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Abstract: The accumulation of amyloid protein aggregates in tissues is the basis for the onset of diseases
known as amyloidoses. Intriguingly, many amyloidoses impact the central nervous system (CNS)
and usually are devastating diseases. It is increasingly apparent that neurotoxic soluble oligomers
formed by amyloidogenic proteins are the primary molecular drivers of these diseases, making them
lucrative diagnostic and therapeutic targets. One promising diagnostic/therapeutic strategy has been
the development of antibody fragments against amyloid oligomers. Antibody fragments, such as
fragment antigen-binding (Fab), scFv (single chain variable fragments), and VHH (heavy chain
variable domain or single-domain antibodies) are an alternative to full-length IgGs as diagnostics and
therapeutics for a variety of diseases, mainly because of their increased tissue penetration (lower MW
compared to IgG), decreased inflammatory potential (lack of Fc domain), and facile production
(low structural complexity). Furthermore, through the use of in vitro-based ligand selection, it has
been possible to identify antibody fragments presenting marked conformational selectivity. In this
review, we summarize significant reports on antibody fragments selective for oligomers associated
with prevalent CNS amyloidoses. We discuss promising results obtained using antibody fragments
as both diagnostic and therapeutic agents against these diseases. In addition, the use of antibody
fragments, particularly scFv and VHH, in the isolation of unique oligomeric assemblies is discussed
as a strategy to unravel conformational moieties responsible for neurotoxicity. We envision that
advances in this field may lead to the development of novel oligomer-selective antibody fragments
with superior selectivity and, hopefully, good clinical outcomes.
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1. Toxic Protein Oligomers in Central Nervous System Diseases

In living systems, proteins must assume and maintain a three-dimensional conformation,
which dictates their biological functions. Under certain conditions, however, monomeric protein
units may self-associate to form oligomeric structures that display both loss of biological, and gain of
toxic, function [1]. Ultimately, these oligomers have the potential to aggregate into insoluble amyloid
fibrils, highly stable non-branched insoluble structures rich in β-sheet content [2–4]. Although this
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property is inherent to all proteins [5–7], a number of amyloidogenic proteins accumulate in tissues,
causing diseases known as amyloidoses, which can be systemic but commonly impact the central
nervous system (CNS) [1,8–11].

It is now evident that soluble oligomers are the most toxic form of amyloidogenic proteins, more so
than their monomeric or fibrillar forms, disrupting, e.g., synaptic function, membrane permeability,
calcium homeostasis, gene transcription, mitochondrial activity, autophagy, and/or endosomal transport
in an array of disease models [12–15]. The first reports on the brain accumulation of toxic soluble
oligomers were in Alzheimer’s disease (AD); the associated oligomers mainly composed of the
4.5 kDa amyloid β (Aβ) peptide [16–18]. Since then, toxic soluble oligomers of other proteins
have been implicated in the onset and progression of several debilitating CNS diseases, e.g., tau,
α-synuclein, the prion protein (PrPc), and huntingtin protein (htt) in Alzheimer’s, Parkinson’s, prion,
and Huntington’s diseases, respectively [19–24]. In fact, many of these protein oligomers are found
together in multiple diseases [25,26].

Amyloidogenic oligomers have been frequently implicated as promising diagnostic and therapeutic
targets for CNS amyloidoses [12,14,27–33]. Despite their disease relevance, the structural hallmarks of
such soluble oligomers remain elusive due to their metastability and heterogeneity, hampering our
ability to target them therapeutically and diagnostically [12,34–36]. One promising strategy in the
structural analysis of amyloidogenic oligomers is the utilization of antibody fragments, which can
achieve high conformational selectivity, enabling the isolation and stabilization of different oligomeric
species. Furthermore, the structural properties of the antibody fragments themselves make them
promising diagnostic/therapeutic tools. In this review, we discuss their application as tools for structural
research and diagnostic/therapeutic targeting of oligomers acting in brain amyloidoses.

2. Antibody Fragments

Monoclonal antibodies (mAbs) are currently the largest, and most rapidly growing, class of
biopharmaceuticals on the market to treat a variety of diseases [37,38]. However, only four mAbs have
been approved to treat a neurodegenerative disease (multiple sclerosis), and these antibodies are thought
to work primarily in the periphery [37]. There are a number of challenges in utilizing monoclonal
antibodies for the diagnosis or treatment of brain diseases. For one, their large molecular mass hinders
their ability to cross the blood–brain barrier [38,39]. Moreover, the crystallizable fraction (Fc) of mAbs can
mediate deleterious inflammatory responses resulting in, e.g., meningoencephalitis, vasogenic edema,
cerebral microhemorragies, and even death [40–47]. Regarding diagnostics, poor contrast of mAbs in
imaging applications due to a long serum half-life has been reported as a drawback [48].

During the past 20 years, antibody fragments have been developed as an alternative
to full-length IgGs for the diagnosis and treatment of a variety of diseases, including brain
disorders [13,38,39,47,49–52]. These molecules are simple protein motifs of large diversity that
include the IgG antigen-binding domain(s) but lack the inflammatory Fc domain, retaining the
total (fragment antigen-binding: Fab and single-chain variable fragment: scFv) or partial (VH) antigen
specificity of intact IgGs [38,39,52].

Compared to full-length IgGs, antibody fragments have advantages and disadvantages as
therapeutics. An important advantage is their smaller size (12–50 kDa), thought to potentiate
the blood–brain barrier crossing and tissue penetration and enable access to challenging,
cryptic epitopes [38,39,52]. Furthermore, their fast blood clearance makes them ideal imaging
agents [39]. On the other hand, their smaller size leads to a shorter half-life in vivo, in part due
to rapid kidney clearance, which limits the chance of target engagement without the addition of
half-life extension moieties (e.g., PEG and albumin-binding fragments) [38,44]. Another advantage
of antibody fragments, is their lack of the inflammatory Fc domain (see discussion above). On the
other hand, it is noteworthy that the lack of Fc-dependent activation of immune cells may reduce the
efficiency of an immunotherapy when a robust inflammatory response is required [53,54], as in cancer
immunotherapy, which requires T cell recruiting [55].
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Another advantage of antibody fragments, is their excellent manufacturability and low cost
of production [38,39]. They can be efficiently selected from in vitro display libraries (phage or
yeast) and cloned and expressed in heterologous expression systems (e.g., bacteria); this facilitates the
production of large quantities in an easy and affordable way. Importantly, the in vitro approach eliminates
animal immunization, which may be key when the conformation of the immunogen plays a role in
antibody specificity [46,56]. Finally, engineered antibody fragments yielding multimers (diabodies,
triabodies, and tetrabodies) have been shown to present higher avidity and lower blood clearance than
their monomeric counterparts without compromising tissue penetration abilities [38,48,54].

The main types of antibody fragments under development are Fab, scFv (single chain
variable fragments), and heavy chain variable domain VH/VHH (single-domain antibodies)
fragments [38,39,49,52,57]. The potential of isolated light chain variable domain (VL) chains has
not been significantly investigated due to their low stability [56]. An overview of the structures of these
molecules is presented in Figure 1. The first artificial antibody fragments reported in the literature
were initially obtained by removing the Fc domain through proteolysis [44]. Later advances have
enabled the further reduction of antibody structure to scFv and VH/VHH (also called minibodies or
nanobodies) [38,39,52–54,57]. These fragment types are described in more detail below.

Figure 1. Overview of the structure of antibody fragments. (A) General schematic of domain framework
and (B) ribbon diagrams of full-length IgG and fragment molecules. Structures were obtained from
the Protein Data Bank (http://www.rcsb.org/pdb/). CH, CL, VH, and VL stand for constant heavy,
constant light, variable heavy, and variable light domains, respectively. Heavy or light chains are
depicted in dark blue or cyan, respectively. Complementarity-determining region (CDR) segments are
highlighted in red. PDB codes: 1IGT (full length IgG), 5VH3 (Fab), 4NKO (scFv), and 3R0M (VHH) [58].
Fab: fragment antigen-binding; scFv: single chain variable fragments; VH/VHH: heavy chain variable
domain fragment.

http://www.rcsb.org/pdb/
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Fab fragments are independent structural units of ~50 kDa containing two antigen-binding sites,
with the heavy chain variable domain (VH) linked to the heavy constant domain 1 (CH1) and the light
chain variable domain (VL) linked to the light constant domain (CL) [44]. These domains interact
through a large interface between the chains (VH/VL and CH1/CL) and a small one between the
variable and the constant domains (VH/CH1 and VL/CL) of each chain [59]. The packing between the
variable domains creates the antigen binding site [56]. The CH1 and CL domains are also covalently
connected by a disulfide bond between Cys residues at their carboxyl terminal region [60,61]. Each Ig
domain presents two layers of β-sheet structures, with three to five β-sheets per layer. The variable
Ig domains (cyan; Figure 1B) are slightly longer than the constant domains (dark blue; Figure 1B),
as they contain two more β-sheets per layer. The β-sheets are connected through loops, and the β-sheet
layers of constant domains are attached through a disulfide bond. All amino terminal variable domain
loops pack together in a β-sheet motif arranged as an antiparallel barrel-like structure, forming the
complete complementarity-determining region (CDR), which is ultimately responsible for the antibody
specificity (highlighted in red in Figure 1B) [44,59]. Each Ig domain contains three amino terminal
loops encoding different CDR segments. Since the sequence variation associated with the specificity of
immunoglobulins is found in CDRs, these regions are also referred to as hypervariable regions [59].
The hypervariable regions assemble into the antigen binding site and interact directly with the epitope.
The framework regions, those comprising the variable domain sequences besides CDRs, fold into
β-sheet motif structures and provide the scaffold for antibody-antigen interactions [62].

Single-chain variable fragments (scFvs), the smallest antibody fragments containing a complete
antigen binding site, are recombinant molecules of ~30 kDa in which the variable domains of both
VL and VH chains are engineered into a single polypeptide chain connected by a flexible peptide
linker and/or a disulfide bond [20,43,45,46]. Their hypervariable segments (amino terminal loops)
are approximately 10 amino acid residues long and, as in full length IgGs, form the antigen binding
site [59]. The length and amino acid composition of the linker are crucial in maintaining the correct
fold of these proteins [54]. The linker is typically about 3.5 nm in length and must contain small,
hydrophilic residues (typically Gly and Ser) for enhanced solubility and flexibility [44,54].

VH/VHH fragments (~15–20 kDa) are N-terminal Ig domains derived only from the heavy chain,
thus retaining antigen binding specificity within a single polypeptide domain [53,59,63]. Similar to VH
fragments (Figure 1), VHHs (high affinity variable domains naturally found in camelids) contain three
CDRs forming the antigen binding site [59,62]. Human VH domains and camelid VHH framework
regions show a high sequence homology [61]. VHH fragments are naturally occurring [38,39,49,52]
and especially stable.

3. Antibody Fragments Assisting the Study, and Diagnostic/Therapeutic Targeting, of Neurotoxic
Amyloid Oligomers in CNS Amyloidoses

In the last two decades, several studies using antibody fragments to study the role of protein
oligomers in CNS amyloidoses have been published (Table 1). Considering the discussion in the
first two sections above, a major motivation for the use of antibody fragments as research and
diagnostic/therapeutic tools for this disease class is the augmented chance of obtaining high affinity,
conformation-sensitive antibodies over the typical animal immunization approach. Antibody fragments
that display high selectivity for toxic oligomeric conformations are likely to be capable of neutralizing
these neurotoxic aggregates without interfering with the physiological function of their monomeric
counterparts, therefore presenting as preferred candidates for immunotherapies to treat amyloidogenic
diseases. In the following sections, we review studies describing conformational antibody fragments
capable of recognizing soluble oligomeric species formed by distinct proteins linked to prevalent CNS
amyloidosis that currently lack a cure. We also highlight reports that, in our view, should provide
guidance for the development of improved antibody fragments targeting neurotoxic oligomers.
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Table 1. Conformation-sensitive antibody fragments directed to oligomeric species of proteins
implicated in central nervous system (CNS) amyloidoses.

Antibody Fragment Type CNS Amyloidosis
Target

Ref.
High Affinity * Low Affinity

NUsc1 scFv AD Aβ42 Oligomers
(>50 kDa) ¶ not reported [64,65]

MO6 scFv AD
Aβ42 Oligomers and

Immature fibrils
(18–37 kDa #)

not reported [66]

AS scFv AD

Aβ42 Oligomers and
Immature

Protofibrils
(25–55 kDa #)

not reported [67]

HT6 scFv AD Aβ42 Oligomers
(18–45 kDa #) not reported [68]

11A5 scFv AD Aβ42 Oligomers
(34 kDa #) not reported [69]

A4 scFv AD Aβ42 Oligomers Aβ42 Monomers
and Fibrils [70]

E1 scFv AD Aβ42 Oligomers not reported [71]

scFv59 scFv AD Aβ42 Oligomers and
Plaques not reported [72]

scFv235 scFv AD
phosphoTau
Oligomers

(50–70 kDa) #
Tau monomers [73]

F9T, D11C,
H2A scFv AD Tau Oligomers

(Trimers) ¶ not reported [74]

RN2N scFv AD Tau Oligomers not reported [75]

D5 scFv PD α-Synuclein
Oligomers not reported [76]

10H scFv PD

α-Synuclein
Oligomers

(Trimers and
Hexamers) ¶

α-Synuclein
Monomers [77]

VH14,
NbSyn87 VH PD α-Synuclein

Oligomers not reported [78]

D5-apoB scFv PD
α-Synuclein
Oligomers

(28–80 kDa) #
not reported [79]

W20 scFv Various diseases

Oligomers of Aβ40
and Aβ42, PrPC,
α-Syn, amylin,

insulin, lysozyme

not reported [80]

* MW/size of targeted oligomers is presented when available. It is also indicated whether MW/size have been
determined under non-denaturing ¶ or denaturing # conditions. AD: Alzheimer’s Disease; PD: Parkinson’s Disease;
PrPc: cellular prion protein.

3.1. Alzheimer’s Disease

3.1.1. Amyloid β

The increasing collection of antibody fragments against toxic aggregates associated with
Alzheimer’s Disease (AD) has enabled the elucidation of important information related to the
biochemical nature of these toxic aggregates and their contribution to AD pathogenesis. As discussed
above, a major challenge for all amyloidogenic proteins, but perhaps especially for the AD toxins
Aβ oligomers (AβOs), has been to identify the most toxic aggregated species. This difficulty in
characterization is due to the heterogeneous distribution of metastable species (including non-toxic or
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differentially toxic species) formed during the aggregation process [81]. Although robust evidence
suggests that soluble AβOs and protofibrils play a prominent role in AD progression [12,82],
the precise structural features of these soluble aggregates that contribute to AD pathogenesis remain
elusive [1,12,81]. However, recent advances in this area have been made possible with the use of
conformation-selective fragment antibodies [64–72,82,83]. One of those is the scFv antibody NUsc1,
selected from a phage-display library by our group [64,65]. NUsc1 presents a marked selectivity for
soluble AβOs compared to monomers or fibrils (Figure 2A) and, importantly, provides neuroprotection
against AβO toxicity in cell cultures, blocking AβO binding and reducing AβO-induced oxidative
stress and Tau hyperphosphorylation [64,65]. NUsc1 is of particular interest since it recognizes
a unique conformational epitope displayed on oligomers of Aβ but not those formed by other proteins
(such as Tau or Lysozyme); other anti-AβO scFvs have been shown to recognize a common epitope
present on oligomers formed by different proteins [73,81,84]. Moreover, NUsc1 exhibits a marked
oligomer size-dependent selectivity, preferentially targeting neurotoxic AβO species larger than 50 kDa,
as analyzed under non-denaturing conditions by size-exclusion chromatography (Figure 2B).

Figure 2. The scFv antibody NUsc1 is highly selective to high molecular weight Aβ oligomers (AβO).
(A) NUsc1 shows high selectivity for Aβ oligomers over monomers and fibrils as determined via ELISA.
The anti-pan Aβ IgG 6E10 is shown for comparison. Adapted with permission from (Velasco et al.,
ACS Chem. Neurosci. 2012 [64]). Copyright (2020) American Chemical Society. (B) Within a synthetic
AβO population, NUsc1 selectively targets a high molecular weight subset, showing little binding
to a lower molecular weight subset that is readily bound by the anti-AβO IgG NU1. Reactivity of
both antibodies to AβO fractions separated by size-exclusion chromatography under non-denaturing
conditions was determined by dot immunoblotting. Reprinted with permission from (Sebollela et al.,
Journal of Neurochem. 2017 [65]). Copyright (2020) John Wiley and Sons.

Other anti-AβO scFvs have been reported that are promising tools for the study of AβO
structure–toxicity relationships as well as their diagnostic and therapeutic targeting. The scFv MO6
was found to target AβO species (18–37 kDa) that are on-pathway to fibril formation and toxic to
SH-SY5Y cells [66]. Important to its diagnostic/therapeutic potential, MO6 was demonstrated to
cross the blood–brain barrier (BBB) in an in vitro BBB model with a delivery efficiency of 66% 60 min
post-administration. Another study reported the scFv b4.4, which recognized an epitope in the central
region of Aβ42 (comprising residues H13, K16 V18, F19) and was able to neutralize the toxicity of either
AβOs or fibrillar Aβ to SH-SY5Y cells [83]. The scFv AS was found to recognize cytotoxic medium-sized
AβO species (25–55 kDa) and protofibrils [67]. While scFvs are commonly identified via phage display,
AS was identified from a library constructed from the immune repertoire of AD patients. The scFv HT6
also was found to bind efficiently to an N-terminal epitope present in cytotoxic medium-sized AβOs
(mainly 18–45 kDa) in vitro [68]. Significantly, the anti-AβO scFv 11A5, selected by phage display and
found to target a 34 kDa assembly, has been reported to ameliorate cognitive decline in rats induced
by injection of AβOs [69]. It is important to consider that in all of these studies, AβO size has been
evaluated by denaturing SDS-PAGE/Western immunoblotting, and therefore may not accurately reflect
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the AβO size in the physiological milieu. Additionally, an interesting approach has been developed
wherein atomic force microscopy is utilized to biopan for conformation-selective antibodies by phage
display. Following this approach, two scFvs were identified, named A4 and E1, that targeted distinct
oligomeric species presenting either high [70] or low [71] cytotoxicity potentials. Further studies with
these conformer-selective scFvs, and others like them, promise to shed additional light on the AβO
structural properties contributing to AD pathogenesis.

The scFvs highlighted above were all identified by their unique selectivities from antibody
libraries. One promising strategy for the rational engineering of scFvs with even further
improved selectivity for oligomeric species of interest, is complementarity-determining region (CDR)
mapping (i.e., determination of the complementarity-determining region (CDR) amino acid sequences,
the regions responsible for antibody specificity) of existing scFvs. So far, CDR mapping has only
been reported for non-conformational anti-Aβ scFvs. In one of these reports, Tiller and colleagues
(2017) used a series of mutations in the CDR sequences of scFvs to identify the contribution of
arginine residues to the affinity and selectivity for Aβ monomers [85]. Other recent studies have
contributed to the identification and importance of particular amino acids within CDRs, e.g., tyrosine,
glycine, serine, and especially arginine, in the binding to different Aβ aggregated species [86,87].
If similar studies are conducted with anti-AβO scFvs in the future, comparison to these data obtained
with non-conformational anti-Aβ scFvs may indicate the key interactions underlying conformational
preference for oligomeric over monomeric and fibrillar species. From a therapeutic perspective,
the ectopic expression of neurotoxic-selective fragment antibodies by using brain-optimized viral
vectors is emerging as an exciting path to be exploited. For instance, recent data in AD-mouse models
indicate a cognitive benefit provided by the brain expression of the scFv NUsc1, which was discussed
above (unpublished data [88]).

3.1.2. Tau

Another AD-relevant amyloidogenic protein is the microtubule-associated protein Tau.
Upon abnormal hyperphosphorylation or co-factor binding, this protein forms oligomers and larger
aggregates that contribute to neuronal dysfunction and death in AD and other tauopathies (reviewed
in [89,90]). Since Tau oligomers have been linked to neurodegeneration, structural studies aimed to
unravel the conformation of soluble Tau aggregates have been the focus of recent investigations [91].
As with AβOs, antibody fragments are emerging as promising tools for these studies [74,75,92].
For instance, Tian et al. (2015) reported the selection of three conformation-selective anti-Tau scFvs
(F9T, D11C, H2A) capable of binding trimeric but not monomeric or fibrillar Tau [74]. These scFvs
distinguished AD from cognitively normal post-mortem human brains and are capable of detecting
oligomeric Tau at earlier ages, compared to typical ages in which neurofibrillary tangles can be
detected. In terms of therapy, these oligomer-selective scFv antibodies represent an advantage
over non-conformational antibodies as they do not block the physiological functions carried out by
monomeric Tau.

3.2. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder associated with the abnormal aggregation
of the neuronal membrane protein alpha synuclein (α-syn) (reviewed in Shulz-Schaeffer [93]). It has
been shown that, besides the formation of insoluble aggregates that deposit inside neurons as inclusion
bodies, termed Lewy bodies, α-syn also forms neurotoxic soluble oligomers/protofibrils [94,95]. As with
Aβ and Tau, antibody fragments are beginning to emerge in the literature with selectivity for oligomeric
over monomeric or fibrillar forms of α-syn. Emadi and colleagues have identified two scFv antibodies
of particular use in elucidating α-syn oligomer structure–function relationships. The scFv D5 was
found to be selective for oligomers more abundant in initial stages of α-syn aggregation and to block
further aggregation of these oligomers and their toxicity in SH-SY5Y cells [76]. D5 was also seen to
interact with oligomers formed by the Huntington’s disease-associated protein htt51Q [96], in line
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with the notion that many antibodies raised against amyloid oligomers cross-react with structurally
similar oligomers formed by non-related proteins [97]. In contrast, 10H, an scFv that targets oligomers
more abundant in later stages of α-syn aggregation, appears to be selective for oligomers of α-syn [77].
Both scFvs D5 and 10H provided neuroprotection in an α-syn overexpressing transgenic mouse
model when fused to penetratin (a cell-penetrating peptide), raising a potential immunotherapeutic
benefit of these scFvs in PD [98]. Although in principle antibodies targeting pan-amyloid aggregates
such as scFv D5 may represent a promising therapeutic strategy, it is also important to consider that
cross-reactivity may be harmful in some cases. For instance, Kvam et al. (2009) showed that the
anti-fibrillar α-syn scFv-6E, which also binds mutant huntingtin and ataxin-3, increased the aggregation
of these polyglutamine-rich proteins in striatal cells, aggravating intracellular dysfunction and cell
death [99].

Although few antibody fragments selective for oligomeric α-syn conformations have been
reported in the literature, studies utilizing antibody fragments selective for linear α-syn sequences
(i.e., non-conformational antibodies) have increased our understanding of α-syn aggregation and
toxicity. Zhou et al. (2004) reported the scFv antibody D10, which presented nanomolar affinity
for α-syn monomers and inhibited aggregation to oligomeric and protofibrillar forms. The authors
localized the D10 epitope within the C-terminus of α-syn, suggesting that perturbation in this region
interferes with the aggregation process. In the same study, it was also shown that co-expression of
D10 in HEK293 cells engineered to overexpresses α-syn reduced the formation of high-molecular
weight α-syn aggregates, thus suggesting a positive action of D10 as an intrabody [100] (i.e., a fragment
antibody engineered to accumulate within its producing cell). The VHH single domain antibodies
NbSyn2 and NbSyn87 have been used to identify the role of different C-terminal regions of α-syn in
fibril formation [101–103]. NbSyn2, which recognizes an epitope between residues 136–140, did not
affect fibril formation [78,102,103]. In contrast, NbSyn87, which recognizes an epitope comprised by
residues 118–128, induced conformational changes on both secondary and tertiary structures of α-syn,
consequentially reducing the half-time of fibril formation [78,101].

scFvs targeting the α-syn nonamyloid component (NAC) have also shown therapeutic promise
in pre-clinical studies. The NAC presents a high tendency to adopt β-pleated sheet structures and is
known to play a key role in the aggregation and toxicity of α-syn in vitro and in vivo [104]. In 2008,
Lynch and colleagues showed a novel NAC-selective scFv named NAC32 capable of reducing the
aggregation and neurotoxicity of α-syn aggregates [105]. Other single domain antibodies targeting the
NAC, NAC1 and VH14, acted similarly to NAC32 in preventing a-syn aggregation [106].

Although considerable advances towards the understanding of α-syn aggregation and toxicity
have been attained by the use of fragment antibodies, few reports have been published so far evaluating
the consequences of the in vivo expression/administration of these antibody fragments. Although few,
these reports do demonstrate therapeutic promise. In one of these studies, the single-domain
antibodies VH14 and NbSyn87 were expressed in fusion with the proteasome-targeting PEST motif,
resulting in increased cytoplasmic solubility and enhanced degradation of α-syn in neuronal cell
lines [78]. In another interesting piece of work, Spencer et al. (2014) induced the expression of a scFv
directed to α-syn oligomers in fusion with the low-density lipoprotein receptor-binding domain
from apolipoprotein B (LDL ApoB) in vivo [79]. This construction increased the penetration of the
scFv into the brain via the endosomal sorting complex required for transport (ESCRT) pathway,
consequently leading to lysosomal degradation of α-syn aggregates [79]. These exciting reports suggest
the feasibility of in vivo expression of engineered anti-oligomeric scFvs as a therapeutic alternative
for PD.

3.3. Huntington’s Disease

Huntingtin (HTT) is a ubiquitously expressed large protein (3144 amino acids) involved in
the pathogenesis of Huntington’s disease (HD) [107]. Although the diverse physiological roles
of HTT are not yet fully understood, it is well known that its aggregation and neurotoxicity are
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dependent on the presence of an aberrant polyglutamine (polyQ) stretch encoded in exon 1 of the htt
gene (corresponding to the N-terminus in the protein) [108–110]. In mutant-disease-associated HTT,
this polyQ stretch is longer than in wild type HTT, reaching 40 or more glutamine residues (as opposed
to normally 20 on average) [110]. Interestingly, this increment is enough to impact the stability of the
whole molecule, driving its aggregation into both soluble oligomers and insoluble aggregates [111].

Since HTT aggregates are exclusively intraneuronal, intrabodies have been the antibody fragment
type preferentially applied to their structure-function study and their therapeutic targeting. One of
the first scFv-type intrabodies directed to huntingtin was reported by Lecerf et al. (2001). Named C4,
this scFv binds to residues 1–17 of HTT, a sequence N-terminal to the polyQ repeat in HTT exon
1, stabilizing an alpha helix-rich oligomeric complex and preventing amyloid formation [112,113].
When co-expressed with HTT exon 1 in non-neuronal cells, C4 was capable of reducing the amount of
HTT aggregates and redirecting the subcellular localization of HTT exon 1. Moreover, C4 efficiently
reduced cell death in malonate-treated brain slice cultures expressing mutant HTT [114]. Additionally
of importance, expression of C4 in the HD disease mouse model B6.HDR6/1, via AAV2/1 vector, led to
delayed HTT aggregation in both early and late disease stages [115]. The authors also generated
scFv-C4 in fusion with the PEST domain to increase proteasomal degradation of the antigen–antibody
complex [115].

A piece of pioneering work by Khoshnan et al. (2002) reported three scFvs (MW1, MW2, and MW7)
produced by cloning the antigen-binding domains of monoclonal IgGs targeting either polyQ or
an adjacent domain in HTT exon 1 rich in proline residues (named PRD) into scFv scaffolds [116].
The scFv MW7, selective for PRD, inhibited cell death induced by mutant HTT in co-transfected
HEK293 cells [116]. Surprisingly MW1 and MW2, both selective for polyQ, accelerated aggregation
and cell death in the same culture model. Possible explanations for this unexpected result are that MW1
and MW2 either stabilized a toxic aggregated conformation of HTT or interfered with the binding of
HTT to other molecules mediating HTT toxicity [116]. These findings highlight the complexity and
importance of identifying fragment antibodies that indeed target toxic oligomeric species, which are
expected to show promise as therapeutics and/or diagnostics.

In another piece of work, multiple intrabodies targeting HTT PRD domains (scFv MW7; VL Happ1;
VL Happ3) or the HTT N-terminus (VL 12.3) were used to investigate the role of these domains in HTT
aggregation and toxicity [117]. VL 12.3 had been previously shown to reduce toxicity in a neuronal
culture model of HD [118]. All of these intrabodies reduced mutant HTT exon 1 aggregation and toxicity
in both cell culture and brain slice models of HD, although the mechanisms of protection were different.
While the N-terminus-targeting intrabody altered HTT subcellular localization, the PRD-targeting
intrabodies were seen to increase the turnover rate of HTT [119]. These results reinforce the notion of
a strong correlation between the structural domains targeted by each intrabody and their mechanism
of neuroprotection. Fragment antibodies VL 12.3 and Haap1 were also employed to investigate the
contribution of N-terminus and PRD domains to HD pathology in vivo using five different HD mouse
models. While VL 12.3 showed no significant effects on one model, and increased mortality in another,
Haap1 alleviated HD neuropathology in all the five animal models tested, including prolonged lifespan
in one model [120].

Finally, the scFv-EM48, which targets the C-terminus of human mutant HTT exon 1, also showed
promising results in an HD mouse model, as decreased formation of neuropil aggregates and cognitive
HD-like symptoms [114]. In conjunction with data obtained with antibody fragments targeting the
N-terminus, the polyQ domain, and the PRD domain, these data indicate that all domains within HTT
exon 1 play a role in mutant HTT aggregation and toxicity. When used as an intrabody, scFv-EM48 also
suppressed the toxicity of mutant HTT in HEK293 cells. The ability of this antibody fragment to
increase the ubiquitination and consequent degradation of cytoplasmatic HTT suggests that scFv-EM48
acts by promoting the cytoplasmic clearance of mutant HTT thereby preventing its accumulation.
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3.4. Prion Diseases

Prion diseases are characterized by the brain accumulation of aggregated and neurotoxic forms of
the prion protein (PrP). Under physiological conditions, PrP presents as a ~24 kDa transmembrane
protein that exerts a number of functions, such as metal ion hemostasis and cell adhesion [121]. On the
other hand, in diseased brains, it converts into a beta-sheet-rich confirmation named PrPsc (i.e., the scrapie
isoform), which forms both soluble oligomers and amyloid fibrils [122–124]. Importantly, PrPsc is known
to catalyze the conversion of harmless PrP molecules into the aggregation-prone conformation PrPsc,
thus conferring to Prion diseases their unique infectious nature [123]. Finding molecules capable of
inhibiting either the formation or the toxicity of PrPsc aggregates, including soluble oligomers, has been
a major goal in the prion diseases field, as a way to provide a disease-modifying therapy for patients.
In this regard, some fragment antibodies have been selected that display promising inhibitory activity
on PrPsc oligomerization and fibrillization both in vitro and in cellular models [125,126].

In 2001, Peretz et al. reported the Fab antibody fragment D18, which binds to an epitope within
residues 132–156 in helix 1 of the Prion protein in its native conformation, a region thought to contribute
to PrPsc assembly and prion elongation. Although the aggregation states targeted by D18 have not
yet been identified experimentally, D18 was found to inhibit prion elongation in cultured mouse
neuroblastoma cells infected with PrPsc [126]. Subsequently, Campana et al. (2009) engineered
scFv-D18 from Fab-D18 and used in silico tools to create a structural model of scFv-D18 bound to PrP.
In that model, PrP residue Arg151 was seen to be key in the interaction with the antibody fragment,
by anchoring PrP to the cavity formed on antigen binding site of the scFv [127].

More recently, Fujita et al. (2011) cloned the variable region of mAb 3S9—previously shown to
inhibit PrPsc accumulation in cell lines infected with mouse-adapted scrapie strains [128,129]—into the
scaffold of a scFv antibody. The resulting antibody, named scFv-3S9, recognized an epitope containing
Tyr154 in the helix 1 of PrP. When injected into mice brains, Prion-infected cells expressing scFv-3S9
presented less Prion pathology than infected cells not expressing this scFv [128].

Lastly, Sonati and coworkers (2013) used a panel composed of full-length antibodies and antibody
fragments (Fab and scFv) directed to either the globular domain or the flexible tail on PrP, to investigate
the role of these regions in oligomerization and neurotoxicity. Results generated on cerebellar
organotypic cultured slices showed that both domains are required for toxicity, as the flexible tail
acquires oxidative stress-mediated toxicity upon undergoing a conformational change originated
from the globular domain [130]. This comprehensive work reinforced the notion that antibody-based
therapeutic developments against Prion diseases must include a detailed analysis of the targeted
structural epitope of each antibody candidate as well as the molecular and clinical outcomes of targeting
these epitopes.

4. Concluding Remarks

Increased knowledge about the aggregation pathways and conformations of the toxic aggregate
species relevant to CNS amyloidoses has been obtained with the use of fragment antibodies, in particular
Fab, scFv, and VHH (Table 1). As technologies for engineering fragment antibodies are constantly
improving, the perspective for the generation of novel fragment antibodies with high selectivity for
toxic oligomeric conformations as diagnostic and/or therapeutic candidates for CNS amyloidoses,
is also rising.

Methodologies for rational Aβ-targeting antibody design have been reviewed (e.g., Plotkin and
Cashman, 2020 [131]). For example, just as our group has successfully generated full-length IgGs
with selectivity for AβOs over monomers and fibrils [132], rational immunization with specific toxic
AβO species can be employed, followed by conversion of the resulting anti-AβO IgG to an antibody
fragment. Alternatively, specific toxic AβO species can be utilized in rational bio-panning of antibody
fragment libraries. These specific AβO species can be generated by size-based separation methods
(reviewed in [12]) or by utilizing specific Aβ monomeric proteoforms ([133,134]) and can be stabilized
by various methods. For example, chemical crosslinking via DFDNB (1,5-difluoro-2,4-dinitrobenzene)
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has been shown to stabilize high molecular weight AβOs that exhibit toxicity in cell cultures and
in vivo [135]. Alternatively, computational prediction of regions present on the surface of toxic
oligomeric species is emerging as an additional strategy for rational identification of target species [136].

We envision that the use of fragment antibodies in structural studies aimed to unravel the
molecular mechanisms of protein aggregation and related toxicity has a strong potential to make
unique contributions to the field. In conjunction with CDR mapping and the detailed analysis of the
assembly selectivity of each fragment antibody described, this approach may significantly improve our
knowledge regarding key atomic contacts between antibodies and toxic oligomers, and as a consequence,
the structural moieties that confer toxicity to amyloid oligomers. These advances could enhance the
field’s capability of engineering antibody fragments able to selectively target neurotoxic aggregates
amongst a multitude of oligomeric assemblies co-existing in diseased human tissue. Even in a likely
case in which different oligomeric species contribute to neurotoxicity, and thus a single, highly specific
antibody would not able to fully neutralize the pathogenic cascade, a therapeutic strategy based on the
combination of multiple oligomer-selective antibody fragments directed against different species could
be employed to circumvent this issue.

The cognitive benefit and lowering of multiple AD markers reported in AD patients treated
with the antibody aducanumab (Biogen)—a monoclonal IgG that preferentially targets aggregated
Aβ [137,138]—has brought hope, reinforcing the notion that selectively targeting neurotoxic aggregates
would guide the field toward disease-modifying treatments against brain amyloidosis. Indeed, the FDA
has recently granted aducanumab priority review [139]. However, there is still room for improvement
in the field as the therapeutic benefits of aducanumab were only apparent following a re-analysis of the
phase three trials that were initially halted due to a lack of efficacy [138]. In our view, this improvement
will stem from the development of antibodies even more selective to neurotoxic oligomeric assemblies.
In this context, detailed structural information on these toxic oligomers will be invaluable to the targeted
design of new oligomer-selective fragment antibodies with improved specificity and clinical outcomes.
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