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Insightful problem solving (IPS) attracts widespread attention in creative thinking
domains. However, the neural underpinnings of individual differences in IPS are still
unclear. The purpose of this research was to investigate inherent full-brain connectivity
patterns at voxel-level in IPS. Sixty-two healthy participants were enrolled in the study.
We used a voxelwise full-brain network measurement, degree centrality (DC), to depict
the characteristics of cerebral network involved in individual differences in IPS. For each
participant, we employed a chunk decomposition paradigm, using Mandarin characters
as stimuli, to estimate the individual differences in IPS. Results showed that DC in the
inferior frontal gyrus, and the middle frontal gyrus/precentral gyrus positively correlated
with IPS, while the anterior cingulate cortex, and the brainstern/cerebellum/thalamus
exhibited negative correlations with IPS. Using each cluster above as a seed, we
performed seed-based functional connectivity analysis further. Results showed that
IPS was mainly involved in the default mode network, containing the key regions of
precuneus and medial prefrontal cortex. All in all, this research may shed new lights on
understanding the neural underpinnings of individual differences in IPS.

Keywords: insightful problem solving, brain connectivity, resting-state fMRI, individual differences, neural
mechanism

INTRODUCTION

Insightful problem solving (IPS) often denotes a new and sudden comprehension of the proper
solution to a specific problem with positive feelings (i.e., Aha! experience). It has been suggested
that IPS is associated with brain functions of set-shifting, mental restructuring, forming new
associations, and emotion processing (Tik et al., 2018; Lin et al., 2020; Li et al., 2022). However,
the neural substrates of individual difference in solving insightful problems remain elusive. As we
know, brain underpinnings may precede behaviorally measurable cognitive processes. Uncovering
sensitive brain areas might be advantageous for tracking the characteristics and cognitive processes
of IPS. Furthermore, decoding the neural correlates of individual difference in IPS can elucidate
why some individuals are inclined to have more insightful problem-solving success than others.
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New brain imaging techniques, such as functional magnetic
resonance imaging (fMRI), enable researchers to investigate
neural substrates beneath the mental processes and individual
differences in creative thinking. For instance, based on task-
related fMRI, previous studies found that divergent thinking
could involve the lateral prefrontal cortex, including ventrolateral
and dorsolateral prefrontal cortex, which is considered as the
neural mechanism of cognitive control (Benedek et al., 2018;
Sun et al., 2019). The anterior and posterior cingulate cortex
have frequently been discovered in divergent thinking studies
(Adnan et al., 2019; Wu et al., 2020). Meanwhile, lateral and
medial prefrontal cortex were also regarded as key brain regions
in IPS, which could involve the processes of breaking mental sets,
restructuring representations, and cognitive inhibition (Huang
et al., 2015; Tang et al., 2015). Besides, hippocampal gyrus
and amygdala were closely linked with IPS, since IPS recruited
processes of forming novel associations and emotion encoding
(Huang et al., 2015; Yu et al., 2019). We speculated that the
lateral and medial prefrontal cortex might be the hub regions
responsible for creative problem solving.

Our brain produces neural signals spontaneously and
constantly even when no explicit tasks are performed (Biswal
et al., 1995; Kong et al., 2015). These neural signals can help us
uncover the relationship between resting-state brain activities,
numerous cognitive processes, and psychological individual
differences. Recently, resting-state (task-free) fMRI studies
showed accumulated evidences about the neural correlates of
creative thinking (Takeuchi et al., 2012; Wei et al., 2014; Wang
et al., 2022). For example, studies regarding the relationship
between individual difference of divergent thinking and brain
spontaneous activities found that medial prefrontal and cingulate
cortex play an important role in divergent thinking (Takeuchi
et al., 2012). Similarly, another resting-state study focusing on
creativity also revealed that medial prefrontal cortex was closely
related to individual differences in creativity (Wei et al., 2014).
These studies suggest strong linkage between spontaneous neural
activity and creativity. However, as a typical creativity, insight’s
relationship with the spontaneous neural activity has rarely been
explored at the level of individual difference.

Resting-state fMRI researches have claimed brain mechanisms
underlying creativity could be reflected from the perspective of
functional brain network, and are not merely confined to regional
alterations (Chen et al., 2014; Shi et al., 2018; Gao et al., 2021). For
instance, a previous study found that the strength of resting-state
functional connectivity (FC) between subcortical regions, such
as thalamus and pallidum, can positively predict the degree of
creative thinking (Gao et al., 2021). Chen et al. (2014) focused
on individual differences in creativity, and revealed a negative
relationship between the anterior cingulate (ACC) and prefrontal
cortex in creativity. Besides, using an independent component
analysis (ICA), Shi et al. (2018) found that anterior default
mode network (DMN) correlating with frontal-parietal network
contributes to divergent thinking. It’s worth noting that the
above studies mainly depended on seed-based or ICA methods,
aiming at the explorations within particular brain networks.
The results derived from these analyses are diffusely distributed.
Thus, a voxel-wise whole-brain FC analysis is urgently needed,

which may provide novel insight into the brain underpinnings of
creative thinking, especially for IPS.

Degree centrality (DC), a commonly used graph theory-
based network measurement at voxel level, could estimate the
significance of a specific region (i.e., node) in the whole-brain
network. This method doesn’t need priori definition of regions of
interest (ROIs), and can reveal details of the FC within the whole-
brain network (Zuo et al., 2011). Many researches have confirmed
DC indicator has physiological significance, reflecting features
of brain blood flow and metabolism (Liang et al., 2013; Wang
et al., 2021). Besides, DC measurements were proved to own good
retest reliability (Zuo and Xing, 2014). Thus, researchers usually
employed the DC method to depict characteristics of inherent
brain networks underlying individual differences of cognitive
process or psychiatric disorders (Di Martino et al., 2013; Sato
et al., 2015; Li et al., 2020; Wang et al., 2021; Liu and Lai,
2022). Inspired by these studies, this research aimed to utilize the
DC method to carry out a whole-brain detection of hub areas,
showing changed brain connectivity responsible for individual
differences in IPS. Finally, we used a seed-based approach to
further examine the FC patterns of each cluster founded in DC
analysis. Based on previous studies (Wei et al., 2014; Huang et al.,
2015; Tang et al., 2015; Benedek et al., 2018; Lin et al., 2020), we
predicted that hub regions, such as lateral or medial prefrontal
cortex, may play a critical role in IPS, and IPS may be closely
related to activations of the DMN.

MATERIALS AND METHODS

Participants
Two criteria were used to recruit and select participants. Firstly,
volunteers who signed up for the study were asked to fill out the
Edinburgh Handedness Inventory to assess their hand preference.
Only right-handed respondents were included as participants.
Secondly, volunteers were estimated further according to their
self-reports, and met the criteria: no history of psychiatric illness,
no brain injury, normal vision, and no history of neurologic
disease. As a result of these recruited requirements, sixty-two
healthy native Mandarin Chinese speakers (28 males/34 females,
aged 18–27 years old) were selected as participants with an
average age of 20.93 (SD = 2.07). Notably, all volunteers were
enrolled randomly, and have passed the university entrance
examination. They were supposed to have similar cognitive
abilities. This research got ethical approval from Research Ethics
Review Board of South China Normal University. All volunteers
signed a consent form before participation.

The Assessment of Individual
Differences in Insight Problem Solving
The research required participants firstly completed insight
problem tasks, then received the magnetic resonance imaging
(MRI) data acquisition. Specifically, individual differences of
IPS were evaluated using the insightful Mandarin character
chunk decomposition task, which consists of two tasks (the
low insightful task and high insightful task). In the low insight
task, participants removed a compound character from the given
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character to alter it into the target character. While in the
high insight task, participants needed to remove an isolated
character from the given character in order to obtain the target
character. Previous studies have proved that the low and high
insightful Mandarin character chunk decomposition tasks can
successfully induce corresponding insight feelings, and details
of the tasks can be found in these studies (Lin et al., 2019,
2020). Notably, the two insight tasks were together used to
measure the individual differences of IPS. We firstly calculated
the mean reaction time of both insight conditions. Secondly,
the mean accuracy rates of the low and high insight conditions
were computed. Finally, by dividing the mean reaction time
into the mean accuracy rates, the inverse efficiency scores (ES)
were obtained (Townsend and Ashby, 1978). Before analyzing,
a log transform was performed on the inverse ES in order to
address the skewness problem. There was a negative correlation
between ES and individual differences of IPS. To put it another
way, the lower the transformed ES values were, the better the
insight performance. Upon completion of the behavioral tasks, all
participants completed MRI scans, which consisted of structural
scans (5 min), and resting-state scans (8 min).

Magnetic Resonance Imaging Data
Acquisition
Image collection was conducted with a 3.0 T Siemens Tim
Trio MRI scanner with a 12-channel head coil at SCNU.
A foam padding was provided to keep participant’s head still and
therefore reduced head movements. Both the resting-state and
structural imaging data were collected in this research. However,
only resting-state data were further analyzed. The structural
data were collected for the purpose of normalization. All
resting-state images were determined by a gradient echo-planar
imaging sequence. Parameters are showed below: Repetition
time = 2000 ms; echo time = 30 ms; image thickness = 3.5 mm;
field of view = 204 × 204 mm2; flip angle = 90◦; data
matrix = 64 × 64; 33 slices for a full brain. The brain
anatomical images were acquired with a magnetization- radio-
frequency pulses and rapid gradient-echo (MPRAGE) sequence.
Parameters are showed below: Repetition time = 1900 ms; echo
time = 2.52 ms; image thickness = 1.0 mm; flip angle = 9◦; field
of view = 256 × 256 mm2; data matrix = 256 × 256; 176 slices
for a full brain.

MRI Data Process
Data Preprocess
The image data were preprocessed and analyzed using the DPABI
toolbox (Yan and Zang, 2010). First, in order to achieve scanner
equilibration, the first ten images were removed. For the rest
of 230 images, we further carried out a slice-timing correction
and a head motion movement correction. It is worth noting
that all the images fulfilled the head motion criteria: ≤ 2.5 mm
translation; ≤ 2.5◦ rotation. Then, the volumes were co-registered
with the structural ones, and standardized into a voxel size of
3 × 3 × 3 mm3, with a standard MNI template. Subsequently,
all the volumes were further performed linear detrending and

regressed out head motion parameters (computed by Friston 24-
parameter model), white matter and cerebrospinal fluid signal.
Meanwhile, mean framewise displacement (FD) of head motion
was acquired and then employed as a factor of no interest to be
regressed out in group-level analyses (Yan et al., 2013). Finally,
temporal bandpass filtering (0.01–0.08 Hz) was conducted
to minimize high-frequency physiological noise. Notably, in
order to calculate the DC measurement, we didn’t perform
smoothing for the images here considering previous studies (Zuo
et al., 2011; Liu and Lai, 2022). Conversely, when evaluating
the resting-state FC, all the volumes were smoothed with a
4 mm full-width at half-maximum (FWHM) resolution in this
preprocessing stage.

Degree Centrality Analysis
The preprocessed images were tackled with the DPABI toolbox to
get the DC values. DC is a parameter of the whole-brain network.
It refers to the amounts of edges linking to a node. To calculate
DC, we built a voxel-based whole-brain functional network.
Each voxel was considered as a node. Then, we computed the
Pearson’s correlation coefficients between each two voxels in the
whole brain. The correlation coefficient is an indicator of the
weight of connection, also known as “the edge.” We set a weight
threshold of r > 0.25 (Buckner et al., 2009). Edges with an
index ≤ 0.25 were discarded since it may be a correlation caused
by random errors. Besides, edges with a negative coefficient
were removed from the analysis. For each voxel, we calculated
the DC (i.e., the sum of the threshold connections of each
voxel), following these above-mentioned steps. We obtained
a DC graph for each participant. All the DC graphs were
then transformed using the Fisher-Z method for the purpose
of normalization. Afterward, the normalized DC graphs were
smoothed with a 4 mm FWHM resolution. In the end, a multiple
regression model was performed to reveal the brain areas
indicating prominent correlations between DC and individual
differences of IPS (measured by ES). Notably, ES was set as
the regressor of interest. Potential confounding factors (i.e., age,
gender, and mean FD) were set as the regressors of no interest.
Solving the multiple comparison problems, this research adopted
a correction approach integrating voxel intensity (uncorrected
p < 0.005) and cluster extent (FWE corrected p < 0.05).

Seed-Based Functional Connectivity Analysis
We used significant clusters found in the DC analysis as
seed regions to compute FC alterations. For each seed, we
estimated the mean time course within it, and then correlated
it with the time course of other voxels within the gray matter
mask. Afterward, the correlation coefficients were performed
with Fisher’s r-to-z transformation to fulfill normality purposes,
resulting in seed-based z-FC map for each participant. Finally,
a multiple regression model was also performed to reveal the
brain areas indicating prominent correlations between the FC
and individual differences of IPS (measured by ES). Likewise,
ES was set as the regressor of interest. Potential confounding
factors (i.e., age, gender, and mean FD) were set as the regressors
of no interest. Solving the multiple comparison problems,
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this research adopted a correction approach integrating voxel
intensity (uncorrected p < 0.005) and cluster extent (FWE
corrected p < 0.05).

RESULTS

Behavioral Data
Mean (± SD) accuracies of the low insightful task and high
insightful task were 0.94 ± 0.06 and 0.88 ± 0.07, respectively,
and there was a significant difference between the two tasks
(t = 7.59, p < 0.001). Mean (± SD) response times of the low
insightful task and high insightful task were 1294.98 ± 481.30
and 1506.46 ± 553.98, respectively, and there was a significant
difference between the two tasks (t = –7.64, p < 0.001). It’s
worth noting that here we took response times with accuracies
together to calculate the ES, a measurement reflecting individual
difference of IPS. The ES indicated a normal distribution with a
mean ± SD of 3.16 ± 0.17 in the present study.

Degree Centrality
Table 1 and Figure 1 list the information on the clusters where
there was a significant correlation between DC and ES. Detailly,
ES correlated positively with DC, located at the left inferior
frontal gyrus (IFG.L) and left middle frontal gyrus/precentral
gyrus (MFG/PreCG.L). Besides, ES correlated negatively with
DC in the right anterior cingulate cortex (ACC.R) and left/right
brainstern/cerebellum/thalamus (BSM/CRB/TLM.L/R).

Seed-Based Functional Connectivity
According to the results of DC analysis, four clusters were
adopted as seed regions. We found sixteen significant ES-
positive connections (Figure 2 and Table 2). Specifically,
the strength of FC between the seed, IFG.L, and the right
lingual gyrus (LING.R), IFG.L, right middle temporal gyrus
(MTG.R), PreCG.R, left middle temporal gyrus (MTG.L), and left
precuneus (PCUN.L) positively correlated with the ES. Besides,
the strength of FC between the seed, MFG/PreCG.L, and the
MTG.R, IFG.L, MTG.R, MTG.L, right superior temporal gyrus

TABLE 1 | Clusters indicating correlations between DC and ES.

Clusters Side Cluster size MNI coordinates t value

(voxels) x y z

Positive

IFG L 75 –42 21 18 4.39

MFG/PreCG L 86 –27 0 45 4.50

Negative

ACC R 83 3 21 3 –4.56

BSM/CRB/TLM L, R 1318 –3 –33 –18 –5.09

MNI, Montreal Neurological Institute; IFG, inferior frontal gyrus; BSM, brainstern;
MFG, middle frontal gyrus; CRB, cerebellum; PreCG, precentral gyrus; ACC,
anterior cingulate cortex; TLM, thalamus; ES, efficiency score of insight; DC,
degree centrality; L, left; R, right. The t value refers to the statistical difference in
the brain cluster.

(STG.R), left/right medial prefrontal cortex (MPFC.L/R), MTG.L,
PCUN.L, PCUN.L, and left/right supplementary motor area
(SMA.L/R) also positively correlated with the ES. Notably, these
ES-positive connections are mainly located in the DMN and
executive control network (ECN).

DISCUSSION

With graph theory-based approach, the present research has
explored the brain connectivity patterns underlying individual
differences of IPS, by integrating voxel-wise DC and seed-
based FC methods. We found ES (an indicator reflecting
individual difference of IPS) involved increased DC in the
IFG.L and MFG/PreCG.L, while reduced DC in the ACC.R
and BSM/CRB/TLM.L/R. Considering the inverse relationship
between the ES and individual difference of IPS, IPS was
thus related to reduced DC in the IFG.L and MFG/PreCG.L,
suggesting network connections in these regions are reduced
for IPS. Likewise, IPS was linked to increased DC in the
ACC.R and BSM/CRB/TLM.L/R, implying network connections
in these areas increase for IPS. Moreover, results of seed-based
FC showed reduced connections from IFG.L and MFG/PreCG.L
to dorsal/medial prefrontal cortex, lingual gyrus, temporal
areas, and precuneus regions, mainly reflecting involvements of
DMN and ECN in IPS.

Reduced DC and network connections in IPS were found
in the IFG.L and MFG/PreCG.L. These brain regions are main
parts of the lateral prefrontal cortex (Sasaki et al., 2018). The
lateral prefrontal cortex, containing the dorsal lateral prefrontal
cortex (DLPFC) and ventral lateral prefrontal cortex (VLPFC),
mainly mediates cognitive control (Ochsner and Gross, 2005;
Carballedo et al., 2011) and executive functions through IFG-
MFG-striatum circuits (Quan et al., 2013). Besides, the DLPFC
and VLPFC are also responsible for restraining dominant but
disrelated responses and enabling cognitive flexibility (Derrfuss
et al., 2005; Volle et al., 2011), which involves key components of
IPS. Regarding the process of IPS, quite a lot of studies reported
that IPS involves processes of inhibitory control and decision
making, since certain cognitive control resources are required to
overcome the mind set in IPS (Bowden, 1997; Knoblich et al.,
1999; Lin et al., 2020). Furthermore, our findings were in accord
with previous IPS researches (Gonen-Yaacovi et al., 2013; Zhao
et al., 2014; Tik et al., 2018; Lin et al., 2020). For instance, using
Chinese “chengyu” riddles as insight stimuli, Zhao et al. (2014)
found that verbal insight problem solving had an altered FC
anchored in the lateral prefrontal cortex than ordinary problem
solving. Therefore, based on the roles of the DLPFC, VLPFC,
and the processes of IPS reported in previous studies, we suggest
that decreased connectivity in lateral prefrontal cortex could be
critical for IPS.

Importantly, IFG.L and MFG/PreCG.L form the center of
ECN, promoting cognitive and executive functions. Previous
fMRI studies have identified changed ECN in IPS (Tang et al.,
2015; Beaty et al., 2016; Huang et al., 2018). For instance,
using chunk decomposition paradigm to investigate neural
underpinnings under IPS with a parametric fMRI design, Tang
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FIGURE 1 | Clusters indicating correlations in weighted DC maps with ES. These brain clusters contain the IFG, MFG/PreCG, ACC, and BSM/CRB/TLM.
Coordinates of Montreal Neurological Institute space were used in the present study. ES, efficiency score of insight; IFG, inferior frontal gyrus; TLM, thalamus; MFG,
middle frontal gyrus; BSM, brainstern; PreCG, precentral gyrus; ACC, anterior cingulate cortex; CRB, cerebellum; DC degree centrality.

et al. (2015) found that the ECN, such as DLPFC, determines
optional ways of restructuring in IPS. In another study, regions in
the ECN (e.g., LPFC) were found to negotiate novelty processing
in IPS (Huang et al., 2018). Thus, altered connectivity of hub
regions in ECN may represent a mechanism in IPS, in cases where
many neural resources are required to select alternative ways of
restructuring. The present study indicating a close relationship
between ECN and individual differences of IPS may also support
such an assumption.

Furthermore, seed-based FC analysis for IPS showed ECN
anchored in the IFG.L and MFG/PreCG.L were also correlated
with the hub regions of DMN, such as MPFC.L/R, MTG.L,
STG.R, and PCUN.L. The DMN was supposed to facilitate
automated information processing (Marron et al., 2018), and
involve processes of self-monitoring, autobiographical memory
retrieval, and mind wandering (Bressler and Menon, 2010;
Andrews-Hanna, 2012; Zabelina and Andrews-Hanna, 2016).
Accumulating evidence has showed that the DMN was related
with creative thinking, including divergent thinking and IPS
(Beaty et al., 2018; Fink et al., 2018; Marron et al., 2018; Lin et al.,
2020; Wu and Chen, 2021). For example, Lin et al. (2020) found

that activation in the DMN is a key signal discriminating the IPS
from ordinary thinking. Moreover, several literatures indicated
that both the DMN and ECN jointly support idea generation in
creative performance (Beaty et al., 2016; Vatansever et al., 2017;
Beaty et al., 2018). Vatansever et al. (2017) suggested when
autonomous associative processing from DMN fails to reach
unpredictable and novel target, external attention information
will be required from the ECN. Likewise, Beaty et al. (2016)
inferred that the DMN can help to the producing of candidate
thoughts, while the ECN may estimate the efficacy of candidate
thoughts and fulfill the goals of the task. They further suggested
creative thinking might benefit from dynamic interactions of
the DMN and ECN. Therefore, our present study indicating
a function connectivity between ECN and DMN in IPS may
provide more evidence for this hypothesis.

In the IPS, increased DC was detected in two other hub
regions, the ACC.R and BSM/CRB/TLM.L/R. The ACC is mainly
responsible for conflict control and detection (MacDonald et al.,
2000; Anderson et al., 2009; Abe et al., 2018; Holroyd and
Verguts, 2021). For instance, high conflict induces strong ACC
activity when performing Stroop task (MacDonald et al., 2000).
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FIGURE 2 | Altered network connectivity in the individual differences of
insightful problem solving, using two seed clusters in the DC correlation
analysis. Brain connectivity mainly involves ECN and DMN. The color bar
refers to t-value. IFG.L, left inferior frontal gyrus; MFG.L, left middle frontal
gyrus; PreCG.L, left precentral gyrus; ECN, executive control network; DMN,
default mode network.

Several literatures have highlighted the ACC’s importance in
IPS, and the ACC participated differentially in generating insight
and non-insight solutions (Benedek et al., 2014; Shen et al.,
2018a; Lin et al., 2020; Becker et al., 2021). In a review
study, authors claimed that the BSM-thalamus-amygdala circuit
plays a pivotal role in modulating and organizing emotion-
related processing (Venkatraman et al., 2017). As we know,
one striking feature of IPS is that individuals can experience
positive emotions, such as the aha feelings (Luo and Niki, 2003;
Shen et al., 2018b). We deduced that the BSM is related to
the aha feelings in IPS. The TLM is the information relay
station of the whole brain, where information was selected for
further processing (Van Den Heuvel and Sporns, 2011; Boccia
et al., 2015; Jung et al., 2015). Researchers suggested the TLM
was linked to information filtering and cognitive control of
the prefrontal cortex, and thus facilitated cognitive flexibility in
creative thinking (Jung et al., 2015). Here, our study showing
an increased connectivity in TLM may provide evidence for
the role of cognitive flexibility in IPS. In addition, previous
studies reported the CRB was responsible for cognitive control
and executive functions, especially for the visual information
(Keren-Happuch et al., 2014; Ogawa et al., 2018; Schmahmann
et al., 2019). Specifically, Ogawa et al. (2018) proposed that
restricting visual information can boost representational changes
in creative insight. They further pointed out that the cerebellar
networks coupled with the DMN may responsible for higher
cognitive function, which could modulate the performance of

TABLE 2 | Brain regions showing correlations between the SBFC and ES. The t
value refers to the statistical difference in a region.

Seed regions SBFC regions Cluster size MNI coordinates t value

(voxels) x y z

IFG.L LING.R 73 21 –84 –18 4.57

IFG.L 50 –36 36 –9 4.61

MTG.R 33 63 –27 –3 4.14

PreCG.R 32 51 –6 15 4.60

MTG.L 81 –57 –54 15 4.52

PCUN.L 85 –21 –72 42 4.93

MFG/PreCG.L MTG.R 43 54 –3 –15 5.14

IFG.L 55 –54 15 –15 4.54

MTG.R 52 60 –27 –3 4.43

MTG.L 85 –54 –27 3 4.42

STG.R 39 48 –36 12 4.69

MPFC.L/R 67 6 54 18 4.37

MTG.L 114 –39 –51 18 5.55

PCUN.L 85 –3 –60 51 5.09

PCUN.L 41 –21 –84 33 4.42

SMA.L/R 37 0 6 63 4.98

SBFC, seed-based functional connectivity; MNI, Montreal Neurological Institute;
ES, efficiency score of insight; LING.R, right lingual gyrus; IFG.L, left inferior
frontal gyrus; MTG.L, left middle temporal gyrus; MFG.L, left middle frontal
gyrus; MTG.R, right middle temporal gyrus; PreCG.R, right precentral gyrus;
PreCG.L, left precentral gyrus; PCUN.L, left precuneus; STG.R, right superior
temporal gyrus; MPFC.L/R, left/right medial prefrontal cortex; SMA.L/R, left/right
supplementary motor area.

IPS. Besides, a recent review confirmed that cerebellum acts
as a hub critical for information detection, prediction and
preparation, which subserves cognition. Intrinsic connectivity
between the cerebellum network, the frontoparietal network,
and the default network closely correlates with creativity and
imagination (Schmahmann et al., 2019). Our results in this
research are in accord with these previous literatures, supplying
extra evidences that the ACC.R and BSM/CRB/TLM.L/R could
involve individual differences of IPS.

Limitations
Several limitations in this research should be tackled in
future. First, increased and decreased connections can involve
different physiological functions (Chelaru and Dragoi, 2008). For
example, increased connectivity is linked with strengthen afferent
information and facilitate signal selection. However, the meaning
of increased and reduced connections in brain networks has not
yet been clarified in the present study. Physiology researches
will be required to tackle this issue in the future. Secondly,
our FC in this study was non-directional. Other directed FC
analyses, including Granger causality analyses, are urgently
needed to provide direction information of the cortical networks
in IPS. Finally, the present study focused on the individual
differences of chunk decomposition, which is a special form
of IPS. However, insight can vary differently. A previous study
suggested that another crucial form of IPS, constraint relaxation,
is worth further studying (Huang et al., 2018). Therefore, future
studies should be conducted to reveal the neural basis of
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constraint relaxation in IPS, and to enrich insight theory and the
understanding of individual differences in IPS.

CONCLUSION

This study used a DC method, along with seed-based FC
analysis, to explore the whole-brain intrinsic connectivity pattern
underlying the individual differences of IPS. The results showed
that the connectivity density is altered in four clusters (i.e., IFG.L,
MFG/PreCG.L, ACC.R and BSM/CRB/TLM.L/R). Moreover,
changed connectivity could be involved in the key nodes of DMN
and ECN, which plays an important role in IPS. These results
highlight the significance of brain connectivity in IPS, and might
supply valuable information for the neural basis of individual
differences in IPS.
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