effect on lung tissues. By contrast, sustained co-activation of

Myc drove dramatic progression into highly proliferative, inva-

sive, angiogenic, inflammatory, and lethal adenocarcinomas.

Long-term Myc activation studies provide little mechanistic

cause-and-effect information as to how Myc deregulation drives

progression of indolent KRasG12D-driven adenomas into aggres-

sive adenocarcinomas. In particular, whether the profound

stromal changes that Myc elicits are direct consequences of
3, CD31, NKp46, B220, Ki67, and TUNEL after Myc activation for 3 days in mice

dies, or co-treated with both IL23p19- and CCL9-blocking antibodies. Boxed

apply across each row.

t) after Myc activation for 7 days (with tamoxifen) in mice co-treated with either

) (left) and tumor burden (right) afterMyc activation for 7 days (with tamoxifen) in

locking antibodies.

symbols = average per mouse. (C) n = 4mice and n = 25–35 tumors (individual

ntrol or anti-IL23p19 and anti-CCL9 co-treated). (D) n = 30 tumors from 6 mice

n with interquartile range. p values are based on Student’s t test (CD206, CD3,

< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 4. Macrophages Mediate Myc-Induced Angiogenesis and T Cell Exclusion

(A) Coincident immunostaining of Meca32 and receptor-bound VEGF (VEGF:VEGFR2) in tumors at indicated time points (1, 3, and 7 days) after activation of Myc

by tamoxifen treatment compared to KRasG12D-only (control). Inset shows enlargement of regions boxed in white. Scale bars apply across each row.

(B) Quantitative RT-PCR for VEGFA and PD-L1mRNA in F4/80+ macrophages and F4/80� lung cells derived from whole tumor-laden lungs following 3 days Myc

activation (tam) versus to KRasG12D-only control (3d oil).

(legend continued on next page)
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Myc programming or chronic host tissue responses to intrusion

by the tumor is unclear. To distinguish between these two possi-

bilities, we used the remarkably synchronous and rapid in vivo

Myc activation afforded by the MycERT2 switchable system

(Christophorou et al., 2005; Littlewood et al., 1995; Pelengaris

et al., 2002; Shchors et al., 2006; Wilson et al., 2014) to delineate

the temporal sequence of events by which Myc activation drives

transition to adenocarcinoma.

Acute MycERT2 activation in indolent KRasG12D-driven lung

adenomas rapidly reprogrammed both hematopoietic and endo-

thelial stromal compartments, driving rapid influx of CD206+

macrophages prototypically associated with tissue remodeling

and immune regulation in diverse tissues (Martinez and Gordon,

2014; R}oszer, 2015) including lung (Aggarwal et al., 2014); rapid

loss of T, B, andNK cells; and vasculature remodeling coincident

with transition from localized hypoxia to normoxia. These diverse

stromal changes preceded any significant expansion of the

tumor masses. Hence, the signature ‘‘stromatype’’ of the

aggressive adenocarcinomas induced by sustained co-activity

of KRasG12D and Myc is an immediate, instructed consequence

of Myc activation, not an indirect or generic tissue reaction to

disruption by the expanding tumor in its midst.

Since MycERT2 is activated only in the epithelial compartment

of KM adenomas, the consequent stromal changes must be

mediated by signals originating in that epithelium. A broad

search identified only two candidates, CCL9 and IL-23, as

induced in lung adenomas with sufficient rapidity (by 8 hr) to

be proximal causes of the Myc-induced stromal changes we

observe. Both immunohistochemically localized to the TTF1+

epithelial compartment. CCL9, a.k.a. MIP-1g, is a murine ligand

for the CCR1/CD191 receptor present on monocytes, T cells,

and some immature CD34+ myeloid-derived suppressor cells

(MDSCs). It is a potent chemo-attractant for monocytes, macro-

phages, and MDSCs (White et al., 2013), while CCR1 ligation is

implicated in progression of adenomas to carcinomas (Kitamura

et al., 2007; Koizumi et al., 2007) and inflammatory lung pathol-

ogies (Kitamura et al., 2015). IL-23 is a pro-inflammatory cyto-

kine that suppresses wound resolution and is pro-tumorigenic

in many tissues (Langowski et al., 2006), including lung (Baird

et al., 2013). IL-23 is the principal trigger of TH17 lymphocytes,

anROR1g-dependent T cell subset whose consequent secretion

of IL-17 and IL-22 induces, in turn, production of diverse inflam-

matory cytokines, chemokines, and prostaglandins by many

stromal cell types (Gaffen et al., 2014). TH17 cells are also highly
(C) Immunofluorescence analysis of F4/80 and PD-L1 in lung tumors following M

F4/80+ cells.

(D) Immunostaining and respective quantification of PD-L1-positive macrophages

Scale bars apply across each row.

(E) Quantification of immunohistochemical analysis for CD3, B220, CD206, NKp4

with systemic treatment of PD-L1 blocking antibody compared to KRasG12D-onl

(F) H&E staining (left) and quantification (right) of lung tumor burden in mice tre

PD-L1-blocking antibody. Each individual data point represents a single mouse

Quantification graphs: FoV = field of view. Small symbols = individual tumors, la

single mouse. n = 5 (F4/80�; VEGFA), or 6 (F4/80+; VEGFA, PD-L1), and shows

(D) n = 20 individual tumors from 4mice per treatment group. Error bars represent

treatment group. Error bars represent the median with interquartile range (CD3

Student’s t test (CD3, B220, CD206, CD31, Ki67) or two-way ANOVA (NKp46). N

See also Figures S1 and S7.
immunosuppressive (Bailey et al., 2014; Chang, 2015; Chang

et al., 2014). IL-23 is also a potent suppressor of innate immunity,

most notably NK cells (Teng et al., 2010). IL-23 shares a common

p40 subunit with IL-12 that, in many ways, antagonizes IL-23 in

cancers by boosting anti-tumor immunity (Ngiow et al., 2013;

Teng et al., 2012) and promoting injury resolution and subse-

quent tissue re-normalization (Ngiow et al., 2013).

Co-blockade of both CCL9 and IL-23 profoundly inhibited all

the diverse stromal changes that Myc elicits, suppressed

Myc-induced tumor cell proliferation, and triggered abrupt onset

of apoptosis. Blockade of CCL9 alone had little impact on tumor

cell proliferation or apoptosis but completely inhibited

Myc-induced macrophage influx, angiogenesis, and T cell loss.

It also reduced loss of B cells yet had no inhibitory impact on

Myc-driven loss of juxta-tumoral NK cells. By contrast, blockade

of IL-23 alone had no inhibitory impact on macrophage influx or

angiogenesis but strongly suppressed T cell loss, completely

blocked the loss of NK and B cells, mildly suppressed tumor

cell proliferation, and unlike blockade of CCL9 alone, triggered

widespread tumor cell apoptosis. From these studies, we draw

several conclusions (Figure S7). First, CCL9 and IL-23 are the

principal epithelial signals that instruct the immediate and

diverse stromal changes that Myc elicits. Second, while both

CCL9 and IL-23 are crucial for the rapid loss of T and B cells

following Myc activation, CCL9 alone is required to drive macro-

phage recruitment and angiogenesis, while IL-23 alone is

required for rapid exclusion of NK cells. Third, since blockade

of IL-23, but not CCL9, triggers substantial tumor cell apoptosis,

IL-23 plays a unique role in survival and maintenance of

Myc-driven lung tumors.

Myc activation rapidly induced a profound angiogenic switch,

evident by blood vessel permeability and loss of integrity that

coincided with VEGF activity. VEGF was potently induced in

the macrophage compartment following Myc activation, impli-

cating macrophages as the principal angiogenic mediators,

consistent with the inhibition of Myc-induced angiogenesis by

CCL9 blockade and the widely reported angiogenic role of mac-

rophages (Chanmee et al., 2014; Riabov et al., 2014) (Figure S7).

In exploring the mechanism underlying the peculiar obligate role

of CCL9 in Myc-driven exclusion of T and B cells, but not NK

cells, we noted the rapid rise in the lung tumors of cells express-

ing the immunosuppressive ligand PD-L1 (a.k.a. B7-H1 or

CD274) following Myc activation. However, PD-L1 expression

was not directly induced by Myc, as recently reported (Casey
yc activation. Scale bar applies to both large panels. White arrows indicate

in tumors after Myc activation for indicated time points (tamoxifen). T = tumor.

6, CD31, and Ki67 of lung tumors after Myc activation for 2 weeks concurrently

y tumors (oil control).

ated concurrently with tamoxifen (to activate Myc) and either control IgG or

(n = 6 mice per group).

rge symbols = average per mouse. (B) Each individual data point represents a

the expression data normalized to the average of the respective oil control.

the median with interquartile range. (E) n = 30 individual tumors from 6mice per

, CD206, B220, CD31, Ki67) or mean ± SD (NKp46). p values are based on

S = non-significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 5. Myc De-activation Triggers Imme-

diate Collapse of Myc-Induced Stroma

Together with Tumor Regression

(A) Quantification of immunostaining for Ki67,

CD206, CD3, NKp46, and TUNEL in adenocarci-

nomas at indicated times after Myc de-activation

(off tam) compared to Myc activation for 6 weeks

(6w tam).

(B) (Left) Representative lung lobes of tumor load

7 days after Myc de-activation (6w tamoxifen

treatment versus 7d off tamoxifen). Higher

magnification of boxed regions in panel to their

right. (Right) Quantification of lung tumor burden in

mice treated with tamoxifen for 6 weeks (6w tam)

followed by withdrawal of treatment for 7 days (7d

off).

(C) Quantification and representative CD31 im-

munostaining at indicated times following Myc de-

activation (off tam) compared to Myc activation for

6 weeks (6w tam). Boxed areas in each image are

shown enlarged in the panels directly below. Scale

bars apply across each row.

Quantification graphs: FoV = field of view. (A andC)

n = 30 individual tumors (small symbols) from 6

mice (large symbols) per time point. (B) 6 mice per

time point. Error bars represent the median with

interquartile range (Ki67, CD206, CD3, TUNEL) or

mean ± SD (NKp46). p values are based on Stu-

dent’s t test (Ki67, CD206, CD3, TUNEL) or two-

way ANOVA (NKp46). *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.

See also Figures S1 and S5
et al., 2016), but entirely confined to incoming F4/80+ macro-

phage-like cells. These are known to express PD-L1 (Igarashi

et al., 2016), whose increase is a simple consequence of

CCL9-dependent macrophage influx. Systemic blockade of

PD-L1 completely abrogated Myc-induced loss of CD3+

T cells—confirming macrophage-derived PD-L1 as necessary

forMyc-induced T cell depletion—but had no effect onNK exclu-

sion or macrophage influx. The extremely rapid Myc-induced,

CCL9-dependent T cell depletion occurred without detectable
1310 Cell 171, 1301–1315, November 30, 2017
T cell apoptosis, and this, together

with the equally rapid re-appearance of

T cells in adenomas upon Myc de-activa-

tion, suggests that migration of T cells out

and in to adenoma tissue is the likely

mechanism for the rapid T cell dynamics

that Myc elicits.

We next assessed Myc’s role in

maintaining lung adenocarcinomas.

Acute Myc de-activation in established

KM adenocarcinomas triggered rapid

and synchronous regression of all tumors,

characterized by a direct reversal of all

Myc-induced stromal changes: macro-

phages rapidly exited the tumor masses;

tumor vasculature reformed into discrete

vessels (‘‘vascular re-normalization’’)

and widespread hypoxia reappeared;
T, B, and NK cells rapidly repopulated the tumors and their envi-

rons; and tumor cell apoptosis and tumor regression rapidly

ensued. Remarkably, even very short-term (7 days) activation

of ectopic Myc was sufficient to establish suchMyc dependency

in tumors. Acquired dependency on driver oncogenes (onco-

gene addiction) is a pervasive phenomenon that provides the

underpinning rationale for most current targeted therapies. Its

mechanism remains unclear, although co-dependency of onco-

genic mutations, the abrupt re-instatement of cell intrinsic or



BA

C

D

Figure 6. Dependency on Myc is Rapidly

Acquired by Lung Adenocarcinomas

(A) Representative immunostaining for Ki67,

CD206, TUNEL (white arrows), and CD31 in ade-

nocarcinomas at indicated time points following

Myc activation for 7 days (7d tam) and subsequent

de-activation (7d tam, then 7d off) compared to

KRasG12D-only (control). The tumor edges boxed

in the top panels are shown enlarged below. Scale

bars apply across each row.

(B) Quantification of histological changes in Ki67,

CD206, TUNEL, CD3, and NKp46 in lung tumors

after short term (7d tam) Myc-activation and sub-

sequent Myc de-activation for 3 and 7 days (3d, 7d

off) compared to KRasG12D-only control (7d oil).

(C) Fold change in tumor cell proliferation (Ki67)

and death (TUNEL) inmice treated with oil (control)

or with tamoxifen for 7 days followed by tamoxifen

withdrawal for 3 or 7 days. Individual and average

values of tumor cell death and proliferation are

displayed in (B).

(D) Representative H&E staining of part of and

whole lung lobes together with corresponding

quantification of total tumor burden (left y axis) and

tumor multiplicity (right y axis) in lungs of mice

treated with tamoxifen for 7 days followed by Myc

de-activation for either 7 days or 4 weeks (7d, 4w

off) and compared to KRasG12D-only control

(7d oil). T = tumor.

Quantification graphs: FoV = field of view. (B):

n = 25 individual tumors (small symbols) from 5

mice (large symbols) per time point. (D) Each

individual data point represents a single mouse

(n = 8 mice per group). Box and whisker graphs

represent tumor multiplicity of 8 mice per group.

Error bars represent the median with interquartile

range (Ki67, CD206, TUNEL, CD3) or mean ± SD

(NKp46). p values are based on Student’s t test

(Ki67, CD206, TUNEL, CD3) or two-way ANOVA

(NKp46). NS = non-significant; *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S1.
immune checkpoints, asynchrony in attenuation rates of mito-

genic versus survival signals, and collapse of tumor stroma

have all been implicated (Restifo, 2010; Sharma et al., 2006;

Sodir et al., 2011; Tran et al., 2011). Intriguingly, once the

Myc-driven KM tumors had regressed back to their previous

KRasG12D-only adenoma state and size, tumor regression

stalled indefinitely. Similarly incomplete regression upon Myc

de-activation has been seen in other Myc transgenic models

(Boxer et al., 2004; Podsypanina et al., 2008; Tran et al., 2008).

It contrasts with the complete regression—indeed, eradica-

tion—seen upon inhibition of Myc in KRasG12D-driven lung
Cell
tumors via the dominant negative

Omomyc mutant (Soucek et al., 2008;

Soucek et al., 2013)—an apparent

discrepancy that likely arises because

Omomyc inhibits not only Myc trans-

genes, but also endogenous Myc. The

rapidity with which Myc dependency
arises is incompatible with the idea that Myc addiction reflects

acquired co-dependency upon other oncogenic mutations.

Rather, our data favor a tight temporal and spatial co-depen-

dence betweenMyc driven tumor cell expansion andMyc-driven

tumor stroma. However, precisely which attributes of the

Myc-instructed tumor stroma are so essential for tumor mainte-

nance are less clear. T cells do not appear to be involved, since

abrogation of Myc-driven T cell expulsion by PD-L1 blockade

has no inhibitory impact on Myc-driven lung tumor growth, pro-

gression, or burden. Moreover, while systemic depletion of CD4+

and CD8+ T cells prevented T cell re-colonization of tumors
171, 1301–1315, November 30, 2017 1311
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Figure 7. Depletion of NKp46+ Cells, but Not of CD4+ and CD8+ T Cells, Retards Tumor Regression following Myc De-activation

(A) Flow cytometric quantification of CD3+, CD4+, and CD8+ T cells and NKp46+ NK cells in spleen and blood after systemic administration of, respectively, CD4/

CD8 (left)- or asialo-GM1 (right)-blocking antibodies in mice up to 3 days after 7 days of tamoxifen (Myc on) treatment. Representative flow profiles of spleen

CD3+/CD4+, CD3+/CD8+, NKp46+, and CD3+ cells are shown.

(B) (Left)Quantitationof immunostaining forCD3+Tcells in tumorsafter7daysMycactivation (7dtam, redsquares) thenfollowing3daysMycde-activation in IgGcontrol-

treatedmice (black circles) versus mice treated with aCD4/aCD8 antibody (black squares). Bottom panel shows representative immunohistology. Arrows depict CD3+

T cells. T = tumor. Right: Quantification of immunostaining for NKp46+NK cells in tumors after 7 daysMyc activation (7d tam), then following3 daysMycde-activation in

IgG control-treated mice versus mice treated with a-asialo-GM1. Bottom panel shows representative examples of the immunohistology. A = airway. T = tumor.

(C) (Left) Quantification and representative immunostaining for tumor cell death (TUNEL) following Myc de-activation for 3 days in tumors in CD4+/8+ T cell

competent (IgG-control) versus CD4+/8+ T cell-deficient mice (aCD4/aCD8). Right: Quantification and representative immunostaining for cell death (TUNEL)

following Myc de-activation for 3 days in NKp46+ NK cell-competent (IgG-control) versus NKp46+ NK cell-deficient mice (a-asialo-GM1 treated).

Quantification graphs: FoV = field of view. Small symbols = individual tumors, large symbols = average permouse. (A) n = 4 (IgG) or 5 (aCD4/aCD8 or a-asialo-GM1).

(B) n = 20or 25 individual tumors from4 (7d Tam, IgG) or 5 (aCD4/aCD8)mice per time point, respectively. (C) n = 5mice per treatment group. n = 30 individual tumors

from 5 mice per treatment group. Error bars represent the median with interquartile range (CD3, TUNEL) or mean ± SD (NKp46). p values are based on Student’s

t test (CD3, TUNEL) or two-way ANOVA (NKp46). NS = non-significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figures S1, S6, and S7.
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following Myc de-activation, it does not measurably retard either

stromal collapse or tumor regression. By contrast, our data do

suggest a possible role for NK cells in limiting KM tumor growth.

Myc rapidly induced expression of Rae-1, the principal acti-

vating ligands for the NK cell NKG2D receptor, in adenoma

epithelial cells. It also downregulated MHC class I, a potent

trigger of NK cell activation as well as a means of adaptive

T cell evasion (Töpfer et al., 2011). Given two such potent

NK cell activators, it is difficult to see how KM tumors could

survive without the rapid clearance of NK cells that IL-23 medi-

ates. Indeed, blockade of IL-23 in Myc-stimulated KM tumors

triggered profound tumor apoptosis that was not seen when

expulsion of T cells alone was blocked by PD-L1 blockade. We

also note that the transient wave of apoptosis (Figure 6C)

responsible for regression of KM tumors induced by Myc deac-

tivation precisely coincides temporally with transient influx of NK

cells and is significantly suppressed when NK cells, but not

CD4+CD8+ T cells, are systemically ablated.

Advantageous though it may be for tumors, the question

remains as to why Myc is bestowed with the capacity to drive

rapid clearance of adaptive and innate lymphocytes cells, a

property of Myc we see across diverse tissues. We guess the

answer lies in the physiological role of Myc as the transcriptional

coordinator of the diverse array of intra- and extracellular pro-

cesses needed for regeneration in lung (Dong et al., 2011) and

other tissues after injury. Such regeneration requires complex,

tissue-specific interplay between epithelial, myeloid, mesen-

chymal, and endothelial stromal elements needed to clear

debris, seal the wound, and regenerate the tissue. In sterile situ-

ations (where pathogens are no complication), this rapid

outgrowth phase is typically associated with rapid influx of

immunosuppressive monocytic and myeloid-derived suppres-

sor cells (Wynn and Vannella, 2016) followed by a resolution

phase marked by return of lymphoid cells (D’Alessio et al.,

2009; Wu et al., 2013) during which epithelial regeneration

attenuates and extensive tissue and vascular remodeling recon-

struct the original tissue architecture. The similarities between

this biphasic physiological process, regeneration followed by

resolution, and Myc-driven tumorigenesis followed by Myc

de-activation-induced tumor regression, are provocative.
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Töpfer, K., Kempe, S., Müller, N., Schmitz, M., Bachmann, M., Cartellieri, M.,

Schackert, G., and Temme, A. (2011). Tumor evasion from T cell surveillance.

J. Biomed. Biotechnol. 2011, 918471.

Tran, P.T., Fan, A.C., Bendapudi, P.K., Koh, S., Komatsubara, K., Chen, J.,

Horng, G., Bellovin, D.I., Giuriato, S., Wang, C.S., et al. (2008). Combined

Inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung

adenocarcinomas and lymphomas. PLoS ONE 3, e2125.

Tran, P.T., Bendapudi, P.K., Lin, H.J., Choi, P., Koh, S., Chen, J., Horng, G.,

Hughes, N.P., Schwartz, L.H., Miller, V.A., et al. (2011). Survival and death

signals can predict tumor response to therapy after oncogene inactivation.

Sci. Transl. Med. 3, 103ra199.

Tsuneoka, M., and Mekada, E. (2000). Ras/MEK signaling suppresses

Myc-dependent apoptosis in cells transformed by c-myc and activated ras.

Oncogene 19, 115–123.

Vaqué, J.P., Navascues, J., Shiio, Y., Laiho, M., Ajenjo, N., Mauleon, I.,

Matallanas, D., Crespo, P., and León, J. (2005). Myc antagonizes Ras-

mediated growth arrest in leukemia cells through the inhibition of the

Ras-ERK-p21Cip1 pathway. J. Biol. Chem. 280, 1112–1122.

Wang, C., Lisanti, M.P., and Liao, D.J. (2011). Reviewing once more the c-myc

and Ras collaboration: converging at the cyclin D1-CDK4 complex and

challenging basic concepts of cancer biology. Cell Cycle 10, 57–67.

White, G.E., Iqbal, A.J., and Greaves, D.R. (2013). CC chemokine receptors

and chronic inflammation–therapeutic opportunities and pharmacological

challenges. Pharmacol. Rev. 65, 47–89.

Wilson, C.H., Gamper, I., Perfetto, A., Auw, J., Littlewood, T.D., and Evan, G.I.

(2014). The kinetics of ER fusion protein activation in vivo. Oncogene 33,

4877–4880.

Wolfer, A., Wittner, B.S., Irimia, D., Flavin, R.J., Lupien, M., Gunawardane,

R.N., Meyer, C.A., Lightcap, E.S., Tamayo, P., Mesirov, J.P., et al. (2010).

MYC regulation of a ‘‘poor-prognosis’’ metastatic cancer cell state. Proc.

Natl. Acad. Sci. USA 107, 3698–3703.

Wu, Q., Gardiner, G.J., Berry, E., Wagner, S.R., Lu, T., Clay, B.S., Moore, T.V.,

Ferreira, C.M., Williams, J.W., Luster, A.D., et al. (2013). ICOS-expressing lym-

phocytes promote resolution of CD8-mediated lung injury in a mouse model of

lung rejection. PLoS ONE 8, e72955.

Wynn, T.A., and Vannella, K.M. (2016). Macrophages in Tissue Repair, Regen-

eration, and Fibrosis. Immunity 44, 450–462.

Yaari, S., Jacob-Hirsch, J., Amariglio, N., Haklai, R., Rechavi, G., and Kloog, Y.

(2005). Disruption of cooperation between Ras andMycN in human neuroblas-

toma cells promotes growth arrest. Clin. Cancer Res. 11, 4321–4330.
Cell 171, 1301–1315, November 30, 2017 1315

http://refhub.elsevier.com/S0092-8674(17)31322-3/sref50
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref50
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref51
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref51
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref51
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref52
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref52
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref52
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref52
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref53
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref53
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref53
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref54
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref54
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref55
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref55
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref55
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref55
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref56
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref56
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref56
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref56
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref57
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref57
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref57
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref58
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref58
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref58
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref58
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref59
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref60
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref60
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref60
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref61
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref61
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref61
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref62
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref62
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref62
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref63
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref63
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref63
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref64
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref64
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref65
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref65
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref65
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref66
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref66
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref66
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref66
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref66
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref67
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref67
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref67
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref67
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref68
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref68
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref68
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref69
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref69
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref69
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref70
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref70
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref70
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref70
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref71
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref71
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref71
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref71
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref72
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref72
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref72
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref73
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref73
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref73
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref73
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref74
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref74
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref74
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref75
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref75
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref75
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref76
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref76
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref76
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref77
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref78
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref78
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref78
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref78
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref79
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref79
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref80
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref80
http://refhub.elsevier.com/S0092-8674(17)31322-3/sref80


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat monoclonal anti-CD45 [30-F11] BD Biosciences Cat#: 553076, RRID:AB_394606

Rat monoclonal anti-F4/80 [Cl:A3-1] Bio-Rad Cat#: MCA497R, RRID:AB_323279

Goat polyclonal anti-MMR/CD206 R&D Systems Cat#: AF2535, RRID:AB_2063012

Rabbit monoclonal anti-CD3 [SP7] ThermoFisher Cat#: RM-9107-RQ

Rabbit polyclonal anti-CD274/PD-L1 Abcam Cat#: ab58810, RRID:AB_940872

Rabbit monoclonal anti-Ki67 [SP6] ThermoFisher Cat#: RM-9106-S1, RRID:AB_149792

Rat anti-CD31/PECAM1 [MEC13.3] BD Biosciences Cat#: 550274, RRID:AB_393571

Rat monoclonal anti-Pan-Endothelial

cell antigen/PVLAP [MECA32]

BD Biosciences Cat#: 550563, RRID:AB_393754

Mouse monoclonal anti-VEGF:VEGFR2 (GV39M) EastCoast Bio Cat#: CD301

Rabbit monoclonal anti-IL23p19 Abcam Cat#: ab45420, RRID:AB_2124515

Goat polyclonal anti-CCL9/10/MIP1g R&D Systems Cat#: AF-463, RRID:AB_2071817

Rabbit monoclonal anti-TTF1 [EP1584Y] Abcam Cat#: ab76013, RRID:AB_1310784

Mouse monoclonal anti-TTF1 [8G7G3/1] Abcam Cat#: ab72876, RRID:AB_1271363

Mouse monoclonal anti-Hypoxyprobe [4.3.11.3] Hypoxyprobe Cat#: HP1-100

Polyclonal goat anti-Rae-1 Pan-specific R&D Systems Cat#: AF1136, RRID:AB_2238016

Rat monoclonal anti-MHC1 [ER-HR52] Novus Biologicals Cat#: NB100-64952, RRID:AB_964497

Rat monoclonal anti-CD45R/B220 [RA3-6B2] ThermoFisher Cat#: MA1-70098, RRID:AB_1072441

Rat anti-CD335/NKp46 [29A1.4] Biolegend Cat#: 137601, RRID:AB_10551441

Fluorescein-labeled Lycopersicon

Esculentum (Tomato) Lectin

Vector Labs Cat#: FL-1171, RRID:AB_2307440

Rhodamine-labeled Ricinus communis Agglutinin I Vector Labs Cat#: RL-1082, RRID:AB_2336710

LEAF-purified Rat anti-mouse CD274/PD-L1 [10F.9G2] Biolegend Cat#: 124309, RRID:AB_2291192

LEAF-purified Rat IgG2b, k Isotype control [RTK4530] Biolegend Cat#: 400637, RRID:AB_2086803

LEAF-purified Mouse anti-mouse IL23p19 [MMp19B2] Biolegend Cat#: 513806, RRID:AB_2562073

LEAF-purified Mouse IgG2b, k Isotype control [MPC-11] Biolegend Cat#: 400339

Goat polyclonal anti-mouse CCL9/10/MIP1g R&D Systems Cat#: AF463, RRID:AB_2071817

Goat IgG control R&D Systems Cat#: AB-108-C, RRID:AB_354267

Rat anti-mouse CD4 [GK1.5] BioXcell Cat#: BE0003, RRID:AB_1107636

Rat anti-mouse CD8 [2.43] BioXcell Cat#: BE0061, RRID:AB_1125541

Rat IgG2b control [LTF2] BioXcell Cat#: BE0090, RRID:AB_1107780

Rabbit anti-mouse asialo-GM1 Wako Chemicals Cat#: 986-10001, RRID:AB_516844

Rabbit IgG control R&D Systems Cat#: AB-105-C, RRID:AB_354266

Rat anti-mouse CD3ε [145-2C11] eBioscience /ThermoFisher Cat#: 17-0031, RRID:AB_469313

Rat anti-mouse CD8a [53-6.7] eBioscience /ThermoFisher Cat#: 12-0081, RRID:AB_465529

Rat anti-mouse CD4 [RM4-5] eBioscience /ThermoFisher Cat#: 14-0042, RRID:AB_467066

Rat anti-mouse CD4 [GK1.5] eBioscience /ThermoFisher Cat#: 11-0041, RRID:AB_464891

Rat anti-mouse CD45 [30-F11] eBioscience /ThermoFisher Cat#: 14-0451, RRID:AB_467252

Rat anti-mouse CD335/NKp46 [29A1.4] eBioscience /ThermoFisher Cat#: 11-3351, RRID:AB_1210843

Chemicals

Tamoxifen Sigma-Aldrich Cat#: T5648

7-AAD Viability staining solution eBioscience Cat#: 00-6993-50

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays, Macrophage Isolation

Mouse Inflammation Antibody Array - Membrane Abcam Cat#: ab133999

ApopTag Fluorescein Direct In Situ Apoptosis

Detection Kit (TUNEL)

Millipore Cat#: S7160

High Capacity cDNA RT kit Applied Biosystems Cat#: 4374966

Fast Sybr Green Applied Biosystems Cat#: 4385612

RNeasy Plus Mini Kit QIAGEN Cat#: 74134

Anti-F4/80-biotin [REA126] Miltenyi Biotech Cat#: 130-101-893, RRID: AB_2651713

Anti-F4/80 Microbeads, Ultra Pure Miltenyi Biotech Cat#: 130-110-443

RNAscope 2.5 HD Reagent Kit-BROWN Advanced Cell Diagnostics Cat#: 322300

TSA Plus multi-fluorophore detection kit PerkinElmer Cat#: NEL760001KT

Experimental Models: Organisms/Strains

LSL-KRasG12D Jackson et al., 2001 N/A

Rosa26LSLMycERT2 Murphy et al., 2008 N/A

Software and Algorithms

FlowJo (version X) FlowJo RRID: SCR_008520; https://www.flowjo.com/

ImageJ/Fiji Open source RRID: SCR_003070

Graphpad Prism GraphPad Software RRID: SCR_002798; https://www.graphpad.com/

scientific-software/prism/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gerard I.

Evan (gie20@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice and in vivo procedures
All treatments and procedures of mice were conducted in accordance with protocols approved by the Institutional Animal Care and

Use Committee at UCSF and Home Office UK guidelines under project licenses to G.I.E., (70/7586, 80/2396) at the University of

Cambridge. Mice were maintained on regular diet in a pathogen-free facility on a 12 hr light/dark cycle with continuous access to

food and water. Lsl-KrasG12D (Jackson et al., 2001) and LSL-Rosa26MIE/MIE (Murphy et al., 2008) mice have been described previ-

ously. For activation of MycERT2, Tamoxifen (Sigma; T5648) dissolved in peanut oil was administered daily by intraperitoneal (IP)

injection for a maximum of 6 weeks at a dose of 1 mg/20 g body mass. To deliver adenovirus-Cre recombinase (AdV-Cre), mice

were anesthetized with 2.5% Avertin (250 ml/20 g body mass) or isoflurane (Zoetis, IsoFlo 250 ml) and 5x107 plaque-forming units

of AdV-Cre were administered as described previously (Fasbender et al., 1998). Mice were between 8 and 12 weeks old at time of

AdV-Cre infection, and between 20-28 weeks of age at time of euthanasia and analysis. Equivalent female and male age-matched

littermates were divided over experimental and control mice. Lectins were administered by retro-orbital injection prior to sacrifice and

Hypoxyprobe and blocking antibodies for PD-L1, IL23p19, CCL9, CD4, CD8 and asialo-GM1 were administered by IP injection at

doses and frequency described in method details and Figure S1.

METHOD DETAILS

Immunohistochemistry and Immunofluorescence
Mice were euthanized and cardiac-perfused with PBS followed by 10% neutral-buffered formalin (Sigma-Aldrich, 501320). Lungs

were removed, fixed overnight in neutral-buffered formalin and processed for paraffin embedding. Tissue sections were stained

with hematoxylin and eosin (H&E) using standard reagents and protocols. For frozen sections, lungs were directly embedded in

OCT (VWR Chemicals, 361603E) and either frozen on dry ice or snap frozen in liquid Nitrogen, embedded in OCT, and stored at

�80�C. For immunofluorescence analysis of VEGF bound to its receptor (VEGF:VEGFR2), OCT frozen cryostat-cut 10 mm sections

were air-dried, serum blocked and incubated with the GV39M antibody overnight. For immunohistochemical and immunofluores-

cence analysis, sections were de-paraffinized, rehydrated, and boiled in a microwave for 10 minutes in 10 mM citrate buffer

(pH 6.0) or treated with 20 mg/ml Proteinase K for antigen retrieval. Antibodies were incubated overnight at 4�C except for anti-CD3,
Cell 171, 1301–1315.e1–e4, November 30, 2017 e2

mailto:gie20@cam.ac.uk
https://www.flowjo.com/
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/


which was incubated for 20 minutes at room temperature. Antibodies used (see key resources table): F4/80 (Cl:A3-1); MMR/CD206;

CD45 (30-F11); CD3 (SP7); CD274/PD-L1; Ki67 (SP6); c-Myc (Y69); CD31/PECAM (MEC13.3); Pan-endothelial cell antigen/PVLAP

(MECA32); IL23p19; CCL9/10/MIP1g; TTF1 (EP1584Y); TTF1 (8G7G3/1); Hypoxyprobe (4.3.11.3); Pan-Rae-1; MHC1 (ER-HR52);

CD45R/B220 (RA3-6B2); CD335/NKp46 (29A1.4). Commercial antibodies were purchased from Cedarlane, Merck, Bio-Rad, R&D

Systems, BD, ThermoFisher, Abcam, East Coast Biologics, Novus, Hypoxyprobe and BioLegend. HRP- conjugated secondary

antibodies (Vectastain Elite ABC Kits: PK-6200; Universal, PK-6101; Rabbit, PK-6104; Rat, PK-6105; Goat) were applied for

30 min and visualized with DAB (Vector Laboratories; SK-4100), or secondary Alexa Fluor 488 or �455 dye-conjugated antibodies

(Life Technologies) applied for 30 minutes at room temperature. Fluorescence antibody-labeled slides were mounted in fluorescent

mounting medium (Prolong Molecular Probes; P36934) post-treatment with 0.5 mg/ml Hoechst counter-stain. TUNEL analysis was

performed using the Apoptag Fluorescein In Situ Apoptosis Detection Kit (Millipore; S7110) according tomanufacturer’s instructions.

Briefly, tissue sections were pre-treated in Proteinase K (20 mg/ml) for 15 min at room temperature, washed in deionized water twice

for 2 min each, and returned to PBS. Sections were then covered with equilibration buffer for a minimum of 2 min followed by incu-

bation at 37�C for 1 hr with a 1:5 dilution of TdT enzyme in reaction buffer, followed by fluorescein anti-digoxigenin conjugated

secondary antibody, washed, and mounted. To stain tissues systemically for hypoxia, 60 mg/kg hypoxyprobe-1 (1-{[2-hydroxy-3-

piperdinyl] propyl}-2-nitroimidazole hydrochloride) (Hypoxyprobe; HP1-100 kit) was administered through IP injection in saline

15 min prior to euthanasia. Protein adducts of reductively activated pimonidazole were identified through immunohistochemistry

in fixed tissues with a monoclonal antibody against hypoxyprobe-1.

RNA-ISH for MycERT2 was performed with a custom-designed probe targeting nucleotides 2110-3619 of Myc-ER-ires-EGFP

(Murphy et al., 2008), amplified with RNAscope 2.5 HD Reagent Kit (Advanced Cell Diagnostics; 322300) and developed with the

TSA Plus kit (PerkinElmer; NEL760001KT) according to manufacturer’s instructions. Images were collected with an Axiovert 5100

TV inverted fluorescence microscope (Zeiss) and Open Lab 3.5.1 software, or with an Axiovert 100 inverted microscope (Zeiss)

equipped with a Hamamatsu Orca digital camera (University of California, San Francisco), and a Zeiss Axio Imager M2 microscope

and Axiovision Rel 4.8 software (University of Cambridge).

Isolation of mouse lung tumor-associated macrophage RNA
After heart-perfusion with PBS, mouse lungs were harvested and macrophages isolated following the MACS cell-separation pro-

tocol according to manufacturer’s instructions (Miltenyi Biotec). Briefly: lung tissue was minced, incubated 15 minutes at 37�C in

Ca2+/Mg2+-free PBS with 0.5% EDTA, passed through 40 mm Falcon cell strainers (352340) and re-suspended in erythrocyte lysis

buffer (RBC Tris-buffered ammonium chloride pH7.2) followed by dissociation buffer (PBS pH7.2 with 2mM EDTA). The resulting

homogenate was incubated with anti-F4/80 biotin-conjugated antibody (Miltenyi Biotec, 130-101-893) followed by streptavidin-

conjugated microbeads (Miltenyi Biotec, 130-101-893), or incubated with anti-F4/80 microbead-conjugated antibody (Miltenyi

Biotec, 130-110-443), passed through magnetic columns and the macrophages then transferred to TRizol (Ambion, 15596018)

for RNA isolation with the RNeasy Plus Mini Kit (QIAGEN, 74134), according to manufacturer’s instructions.

Immune Array and determination of MycERT2, PD-L1, and VEGFA mRNA
14 weeks post AdV-Cre KMmouse lungs were isolated 8 hours after IP injection with either oil or tamoxifen and then snap frozen in

liquid nitrogen. Whole (tumor-laden) lung protein samples were isolated and incubated on a mouse inflammation antibody array

(Abcam, ab133999) according to manufacturer instructions. The intensity of the signals was analyzed using ImageJ.

Total RNA (0.5-1 mg) isolated from F4/80- lung- and tumor tissue or F4/80+ macrophages was reverse transcribed using the High

Capacity cDNA RT kit (Applied Biosystems, 4374966). Real-time quantitative RT–PCR (Fast Sybr Green, Applied Biosystems,

4385612) was used to quantify mRNA levels. The TBP and b-actin genes were used as an internal amplification control. TBP forward

primer: 50-ACTTCGTGCAAGAAATGCTGAAT-30, TBP reverse primer: 50- CAGTTGTCCGTGGCTCTCTTATT-30. b-actin forward

primer: 50-GACGATATCGCTGCGCTGG �30, b-actin reverse primer: 50-CCACGATGGAGGGGAATA-30. MycERT2 primers; forward:

50-ATTTCTGAAGACTTGTTGCGGAAA-30, reverse: 50- GCTGTTCTTAGAGCGTTTGATCATGA-30 (Murphy et al., Cancer Cell 14 (6),

2008). PD-L1 primers; forward: 50-GACCAGCTTTTGAAGGGAAATG-30, reverse: 50-CTGGTTGATTTTGCGGTATGG-30. VEGFA

primers were from Bio-Rad (10025636, qMmuCED0040260). Real-time PCR reactions were performed on an Eppendorf Mastercy-

cler Realpex 2 and analyzed with accompanying software.

Blocking antibodies and Flow Cytometric analysis
For antibody blocking experiments, mice were IP injected with either anti-IL23p19 or anti-CCL9 individually or together (see Figures 3

and S4) or with anti-PD-L1 every two days, starting one day before Myc activation by tamoxifen injection (see Figures 4 and S1). For

tumor regression studies, antibody ablation of CD4+ and CD8+ T cells or NKp46+ cells was initiated four days before tamoxifen with-

drawal (see Figures 7, S1, and S6). Concentrations of antibodies and their isotype controls were adjusted in PBS as follows (see key

resources table): IL23p19 (MMp19B2) and Mouse IgG2b k Isotype control (MPC-11) 150 mg/mouse/IP; CCL9/10/MIP1g (AF463) and

goat IgG control (AB-108-C) 50 mg/mouse/IP; CD274/PD-L1 (10F.9G2) and Rat IgG2b k Isotype control (RTK4530) 150 mg/mouse/IP;

CD4 (GK1.5) and CD8 (2.43) and Rat IgG control (LTF2) 200 mg/mouse/IP; asialo-GM1 and Rabbit IgG control 100 ml/mouse/IP and

100 mg/mouse/IP, respectively. For Flow Cytometric identification of CD4 and CD8 positive T cells in spleen and blood of anti-CD4

and anti-CD8 treatedmice, CD3ε (145-2C11), CD8a (53-6.7), CD4 (RM4-5, GK1.5) and CD45 (30-F11)-specific antibodies were used.
e3 Cell 171, 1301–1315.e1–e4, November 30, 2017



For Flow Cytometric identification of NKp46 positive NK cells in blood and spleen of anti-asialo-GM1 treated mice NKp46 (29A1.4)-

specific antibody was used. For isolation and analysis of lung-specific NKp46+ cells whole lung tissue was minced, incubated 15 mi-

nutes at 37�C in Ca2+/Mg2+-free PBS with 0.5% EDTA, passed through 40 mm Falcon cell strainers (352340) and re-suspended in

erythrocyte lysis buffer (RBC Tris-buffered ammonium chloride pH7.2) followed by dissociation buffer (PBS pH7.2 with 2mM

EDTA). The cell suspension was incubated with FITC-NKp46-specific antibody (eBioscience, 11-3351). Flow Cytometry was

performed on an Accuri C6 Flow cytometer (BD Biosciences) with accompanying software. Commercial antibodies were

purchased from R&D Systems, BioLegend, BioXcell and Wako Chemicals.

Lectins
Lectin dyes Fluorescein-Lycopersicon esculentum (FL-1171) and Rhodamine-Ricinus communis agglutinin I (RL-1082) were

obtained from Vector Labs. Three minutes before sacrifice 100 mL of a 1:2 Fluorescein:Rhodamine solution was administered by

retro-orbital injection. Lungs were then harvested and fluorescence imaged on de-paraffinized tissue sections counterstained

with Hoechst dye.

QUANTIFICATION AND STATISTICAL ANALYSIS

Scanning H&E slides, ImageJ, and GraphPad.
H&E sections were scanned with an Aperio AT2 microscope (Leica Biosystems) at 20X magnification (resolution 0.5 microns per

pixel) and analyzed with Aperio Software. Quantifications were performed using ImageJ. Statistical analysis was performed in

GraphPad. Data points on the scatter dot graphs that portray quantification per Field of View represent one tumor (small data points)

and averages per mouse (large data points) simultaneously. A minimum of five tumors per mouse were analyzed. For comparison,

quantification of histological markers was only performed on tumor sections stained at the same time. For endothelial cell marker

CD31 the immunohistochemistry staining intensity was calculated as percentage CD31-positive area per Field of View using

ImageJ. For proliferation marker Ki67 the immunohistochemistry staining was quantified as percentage of total cells per Field of

View using ImageJ. For quantification of NK cell marker NKp46 a complete section of the lung of a mouse was analyzed. Scoring

(none, % 10 cells, > 10 cells) was based on the amount of juxta-tumoral NKp46+ cells visible. Only tumors directly lining and

associated with clearly distinguishable vasculature were taken into consideration. P values are derived from mouse-average com-

parisons between groups and determined via Student’s t test or two-way ANOVA (see figure legends). Bar graphs are represented as

mean with standard deviation. Quantifications in scatter dot-plot graphs show median with interquartile range.
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Figure S1. Schematic Representations of Animal Experiments, Related to Figures 1, 2, 3, 4, 5, 6, and 7

(A) Related to Figures 1 and S2. Analysis of long-term co-operation between KRasG12D and MycERT2. I, II and III denote three different regimens, each with a

different time points of activation of MycERT2 (0, 6 and 12 weeks) post-AdV-Cre activation of KRasG12D.

(B) Related to Figures 2, 4, and S3. Analysis of short-term MycERT2 activation in KRasG12D-driven KM mouse lungs. 12 weeks after AdV-Cre activation of

KRasG12D in KM mice, MycERT2 was co-activated for 1, 3 or 7 days.

(C) Related to Figures 3 and S4. Analysis of the impact of individual or co-blocking CCL9 and/or IL23p19 on MycERT2-driven KM lung tumor progression.

14 weeks after AdV-Cre treatment, and commencing one day prior to tamoxifen injection, mice were injected every other day for 4 days with neutralizing an-

tibodies against either IL23p19 or CCL9 or both IL23p19 and CCL9, then euthanized.

(D) Related to Figures 3 and S4. Analysis of the impact of long-term co-blocking CCL9 and/or IL23p19 onMycERT2-driven KM lung tumor progression. 12 weeks

after AdV-Cre treatment, and commencing one day prior to tamoxifen injection, mice were injected every other day for 7 days with neutralizing antibodies against

both IL23p19 and CCL9, then euthanized.

(E) Related to Figure 4. Analysis of the impact of PD-L1 antibody blockade on MycERT2-driven KM lung tumor progression. 12 weeks after AdV-Cre adminis-

tration, and commencing one day prior to tamoxifen injection to activateMycERT2,micewere injected every two days for twoweekswith either PD-L1 neutralizing

antibodies or IgG control.

(F) Related to Figures 5 and S5. Analysis of short-term MycERT2 de-activation in KM lung tumors. 6 weeks after AdV-Cre activation of KRasG12D in KM mice,

MycERT2 was co-activated for 6 weeks and then de-activated for 0, 1, 3 and 7 days.

(G) Related to Figure 6. Analysis of the impact of short-term activation and short-term de-activation of MycERT2 in KRasG12D+Myc-driven KM lung tumors.

12 weeks after AdV-Cre activation of KRasG12D in KM mice, MycERT2 was co-activated for 1 week and then de-activated for 3 or 7 days.

(H) Related to Figure 6. Analysis of the impact of short-term activation followed by long-term de-activation of MycERT2 in KRasG12D+Myc-driven KM lung tumors.

12 weeks after AdV-Cre activation of KRasG12D in KM mice, MycERT2 was co-activated for 1 week and then de-activated for up to 4 weeks.

(I) Related to Figures 7 and S6. Analysis of the absence of T or NK cells during short-term de-activation of MycERT2 in KRasG12D+Myc-driven KM lung tumors.

12 weeks after AdV-Cre treatment, and starting four days prior to tamoxifen injection, KM mice were injected every other day for four cycles with neutralizing

antibodies against CD8 (or IgG control) and every four days for two cycles (at�4 and 0 day time points) with neutralizing antibodies against CD4 (or IgG control), or

every other day for four cycles with neutralizing antibodies against NKp46 (anti-asialo-GM1) then sacrificed one day after the last antibody injection coincident

with day 3 post MycERT2.
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Figure S2. Deregulated Myc Cooperates Oncogenically with KRasG12D at All Stages of Lung Adenoma Evolution, Related to Figure 1

(A) Representative H&E staining of lung sections harvested at 6, 12 and 18 weeks after AdV-Cre inhalation, without (oil control) or with (+ tamoxifen) Myc co-

activation for the final 6 weeks, as indicated. Groups I, II and III refer to the three different experimental protocols depicted in Figure S1A. Scale bars apply to each

column of panels.

(legend continued on next page)



(B) Quantification of tumor burden in lungs of mice fromGroups I, II and III, as described above. Each individual data point represents a single mouse. Group I: n =

6 mice. Group II: n = 10 mice. Group III: n = 9 (oil) and 10 (Tam) mice.

(C) Kaplan-Meier survival plot of KRasG12D-driven tumor-bearing mice (12 weeks post KRasG12D activation) then treated for 6 weeks with either oil (control) or

Tamoxifen to activate Myc. n = 10 (oil) and 14 (Tam) mice.

(D) Representative H&E staining of lung sections comparing the tumorigenic impact of Myc alone (left), KRasG12D alone (middle) and Myc and KRasG12D together

(right). AdV-Cre was administered by inhalation to each of the depicted genotypes (mentioned below the panels) and lungs harvested 12 weeks later. Left - Myc

alone, activated for final 6 weeks; middle - KRasG12D alone (oil control), right – KRasG12D plusMyc co-activated for final 6 weeks (tamoxifen treatment). Scale bars

apply to each row of panels.

Error bars represent the median with interquartile range. P values are based on Student’s t test (B) or Log-rank test (C). *p < 0.05, ****p < 0.0001.
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Figure S3. Deregulated Myc Rapidly Re-programs Tumor Immunity, Related to Figure 2

(A) Quantification and representative immunostained images for B lymphocytes (anti-B220 aka CD45R) in mice treated with tamoxifen for 3 days.

(B) Quantification (by flow cytometry) of NKp46 positive cells as percentage of total live cells isolated from tumor-laden whole lungs of mice treated with oil

(KRasG12D-only) or 3 days tamoxifen (+ Myc). n = 6 mice per time point.

(C) Quantitative analysis (left) and representative immunostaining (right) of NK cell-activating signals showing rapid upregulation of the NKG2D-ligand Rae-1 (PAN

Rae-1 antibody) and downregulation of MHC Class I on lung tumor cells following Myc activation. Bottom panels show MHC Cass I expression on adjacent

normal lung epithelium (closed arrows). Scale bars apply across each row.

(D) Quantification of hypoxyprobe staining shown in Figure 2C (bottom row), confirming rapid transition from hypoxia to normoxia in adenomas following Myc

activation.

(legend continued on next page)



(E) Immunohistochemistry and immunofluorescence analysis of serial sections of paraffin-embedded lung tumors of KM mice showing concordance of CD206

and F4/80 immunostaining. KM mice were treated for three days with Tamoxifen, lung tissue harvested and serial sections taken for immunostaining.

Top row: representative Immunostaining for macrophage marker CD206 with boxed region enlarged immediately to the right. Bottom row: Immunofluorescence

staining for macrophage marker F4/80 with boxed region enlarged immediately to the right. Inset in bottom right panel shows non-overlap of staining for F4/80

and for the epithelial cell marker TTF1.

Right large panel: overlay of Immunofluorescence F4/80 and immunohistochemistry of CD206 showing overlap.

(F) Epithelial fluorescence in situ hybridization ofMycERT2 (red) combinedwith immunofluorescence for lungmacrophageCD206 (green). Representative pictures

are shown. Left panels: KRasG12D-only mice (K) mice express no detectableMycERT2 whereas KMmice show clearMycERT2 nuclear staining confined to tumor

masses that is independent ofMycERT2 activation (tamoxifen treatment). Right Panels: I and II and their progressive enlargements showMycERT2 expression is

specific to tumor cells and absent from normal lung epithelial cells. Dotted line indicates tumor boundary. III and IV confirm absence of any detectableMycERT2 in

CD206+ macrophages.

(G)MycERT2 RNA expression in F4/80-affinity isolated lung macrophages in KMmice 16 weeks post AdV-CRE. Results are normalized to the average of the F4/

80- fraction. n = 6 mice per fraction (F4/80- versus F4/80+).

Quantification graphs: FoV = Field of View. (A): n = 30 individual tumors (small symbols) from 6 mice (large symbols) per time point. (C): n = 4 mice per time point,

n = 20 tumors analyzed; 5 per mouse. (D): n = 6mice per time point, n = 30 tumors analyzed; 5 per mouse. Error bars represent the median with interquartile range

(B220, NKp46) or mean ± SD (Rae-1, Hypoxyprobe). P values are based on Student’s t test (B220, NKp46) or two-way ANOVA (Rae-1, Hypoxyprobe). *p < 0.05,

**p < 0.01, ****p < 0.0001.
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Figure S4. Myc Induces IL-23 and CCL9 in the Epithelial Compartment of Lung Adenomas and Their Continued Expression Is Required to

Maintain an Immune-Suppressed Phenotype, Related to Figure 3

(A) Representative immunostaining showing induction of IL23p19 and CCL9 following activation of Myc (3d tam), compared to KRasG12D-only control (3d oil).

Scale bars apply to panels in each column.

(B) Immunofluorescence analysis showing coincident staining of Myc-induced cell-surface IL23p19 and cytoplasmic CCL9 with the bronchoalveolar nuclear

marker TTF1 in tumors following activation of MycERT2 (3d tamoxifen), compared to KRasG12D-only control (3d oil control). Insets showmagnified images of each

boxed region. White arrows indicate cells negative for both TTF1 and IL23p19 (top row) or both TTF1 and CCL9 (bottom row).

(C) Quantification of immunostaining for lung tumor macrophages (CD206), vascular endothelial cells (CD31+), T cells (CD3+), B cells (B220+) and NK (NKp46+)

cells after Myc activation for 7 days in mice coincidentally treated either with control (IgG) or co-treated with IL23p19- and CCL9-blocking antibodies. FoV = Field

of View. n = 30 individual tumors (small symbols) from 6 mice (large symbols) per treatment group. Error bars represent the median with interquartile range. P

values are based on Student’s t test (CD206, CD31, CD3, B220) or two-way ANOVA (NKp46). **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure S5. Myc De-activation Immediately Reverses Normoxia in KM Lung Tumors, Related to Figure 5

Quantification of immunostaining for Hypoxyprobe in adenocarcinomas at indicated times after Myc de-activation (6w tam versus 1, 3, 7 days off). FoV = Field of

View. n = 4 mice and n = 20 tumors per time point; 5 tumors were analyzed per mouse. Error bars represent mean ± SD. P values are based on two-way ANOVA.

NS = non-significant, ***p < 0.001, ****p < 0.0001.



Figure S6. Depletion of NKp46+ Cells, but Not of CD4+ and CD8+ T Cells, Retards Reversion ofMyc-Driven Tumor Stromal Changes following

Myc De-activation, Related to Figure 7

(A) Quantification of immunostaining for proliferation (Ki67), CD206+ macrophages and NK cells (NKp46) following Myc de-activation for 3 days in KM tumors of

either CD4+/CD8+ T cell competent animals (IgG-control) or CD4+/8+ T cell-deficient (aCD4/aCD8-treated) mice compared to 7 days of Myc activation (7d tam).

No significant differences in IgG control versus T cell depleted animals are evident.

(B) Quantification of immunostaining for proliferation (Ki67), CD206+ macrophages and T cells (CD3) following Myc de-activation for 3 days in KM tumors of either

NKp46+ NK cell competent animals (IgG-control) or NKp46+ NK cell-deficient (a-asialoGM1-treated) mice. No significant differences in IgG control versus NK-cell

depleted animals are evident for proliferation (Ki67) or T cells (CD3). In contrast, NK-cell depleted animals show reduced CD206 efflux following Myc de-

activation.

Quantification graphs: FoV = Field of View. (A): n = 20-25 individual tumors (small symbols) from 4 (7d Tam, IgG, large symbols) or 5 (aCD4/aCD8) mice per

treatment group. (B): n = 25-30 individual tumors (small symbols) from 5 mice (large symbols) per treatment group. Error bars represent the median with in-

terquartile range (Ki67, CD206, CD3) or mean ± SD (NKp46). P values are based on Student’s t test (Ki67, CD206, CD3) or two-way ANOVA (NKp46). NS = non-

significant, *p < 0.05, **p < 0.01, ***p < 0.001.



Figure S7. Myc Instructs Stromal Changes in Lung Adenomas, Related to Figures 2, 3, 4, and 7

Schematic representation of Myc-induced stromal changes in lung adenocarcinoma. Activation of deregulated Myc in epithelial KRasG12D-driven lung adenoma

cells rapidly leads to efflux of B, T and NK lymphocytes and recruitment of macrophages. Myc-induced IL-23 promotes efflux of B, T and NK cells whereas Myc-

dependent CCL9 recruits macrophages. The macrophages stimulate angiogenesis via overt VEGF production and repel T cells via surface expression of PD-L1.

Myc-dependent tumor progression requires IL-23 and CCL9 signaling to NK cells and macrophages, respectively. De-activation of deregulated Myc in es-

tablished KRasG12D-Myc adenocarcinomas leads to the rapid reversal of these stromal changes, tumor cell death and regression.
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