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With efficiencies derived from evolution, growth and learning, humans are very well-tuned 

for locomotion1. Metabolic energy used during walking can be partially replaced by power 

input from an exoskeleton2, but is it possible to reduce metabolic rate without providing an 

additional energy source? This would require an improvement in the efficiency of the 

human-machine system as a whole, and would be remarkable given the apparent optimality 

of human gait. Here we show that the metabolic rate of human walking can be reduced by an 

unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with 

the user’s calf muscles, off-loading muscle force and thereby reducing the metabolic energy 

consumed in contractions. The device uses a mechanical clutch to hold a spring as it is 

stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfill 

one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch 

sustains force passively. The exoskeleton consumes no chemical or electrical energy and 

delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 

2.6% for healthy human users under natural conditions, comparable to savings with powered 

devices. Improving upon walking economy in this way is analogous to altering the structure 

of the body such that it is more energy-effective at walking. While strong natural pressures 

have already shaped human locomotion, improvements in efficiency are still possible. Much 

remains to be learned about this seemingly simple behavior.

Humans are skilled walkers. Over generations, our bodies have evolved muscular1, skeletal3 

and neural4 systems well-suited to locomotion. We learn and embed walking coordination 

strategies over our lifetimes5 and adapt to new locomotor environments in minutes or 

seconds6. We take about 10,000 steps per day7, or hundreds of millions of steps in a 
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lifetime, exceeding the approximately 10,000 hours of practice thought to be needed to 

attain expertise8 by adulthood. We naturally keep energy expenditure low during walking, 

choosing, for example, step length9 and even arm motions10 that minimize energy cost. 

Nearly any change to the human musculoskeletal system or its pattern of coordination 

increases metabolic rate. Despite this skill and efficiency, getting about is still expensive. 

People expend more energy during walking than any other activity of daily life11, and 

fatigue can limit mobility. Herein lies the challenge: reducing the effort of normal walking 

could garner substantial benefits, but humans are already so energy-effective that making 

improvements is extremely difficult.

Since at least the 1890’s12, engineers have designed machines intended to make walking 

easier13–15. A survey of these designs can be found in the Supplementary Discussion. It is 

only recently that any attempt at reducing the energy cost of walking with an external device 

has met with success. The first machine to do so used off-board pneumatic pumps and 

valves to replace human joint work with exoskeleton work2, overcoming the surprisingly 

tricky challenge of coordinating assistance with the human neuromuscular system. More 

recently still, a powered and untethered device using similar control strategies succeeded in 

reducing energy cost16, overcoming the additional challenge of autonomous packaging.

Reducing the energy cost of walking with an unpowered device requires a different 

approach. Instead of adding a robotic energy source to replace metabolic sources, one must, 

in a sense, change the human body such that it is more efficient at locomotion (Extended 

Data Fig. 1). For the task of carrying heavy loads while walking, such improvements have 

been demonstrated using a spring-mounted backpack17 and by training people to balance the 

weight on their head in just the right way18. But is there room for a similar improvement in 

the already expert task of normal walking?

The possibility of unpowered assistance is made more likely by the fact that level walking at 

steady speed requires no power input in theory, and therefore all energy used in this activity 

is, in a sense, wasted. Simulation models with spring-loaded legs illustrate this idea19; their 

springs store and return energy during each step, but no mechanical work is done by 

actuators, capitalizing on the fact that the kinetic and potential energy of the body remain 

constant on average. Humans expend metabolic energy during walking in part to restore 

energy that has been dissipated, in passive motions of soft tissues20 for example, but the 

greatest portion of waste occurs in muscles. Muscles consume metabolic energy to perform 

positive work, as required by conservation of energy, but they also use metabolic energy to 

produce force isometrically and to perform negative work21. This places a metabolic cost on 

body weight support22 and on holding tendons as they stretch and recoil23. By contrast, 

mechanical clutches require no energy to produce force.

We designed a lightweight exoskeleton that provides some of the functions of the calf 

muscles and tendons during walking, but uses more efficient structures for those tasks. It has 

a spring in parallel with the Achilles tendon (Fig. 1a) connected to the leg using a 

lightweight composite frame with a lever about the ankle joint (Fig. 1b, Extended Data Fig. 

2). A mechanical clutch in parallel with the calf muscles engages the spring when the foot is 

on the ground and disengages it to allow free motion when the foot is in the air (Fig. 1c, 
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Supplementary Video 1). This design was inspired by ultrasound imaging studies suggesting 

clutch-like behavior of muscle fascicles to hold the spring-like Achilles tendon24, the recoil 

of which leads to the largest burst of positive mechanical power at any joint during walking. 

The exoskeleton clutch, described in detail in the Supplementary Methods and 

Supplementary Video 2, has no motor, battery or computer control, and weighs 0.057 kg. 

The entire exoskeleton has a mass of between 0.408 and 0.503 kg per leg, depending on 

participant size (Extended Data Tables 1 and 2). Based on simulation studies of walking 

with elastic ankles19,25, we expected an intermediate stiffness to minimize energy cost and 

performed tests with a range of springs.

We conducted experiments with healthy participants (N = 9) wearing an exoskeleton on 

each leg while walking at a normal speed (1.25 m·s−1) on a treadmill. The exoskeleton 

produced a pattern of torque similar to that produced by the biological ankle, but with lower 

magnitude (Fig. 2a). This reduced the ankle moment produced by calf muscles (Fig. 2b) and 

also reduced calf muscle activation, particularly in the soleus (Fig. 2c). Joint angles changed 

little across conditions (Fig. 2d), confirming that the exoskeleton did not interfere with other 

normal ankle functions, such as toe clearance during leg swing (60–100% stride).

The exoskeleton reduced human metabolic energy consumption when using moderate-

stiffness springs (Fig. 3). Wearing a lightweight exoskeleton on each ankle without springs 

did not measurably increase energy cost compared to normal walking. With increasing 

spring stiffness, metabolic rate first decreased then increased, supporting the hypothesis that 

an intermediate stiffness would be optimal. The 180 N·m·rad−1 spring reduced the metabolic 

cost of walking to 2.67 ± 0.14 W·kg−1 (mean ± standard error), down from 2.88 ± 0.10 

W·kg−1 for normal walking, a reduction of 7.2 ± 2.6% (paired t-test: p = 0.023). Metabolic 

energy used for walking, or net metabolic rate, is calculated as total metabolic rate minus the 

rate for quiet standing, which was 1.47 ± 0.1 W·kg−1 in this study. The observed reduction is 

similar to improvements with high-powered devices2,16 and equivalent to the effect of 

taking off a 4 kg backpack for an average person26.

It is difficult to attribute changes in whole-body metabolic rate to a particular change in 

muscle mechanics27, but with this device there is an association with reduced muscle forces 

at the assisted ankle joints. Muscles consume energy whenever active, even when producing 

force without performing mechanical work. Simply reducing muscle force can therefore 

save metabolic energy. For all exoskeleton springs, we measured reductions in the biological 

component of ankle moment and the activity of major plantarflexor muscles, both indicative 

of reduced force. Reductions occurred primarily during early and mid-stance (0–40% stride, 

Fig. 2b,c) when muscle fascicles are nearly isometric and therefore perform little mechanical 

work24. Simulation models estimate that plantarflexor muscle energy use primarily occurs 

during this period and accounts for about 27% of the metabolic energy used for walking27. 

With the 180 N·m·rad−1 spring, the biological component of average ankle moment was 

reduced by 14% and mid-stance soleus electrical activity was reduced by 22% compared to 

normal walking. Extrapolating from these values, one might expect about a 4% to 6% 

reduction in overall metabolic rate, comparable to the observed 7% reduction.
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Biological contributions to ankle joint work were also partly replaced by the exoskeleton, 

but it is unlikely that these changes were responsible for reductions in metabolic rate. The 

connections between joint work, musculotendon work, muscle fascicle work, and metabolic 

rate are complex. Much of the mechanical work at the ankle joint during walking is the 

result of elastic stretch and recoil of the Achilles tendon24, which does not directly consume 

metabolic energy. Because of tendon compliance, using an exoskeleton to reduce cyclic 

musculotendon work can actually preserve or increase the mechanical work performed by 

muscle fascicles28 – reducing tendon force reduces its stretch, which can lead to increased 

excursion of the muscle itself and more muscle work. Even if reduced joint work had been 

the result of reduced muscle fascicle work, under these circumstances such a change would 

likely not have reduced metabolic cost. It has recently been shown that for contraction 

cycles similar to those of the calf muscles during normal walking, where muscle fascicles 

undergo stretch-shorten cycles with nearly zero net work, making equal and opposite 

changes to both negative and positive work has no effect on metabolic energy use per unit 

force29. Our understanding of the relationship between muscle activity and metabolic rate 

remains imperfect, but reduced muscle work does not seem to provide a good explanation 

for reduced metabolic cost in this study.

Metabolic rate increased back to normal levels when using high-stiffness exoskeleton 

springs, apparently the result of several factors. Humans tend to select coordination patterns 

with similar net ankle moments across a range of exoskeleton torques2,30, a trend also 

observed here. With stiff springs, tibialis anterior activity counteracting exoskeleton torque 

in early and mid-stance appeared to increase, possibly reducing changes in total joint 

moment. Knee muscle activity to prevent hyperextension during mid- and late stance may 

also have contributed to increases in metabolic cost. Unexpectedly, some of the increase in 

metabolic rate appears to be associated with increased plantarflexor activity at the end of 

stance. Furthermore, despite being more active during this period, plantarflexor muscles 

produced lower joint moments. These reduced moments likely reflect increased contraction 

velocity, because muscle force drops rapidly as the rate of shortening increases. These two 

observations suggest that exoskeleton support during mid-stance led to inefficient, rapid 

shortening of plantarflexor muscles during the usual burst of positive work at the end of the 

step. Also unexpectedly, it does not appear that the increase in metabolic rate with high-

stiffness springs is well explained by simple dynamic models of walking, which predict 

changes in center-of-mass work that were not observed here19,25. These and other 

interpretations are presented in expanded form in the Supplementary Discussion and can be 

explored using joint mechanics, muscle activity and center-of-mass mechanics data 

presented in Extended Data Figs. 3–8.

The complexity of the neuromuscular system can impede useful application of simple ideas 

from mechanics and robotics to human locomotion. For example, it is tempting to equate 

joint work or center-of-mass work with metabolic energy use. However, the benefits derived 

from reduced muscle activity with this unpowered exoskeleton would not have been 

discovered using joint-level power estimates as a guide, since these draw attention toward 

terminal stance and away from early and mid-stance when joint power is negative and of 

low magnitude. The increased metabolic rate at higher exoskeleton spring stiffness found 
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here also cannot be explained using mechanical power, because human contributions 

decreased or remained suppressed with increasing stiffness. The complex neuromuscular 

factors underlying these changes make effective integration of assistive devices very 

challenging and may explain why the threshold of reducing the metabolic rate of normal 

walking, with2,16 or without additional power input, has taken more than a century to cross. 

Much remains to be learned about human coordination, even in this seemingly 

uncomplicated activity.

We have demonstrated that net energy input is not a fundamental requirement for reducing 

the metabolic cost of human walking. Reducing calf muscle forces – while also fulfilling 

normal ankle functions and minimizing penalties associated with added mass or restricted 

motions – can provide a benefit. Passive clutch-like structures are feasible in nature, making 

the use of this type of device analogous to a change in anatomy that improves walking 

economy. Similar morphological changes might augment other lower-limb musculature or 

locomotion in other animals. While evolution, growth and learning have driven efficiency, 

improvements are yet possible.

Methods

Participants

Nine healthy adults (N = 9, 2 female, 7 male; age = 23.0 ± 3.7 yrs.; mass = 77.4 ± 9.2 kg; 

height = 1.84 ± 0.10 m; mean ± s.d.) participated in the study. One additional subject 

dropped out before completing the protocol, in part due to hardware malfunctions during 

training sessions. Sample size was chosen based on metabolic rate data from previous 

studies. All subjects provided written informed consent prior to participation. The study 

protocol was approved and overseen by the Institutional Review Board of the University of 

North Carolina at Chapel Hill.

Exoskeleton hardware

Custom frames were fabricated for each participant using modified orthotics methods. A 

flexible cast was used to create a positive plaster mold of the foot, ankle and shank, upon 

which a thin, selectively-reinforced carbon fiber frame was formed. Shank and foot 

segments were removed from the mold and connected using an aluminum hinge joint with a 

plain bearing (Extended Data Fig. 2). The custom mechanical clutch31,32 (Fig. 1b, 

Supplementary Methods) was then integrated with the frame. Part drawings and CAD files 

are provided as Supplementary Data 1 and 2, a detailed accounting of component mass and 

comparisons to other systems are provided in Extended Data Tables 1 and 2, and a 

demonstration of clutch function can be found in Supplementary Video 2.

We used five sets of steel coil extension springs with stiffness of 5.6, 7.9, 10.5, 13.3 and 

17.2 kN·m−1 and mass of 0.059, 0.061, 0.068, 0.092 and 0.098 kg, respectively. Spring 

stiffnesses were determined in experiments where springs were stretched to several 

displacements using a fixture and forces were measured using a load cell. Springs were 

attached to a lever arm on the foot frame with an average radius of 0.152 m, resulting in 

average exoskeleton rotational stiffnesses of 130, 180, 240, 310 and 400 N·m·rad−1. This 
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spans the range of reported ankle joint quasi-stiffnesses for walking33. To measure force, a 

single-axis load cell (LC8125-312-500, Omega Engineering Inc., Stamford, CT, USA) was 

placed in series with the spring. Exoskeleton joint torque was calculated as the product of 

spring force and the lever arm, assuming constant leverage.

The effective stiffness experienced by participants was lower than that indicated by the 

springs themselves. In a follow-up experiment with a single subject, quasi-static loading of 

the exoskeleton, and additional markers on the exoskeleton frame, compliance in the frame 

and rope led to about an 18% decrease in effective stiffness, while compliance at the human-

exoskeleton interface led to an additional decrease of about 15%. The effective mechanical 

stiffness of the exoskeleton, when clutched, was therefore likely about 33% lower than 

indicated by the springs alone. Such effects likely varied across subjects, being dependent on 

both frame construction and individual human characteristics.

Walking trials

Subjects walked on a treadmill at 1.25 m·s−1 under seven conditions: normal walking 

without the exoskeleton (No Exoskeleton, No Exo. or NE), walking with the complete 

exoskeleton but no spring connected (No Spring or k = 0), and walking with each of the 

springs attached (exoskeleton spring stiffness k = 130, 180, 240, 310 and 400 N·m·rad−1). In 

previous studies, humans have taken about 20 minutes to fully adapt to tethered pneumatic 

ankle exoskeletons34. To allow sufficient time for learning, subjects completed 21 minutes 

of training under each condition over three to four walking sessions prior to data collection. 

During training, subjects walked under each condition for 7 minutes. Mechanical failure of 

the clutch occurred for some conditions during some training sessions, resulting in more 

collection sessions for some subjects, but an equal amount of training (21 minutes) with a 

functioning exoskeleton for all subjects and conditions. Data were collected during minutes 

5–7 of a final 7 minute session, or minutes 26–28 of the multi-day experiment. The order of 

presentation of conditions was randomized for each subject on the first collection day and 

then held constant for that subject over the remainder of the experiment. This ensured that 

each subject’s training progress was not confounded by ordering effects. Blinding was not 

practical in this protocol.

Biomechanics and energetics measurements

Body segment motions were measured using a reflective marker motion capture system (8 

T-Series cameras, Vicon, Oxford, UK). Ground reaction forces were measured using a 

treadmill instrumented with load cells (Bertec, Columbus, OH, USA). Ankle muscle activity 

(soleus, medial and lateral gastrocnemius, tibialis anterior) was measured using a wired 

electromyography system (SX230, Biometrics Ltd., Newport, UK). Whole-body oxygen 

consumption and carbon dioxide production were measured using an indirect calorimetry 

system (Oxycon Mobile, CareFusion Co., San Diego, CA, USA).

Data analysis

Joint angles, moments and powers were calculated from body motions and ground reaction 

forces using inverse kinematics and inverse dynamics analyses35 (Visual 3D, C-Motion Inc., 

Germantown, MD, USA). Components of joint moment and power attributed to the human 
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(biological component) were calculated36,37 by subtracting the exoskeleton torque or power, 

measured using onboard sensors, from the total ankle joint moment or power, estimated 

using inverse dynamics. Center-of-mass power was calculated from ground reaction forces 

using the individual limbs method38. Muscle activity was band-pass filtered (20–460 Hz) in 

hardware and then conditioned by rectifying and low-pass filtering with a cutoff frequency 

of 6 Hz in software. Medial and lateral gastrocnemius signals were combined to simplify 

analysis and interpretation. Metabolic rate was estimated from average rates of oxygen 

consumption (VO2) and carbon dioxide production (VCO2) during the collection window 

using a standard formula39. The metabolic rate during quiet standing was subtracted from 

gross metabolic rate to get the net value attributable to the energetic demands of 

walking2,10,16,22,26. Net metabolic rate values were then normalized to subject body mass.

Mechanics data and muscle activity from each condition were broken into strides, 

determined as the period between subsequent heel strikes of a single leg, and an average 

stride for each subject and condition was obtained. These average strides were used to 

calculate values of average moment, mechanical power, and muscle activity for each subject 

and condition. Average moment and power values were calculated as the time integral of 

moment and power time series data divided by stride period. Positive and negative average 

joint moments and powers were separated out using time integrals of periods of positive or 

negative moment or power, respectively. Average net power was calculated as the time 

integral of power over the whole stride period. Average moment and power values were 

normalized to subject body mass. Average muscle activity was calculated as the time 

integral of muscle activity divided by stride period. Average muscle activity during 

additional periods of interest was calculated as the time integral of muscle activity during 

those periods divided by stride period (e.g. early and mid-stance, defined as 0–40% stride, 

and late stance, defined as 40–60% stride). Muscle activity was normalized to the maximum 

value observed during normal walking for each muscle and for each subject. For each 

condition, study-wide average trajectories of lower-limb joint angles, moments and powers 

were calculated by averaging across subjects, used for display purposes in Fig. 2 and 

Extended Data Figs. 3–8.

Statistics

For each condition, means and standard errors of net metabolic rate, average moment, 

average mechanical power and average muscle activity outcomes were calculated across 

subjects, with standard error indicating inter-subject variability. Based on the expectation 

that user performance would be a non-linear function of exoskeleton stiffness25, we 

conducted a mixed-model, three-factor ANOVA (random effect: subject; fixed effects: 

spring stiffness and square of spring stiffness) to test for an effect of spring stiffness across 

exoskeleton conditions (significance level α = 0.05; JMP Pro, SAS Inc., Cary, NC, USA). 

For the primary outcome measure, net metabolic rate, stiffness had a significant effect. We 

used paired t-tests with a Sidak-Holm correction for multiple comparisons40 to compare 

spring conditions to each other and to the No Exoskeleton condition to identify which 

exoskeleton springs exacted a significant change in metabolic rate. We used a Jarque-Bera 

two-sided goodness-of-fit test to confirm applicability of tests that assume a normal 

distribution. For the primary outcome measure, net metabolic rate, we also used a least-
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squares regression to fit a second order polynomial (quadratic) function relating mean 

outcome data to exoskeleton spring stiffness. Additional two-factor ANOVA analyses 

(random effect: subject; fixed effect: spring stiffness) were performed to test for an effect of 

spring stiffness across exoskeleton conditions for secondary outcomes in joint mechanics, 

center-of-mass mechanics and muscle activity. These results are compiled in Supplementary 

Table 1.

Extended Data

Extended Data Figure 1. Energy diagrams for human-exoskeleton walking
Each diagram includes energy inputs, outputs, storage and transfers within the mechanical 

system, depicted for steady-state walking. In each case, all chemical or electrical energy 

input is eventually output as heat, since the mechanical energy of the system is constant on 

average and no useful work is performed on the body or the environment. Energy efficiency, 

strictly defined, is therefore zero in all cases, and so energy effectiveness or energy economy 

is instead characterized in terms of ‘cost of transport’, which is the energy used per unit 

weight per unit distance traveled41. (a) Energy diagram for normal human walking. Muscles 

consume metabolic energy both to produce mechanical work and to absorb it (and to 

perform a variety of other functions, such as activating or producing force), and so 

metabolic energy flows only into the system. Energy loss in muscle manifests as heat. Inside 

the mechanical system, tendons exchange energy with both the muscle and the body, while 

kinetic and gravitational potential energy are exchanged within the body segments, all at 

high mechanical efficiency. Body segment mechanical energy is dissipated only in damping 

in soft tissues, e.g. during collisions, which is small (about 3% of the total metabolic energy 

input20), and in friction from slipping of the feet against the ground, deformation of the 
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ground, or air resistance, all of which are negligible under typical conditions. All of these 

mechanical losses manifest as heat. (b) Energy diagram for walking with a powered 

exoskeleton. An additional energy input is provided in the form of, e.g., electricity. The total 

energy input (and corresponding eventual dissipation) of the system can therefore increase, 

even if a smaller portion is borne by the human, resulting in poorer overall energy economy. 

This has been the case with the two powered devices that have reduced the metabolic energy 

cost of human walking2,16. In theory, overall energy economy could still be improved with a 

powered device in three ways. First, positive mechanical work from muscles could be 

replaced by work done by a motor with higher efficiency. Second, negative mechanical 

work could be replaced by generation done by a motor with higher (than −120%) efficiency, 

thereby usefully recapturing energy that would otherwise be dissipated as heat. In fact, 

because muscle expends metabolic energy to absorb mechanical work, it is theoretically 

possible to simultaneously reduce metabolic rate and capture electrical energy with zero 

electrical input42, although this has yet to be demonstrated in practice. Third, the powered 

device could approximate an unpowered device, with negligible amounts of electricity used 

only to control the timing of mechanical elements like clutches43. (c) Energy diagram for 

walking with an unpowered exoskeleton. No additional energy supply is provided and so, 

unlike the powered case, the only way to decrease metabolic energy use is to reduce total 

system energy dissipation, or, equivalently, to improve the energy economy of the system as 

a whole. Note that the only difference from normal human walking, in terms of energy flow, 

is the addition of elements like springs that store and transfer mechanical energy within the 

system. In this sense, reducing metabolic rate with a passive exoskeleton is akin to changing 

the person’s morphology such that it is more energy-effective at locomotion.
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Extended Data Figure 2. Exoskeleton frame design
A rigid carbon fiber shank frame and foot frame were custom made for each participant. The 

shank section clamps onto the user’s lower leg just below the knee and connects to the foot 

frame through a rotary joint at the ankle. The foot frame includes a lever arm protruding to 

the rear of the heel, to which the parallel spring is connected. The clutch is mounted to the 

shank frame posterior to the calf muscles.
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Extended Data Figure 3. Ankle moment contributions
(a) Total ankle moment, measured using a motion capture system. Average total ankle 

moment (b) during the entire stride and (c) during early and mid-stance, defined as 0–40% 

stride, and (d) peak ankle moment. All spring conditions increased average total joint 

moment slightly during early stance, but peak total joint moment was maintained across 

conditions. (e) Exoskeleton torque contribution, as measured using onboard sensors. 

Average exoskeleton torque (f) during the entire stride and (g) during early and mid-stance, 

defined as 0–40% stride, and (h) peak exoskeleton torque. Average and peak exoskeleton 

torque increased with increasing exoskeleton spring stiffness, except with the highest 

stiffness spring. (i) Biological contributions to ankle moment, calculated as the subtraction 

of the exoskeleton moment from the total moment. Average biological ankle moment (j) 

during the entire stride and (k) during early and mid-stance, defined as 0–40% stride, and (l) 

peak ankle moment. Ankle moments arising from muscle activity decreased with increasing 

exoskeleton spring stiffness, but with diminishing returns at high spring stiffness.
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Extended Data Figure 4. Ankle muscle activity
(a) Activity in the soleus, a mono-articular muscle group that acts to plantarflex the ankle. 

Average soleus activity over (b) the whole stride, (c) early and mid-stance, defined as 0–

40% stride, and (d) late stance, defined as 40–60% stride. Soleus activity decreased with 

increasing spring stiffness. (e) Activity in the gastrocnemius, a biarticular muscle group that 

acts to plantarflex the ankle and flex the knee. Average gastrocnemius activity over (f) the 

whole stride, (g) early and mid-stance, defined as 0–40% stride, and (h) late stance, defined 

as 40–60% stride. Gastrocnemius activity was reduced compared to the No Exoskeleton 

condition during early and mid-stance, but increased with increasing spring stiffness during 

late stance. (i) Activity in the tibialis anterior, a mono-articular muscle group that acts to 

dorsiflex the ankle. Average tibialis anterior activity over (j) the whole stride, (k) early and 

mid-stance, defined as 0–40% stride, and (l) late stance, defined as 40–60% stride. Tibialis 
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anterior activity seemed to increase during early and mid-stance, and was unchanged during 

late stance. All values were measured using electromyography and normalized to maximum 

activity during normal walking.

Extended Data Figure 5. Ankle power contributions
(a) Mechanical power of the combined human-exoskeleton system, measured using a motion 

capture system, (b) average positive power, defined as positive work divided by stride time, 

(c) average negative power, defined as negative work divided by stride time, and (d) average 

net power, equivalent to average power, defined as the sum of positive and negative work 

divided by stride time. Total positive ankle joint power decreased with increasing stiffness, 

while net joint power increased. (e) Exoskeleton power, measured using onboard sensors for 

torque and motion capture for joint velocity, (f) average positive exoskeleton power, (g) 

average negative exoskeleton power, and (h) average net exoskeleton power. Net 

exoskeleton power was always negative. (i) Biological ankle power, defined as the 

subtraction of exoskeleton power from total ankle power, (j) average positive biological 
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power, (k) average negative biological power, and (l) average net biological power. Net 

biological power increased with the exoskeleton compared to normal walking.

Extended Data Figure 6. Knee moment
(a) Knee moment in time as measured by motion capture, (b) average absolute knee moment 

over the entire stride, (c) average knee moment during early stance, defined as the positive 

impulse within approximately 10–30% stride divided by stride period, (d) average knee 

moment during late stance, defined as the negative impulse within approximately 30–50% 

stride divided by stride period. Average knee moment during late stance increased in 

magnitude with the highest stiffness springs. Positive values denote knee extension.
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Extended Data Figure 7. Hip, knee and ankle joint mechanics
Joint angles, moments and powers are presented at the same scale to facilitate comparisons 

across joints. (a) Hip joint angle, (b) knee joint angle, and (c) ankle joint angle. Joint angle 

trajectories did not appear to change substantially across conditions. (d) Hip moment, (e) 

knee moment, and (f) biological component of ankle moment. Hip moment did not appear to 

change substantially across conditions, while knee moment and ankle moment showed 

trends detailed in Extended Data Figures 6 and 3, respectively. (g) Hip joint power, (h) knee 

joint power, and (i) the biological component of ankle joint power. Hip and knee power did 

not appear to change substantially across conditions, while biological ankle power showed 

trends detailed in Extended Data Figure 5. Positive values denote hip extension, knee 

extension and ankle plantarflexion with respect to standing posture.
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Extended Data Figure 8. Center-of-mass mechanics
(a) The biological contribution to center-of-mass power for each individual limb, defined as 

the dot product of ground reaction force with center-of-mass velocity, both determined from 

force plate data, minus the ankle exoskeleton power. (b) Average collision power, defined as 

the negative work performed during the first half of stance divided by stride time. (c) 

Average rebound power, defined as the positive work performed during mid-stance divided 

by stride time. (d) Average preload power, defined as the negative work performed during 

mid-stance divided by stride time. (e) Average push-off power, defined as the positive work 

performed during late stance divided by stride time. With increasing spring stiffness, the 

human contribution to push-off work decreased, while the human contribution to rebound 

work increased substantially.

Extended Data Table 1

Passive ankle exoskeleton mass by component.

Segment US Size
8

US Size
13

Carbon Fiber Foot Section 130g 155g

Aluminum Ankle Joints (x2) 40g 40g

Carbon Fiber Shank Section 105g 165g

Frame Mass 275g 360g

Average Spring 60g 60g

Mechanical Clutch 57g 57g

Total Mass 392g 477g
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Extended Data Table 2

Comparison of ankle exoskeleton masses.

Author Mass of
Exoskeleton

(grams per leg)

Mooney et al.10 2,000

Sawicki et al.9 1,210*

Malcolm et al.2 760*

Passive Elastic (size 13 US) 477

Passive Elastic (size 8 US) 392

*
Does not include tethered hardware.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Unpowered exoskeleton design
(a) The exoskeleton comprises rigid sections attached to the human shank and foot and 

hinged at the ankle. A passive clutch mechanism and series spring act in parallel with the 

calf muscles and Achilles tendon. (b) Participant walking with the device. Load cells 

measured spring force. Photo by Stephen Thrift. (c) The passive clutch mechanism has no 

electronics, but instead uses a ratchet and pawl that mechanically engage the spring when 

the foot is on the ground and disengage it when the foot is in the air.
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Figure 2. Mechanics and muscle activity
(a) Exoskeleton torque (normalized to body mass) in time (normalized to stride period) for 

each spring, averaged across participants. Bars at right are the average of these trajectories 

in time, with error bars denoting standard error and p-values indicating the results of 

ANOVA tests for an effect of spring stiffness. Exoskeleton torque increased with spring 

stiffness (except with the stiffest spring, which tended to be engaged later in stance). (b) 

Time course of the biological contributions to ankle moment, which decreased with 

increasing spring stiffness. (c) Time course of electrical activity in the soleus muscle, an 
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ankle plantarflexor, which decreased with increasing spring stiffness. (d) Time course of 

ankle joint angle, which triggered passive clutch engagement and disengagement. The 

ratchet was engaged at heel strike, took up slack through foot flat, held the spring as it 

stretched and recoiled through mid and late stance, and disengaged to allow toe clearance 

during leg swing. The average stride period was 1.15 ± 0.08 s (mean ± s.d.).
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Figure 3. Human metabolic rate
Spring stiffness affected metabolic rate [N = 9; ANOVA with second order model; 

p(stiffness) = 0.016, p(stiffness2) = 0.008]. Net metabolic rate, with the value for quiet 

standing subtracted out, was 7.2 ± 2.6% (mean ± s.e.m.) lower with the 180 N·m·rad−1 

spring (orange bar) than during normal walking (dark gray bar; paired two-sided t-test with 

correction for multiple comparisons; p = 0.023). The dashed line is a quadratic best fit to 

mean data from exoskeleton conditions (R2 = 0.91, p = 0.029). Wearing the exoskeleton 

with the spring removed (light gray bar, k = 0) did not increase energy cost compared to 

normal walking (paired t-test; p = 0.9). Error bars depict standard error, dominated by inter-

subject variability.
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