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Abstract: Male infertility is a major health problem affecting about 8–12% of couples worldwide.
Spermatogenesis starts in the early fetus and completes after puberty, passing through different
stages. Male infertility can result from primary or congenital, acquired, or idiopathic causes. The
absence of sperm in semen, or azoospermia, results from non-obstructive causes (pretesticular and
testicular), and post-testicular obstructive causes. Several medications such as antihypertensive
drugs, antidepressants, chemotherapy, and radiotherapy could lead to impaired spermatogenesis
and lead to a non-obstructive azoospermia. Spermatogonial stem cells (SSCs) are the basis for
spermatogenesis and fertility in men. SSCs are characterized by their capacity to maintain the
self-renewal process and differentiation into spermatozoa throughout the male reproductive life and
transmit genetic information to the next generation. SSCs originate from gonocytes in the postnatal
testis, which originate from long-lived primordial germ cells during embryonic development. The
treatment of infertility in males has a poor prognosis. However, SSCs are viewed as a promising
alternative for the regeneration of the impaired or damaged spermatogenesis. SSC transplantation is
a promising technique for male infertility treatment and restoration of spermatogenesis in the case of
degenerative diseases such as cancer, radiotherapy, and chemotherapy. The process involves isolation
of SSCs and cryopreservation from a testicular biopsy before starting cancer treatment, followed by
intra-testicular stem cell transplantation. In general, treatment for male infertility, even with SSC
transplantation, still has several obstacles. The efficiency of cryopreservation, exclusion of malignant
cells contamination in cancer patients, and socio-cultural attitudes remain major challenges to the
wider application of SSCs as alternatives. Furthermore, there are limitations in experience and
knowledge regarding cryopreservation of SSCs. However, the level of infrastructure or availability
of regulatory approval to process and preserve testicular tissue makes them tangible and accurate
therapy options for male infertility caused by non-obstructive azoospermia, though in their infancy,
at least to date.

Keywords: infertility; male; spermatogenesis; spermatogonial stem cells

1. Male Infertility

Male infertility in humans is defined as the inability to fertilize their female counter-
part through unprotected copulation for a period of 12 months and more [1]; the World
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Health Organization (WHO) has defined infertility as incapability to conceive a child after
unprotected, regular sexual intercourse for at least 12 months [2]. At least 30 million men
worldwide suffer from infertility, with the highest prevalence found in Africa and Eastern
Europe. However, because of the varying opinions with different credibility and older
articles, it is quite difficult to provide accurate statistics [3]. Infertility is considered one of
the main health problems affecting couples in the reproductive age, affecting about 8–12%
of couples worldwide [4], and it was estimated that the prevalence of age-standardized
infertility increased by 0.370% in women and by 0.291% in men every year between 1990
and 2017 [5], according to a global burden of disease survey. Infertility is associated with
physiological and economic burdens as well as social distress among patients, their families,
and healthcare systems; therefore, early detection of the problem and proper management
is very important [6–8].

Causes of infertility could be attributed to the man only in about 20–30% of cou-
ples, [9,10]. Several studies have observed a decline in sperm count over the years, and a
meta-analysis conducted in 1992 observed that sperm count has decreased by 50% over
60 years, which was confirmed by another large systematic review that reported that be-
tween 1973 and 2011, sperm count has declined by 50–60% [11–14]. Male infertility is
attributed to the diminished quantity or quality of the ejaculate, and when sperm are not
found in the ejaculate, the case called azoospermia. Azoospermia can be caused by obstruc-
tive reasons such as congenital bilateral absence of vas deferens, congenital obstruction of
the duct system, incomplete patency of the vas deferens, or slow maturation of spermato-
zoa in the epididymis [15,16]. Non-obstructive azoospermia can be caused by congenital
causes such as Kallmann syndrome, Klinefelter syndrome, genetic endocrinopathy, cryp-
torchidism, microdeletions of the Y chromosome, anorchia, and idiopathic mild androgen
insensitivity syndrome [17]. Acquired causes of non-obstructive azoospermia include
varicocele, which is the most common cause of infertility in men [18], germ cell tumors,
acquired hypogonadotropic hypogonadism (HGH), exogenous factors such as exposure to
chemotherapy or radiation or cytotoxic drugs, recurrent urogenital infections, and other
systemic diseases and surgeries that can affect spermatogenesis or male endocrine func-
tions [19]. Idiopathic factors include unknown causes of male infertility and account for
approximately 30–50% of infertile male cases [20], including environmental factors such as
exposure to toxic chemicals [21], lifestyle factors such as obesity [22], smoking [23], and
alcohol consumption [24], and psychological factors such as emotional stress, anxiety, and
depression [25,26]. In this review, we shed the light on the potential of treating infertility
caused by non-obstructive azoospermia through cellular therapy using spermatogonial
stem cell transplantation.

1.1. Azoospermia

Azoospermia is defined as the absence of spermatozoa or sperm in the semen; it is
considered the cause of infertility in approximately 10% to 15% of fertility in men [27]. This
could be due to pretesticular, testicular, or post-testicular causes. Pretesticular causes of
azoospermia include hormonal problems of the hypothalamic-pituitary-gonadal axis [28].
Testicular causes include abnormalities in the spermatogenesis process occurring inside
the testis, and post-testicular causes include obstructions of ducts in the male reproductive
system [29]. Pretesticular and post-testicular causes are usually treated, and fertility can
be restored, while testicular causes are usually not reversible, with low success rates of
several interventions. Pretesticular causes and testicular causes are considered to be non-
obstructive causes of azoospermia, while post-testicular causes are considered to be the
obstructive causes of azoospermia.

1.1.1. Pretesticular Causes

Pretesticular causes are usually due to pathological endocrinal problems in origin, and
they are also called secondary testicular failure, affecting up to 3% of infertile males [30].
HGH is a rare cause of infertility in men and is characterized by a decline in testosterone,



Cells 2021, 10, 1779 3 of 19

luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which can be congenital
or acquired, and it is considered as one of the treatable causes of male infertility. Causes of
HGH include pituitary gland tumors, pituitary gland traumas, Kallmann syndrome, and
anabolic steroid use [31].

Kallmann syndrome, the most common cause of congenital HGH, is caused by abnor-
malities in the midline cranial structures, and is characterized by decreased secretion of
gonadotropin-releasing hormone (GnRH) from the hypothalamus resulting from failed
migration of GnRH-releasing neurons during development to the olfactory lobe [32]. The
disease is X-linked, and it has been reported that it is caused by mutations in the KAL
gene represented on Xp22.3 position [33]. Androgen resistance is another congenital cause
of HGH, which occurs due to several mutations of the androgen receptor gene on the X
chromosome [34,35], affecting males and females leading to infertility; although androgen
resistance is complete in females, it is partial in males and both results in infertility. Testos-
terone levels can increase, decrease, or remain normal according to the severity of genetic
defects, and impaired androgen receptor is the primary cause of decreased or absent sperm
in 40% of infertile men [36]. Acquired causes of HGH include tumors of the pituitary
gland, panhypopituitarism, trauma of the pituitary gland, and using anabolic steroids [37].
Exogenous testosterone inhibits the secretion of gonadotropins by a negative feedback loop,
leading to the inhibition of the hypothalamic-pituitary-gonadal axis [38]. Using anabolic
steroids excessively increases androgen levels, resulting in decreased levels of intratesticu-
lar testosterone levels and decreased FSH levels, resulting in impaired spermatogenesis,
which leads to azoospermia and infertility in men [39]. Hyperprolactinemia causes HGH
by inhibition of GnRH secretion in the hypothalamus caused by excess prolactin, which
also causes a decline in FSH and LH hormone levels [40,41]. Hyperprolactinemia could
be a consequence of using certain medications such as antihypertensive drugs, tricyclic
antidepressants [42], or due to certain tumors such as pituitary gland tumors, including
prolactin-secreting microadenoma, and prolactin-secreting macroadenoma, which leads
to the destruction of the anterior pituitary gland and increased prolactin secretion, which
could also be idiopathic [43].

1.1.2. Testicular Causes

They are identified as a primary testicular failure caused by internal abnormalities
affecting the process of spermatogenesis inside the testis, which could result from develop-
mental errors, genetic mutations, and the genotoxic effect of certain medications. Varicocele
is a medical condition resulting from dilatation of veins draining the testis and belonging
to the pampiniform plexus, which affects approximately 25% of males with decreased
sperm count and about 15% of normal males [7]. It is hypothesized that the mechanism by
which varicocele affects the testis is to increase the temperature of the testis and production
of reactive oxygen species resulting from the stasis of venous blood in the pampiniform
plexus [44].

Cryptorchidism, also known as undescended testes, is one of the most common
causes of azoospermia in men; it affects approximately 25% of patients with unilateral
cryptorchidism, and 80% of patients with bilateral cryptorchidism [45]. Early treatment is
important to decrease infertility risk, and success rates of treatment depend on the initial
position of the testis [46].

Testicular torsion is defined as testicular spinning inside the scrotum, twisting blood
vessels supplying it, leading to decreased blood supply and resulting in pain and swelling.
Testicular torsion is considered a pediatric emergency that sometimes requires surgical
intervention to avoid loss of testicles that would lead to decreased spermatogenesis and
infertility [47,48]. It affects approximately 45 of every 1000 males under 25 years of age per
year [49].

Orchitis is the inflammation of the testis, which is characterized by an accumulation
of exudate inside and outside seminiferous tubules leading to its damage, which could be
due to systemic or local inflammation, autoimmune and idiopathic origin, or infection by
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certain types of bacteria such as Chlamydia trachomatis, or mumps virus [50]. Orchitis is
considered the most common manifestation of mumps infection in men; it can affect the
testis unilaterally in 67% cases, and it could be bilateral in 33% of affected men, in 36% of
them, resulting in testicular atrophy, which would lead to infertility in approximately 13%
of patients [50,51].

Several genetic abnormalities can cause infertility in men, including Klinefelter syn-
drome, 47(XYY) syndrome, XX male syndrome, and Y-chromosome microdeletions [52].

Importantly, cytotoxic drugs used in tumor therapy can lead to non-obstructive
azoospermia. Although chemotherapy or radiotherapy have shown great advances in
recent years with increased five-year cancer survival rates among children and adults, it
could result in infertility as a long-term side effect, and 24% of treated cancer patients could
suffer from impaired spermatogenesis and infertility in the long term [53].

Previous data showed that the testis is radiosensitive [54], and the degree of gonadal
damage depends on the radiation delivery method and dosage. Impaired spermatogenesis
and loss of germ cells can result from direct treatment of the testis or adjacent tissue by
radiation [55]. It was observed that treatment of cancer with fractionated radiation for 3 to
4 weeks would result in delayed recovery of gonadal damage and lead to infertility [56].
High doses of radiation could also result in permeant azoospermia because it can kill all
spermatogonial stem cells (SSC) [57,58], while low doses were associated with lower rates
of gonadal damage, and spermatogenesis recovery [59,60].

Chemotherapeutic agents, especially alkylating medications, could also lead to a
decrease in sperm count and infertility. Chemotherapy could result in 10- to 100-fold
reduced sperm count, damage of Leydig cells, and azoospermia [61,62]; chemotherapy
without or in addition to radiation is responsible for infertility in 60% of men treated at sites
below their diaphragm [63]. The permanence and recovery rate of infertility associated
with chemotherapy depends on the duration of treatment, addictive drugs, and doses of
medications used. To date, it is difficult to accurately predict the risk factors of azoospermia,
whether it is temporary or permanent, and recovery rates of spermatogenesis [64].

1.1.3. Post-Testicular Causes

Post-testicular causes are considered obstructive azoospermia, which usually results
from obstructions of ducts carrying sperm or impaired ejaculation. The absence of vasa
deferentia is a congenital disease characterized by bilateral absent vas deferens, accounting
for 6% of obstructive azoospermia patients and about 1% of infertile patients [65]. The
absence of vasa deferens can result from abnormal cystic fibrosis transmembrane regulator
gene (CFTR) [66], and it has been reported that CFTR mutations are present in 80% of men
with bilateral absence of vas deferens, and 43% of those with unilateral vas deferens. The
absence of vas deferens can also result from the abnormal differentiation of the mesonephric
duct [67,68]. Obstruction of vas deferens is another cause of obstructive azoospermia. The
main cause of obstructed vas deferens is a vasectomy procedure that is usually carried
out for elective sterilization [69]. Another cause of obstruction is an accidental injury
during inguinal hernia repair [70], or it could result from an inflammatory reaction against
polypropylene mesh used during inguinal hernia repair [71].

Ejaculatory duct obstruction can also lead to obstructive azoospermia and infertility in
about 1 to 5% of cases [72], which could be congenital due to Mullerian or Wolffian cysts, or
acquired due to trauma, seminal vesicle calculi, or calcification of the prostate, which could
affect one or both ejaculatory ducts [73,74]. Ejaculatory dysfunction includes a group of
disorders with impaired ejaculation, such as premature ejaculation, retrograde ejaculation,
anejaculation, and delayed ejaculation. The prevalence of ejaculatory dysfunction in infer-
tile men is below 2%, and it is not considered a common cause of infertility in men [75,76].
Of note, infertility caused by obstructive azoopermia can be treated through some surgical
approaches and using assisted reproductive techniques such as in vitro fertilization (IVF),
intracytoplasmic sperm injection (ICSI), or even testicular sperm aspiration (TESA) and
testicular sperm extraction (TESE) [30,77].
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1.1.4. Other Causes of Male Infertility

In addition to cytotoxic drugs, some drugs could affect men fertility, leading to reduced
sperm count. Sirolimus, an immunosuppressive drug, can lead to decreased sperm count
and motility as a result of seminiferous tubule dystrophy and decreased intratesticular
testosterone levels. Antihypertensive drugs such as calcium channel blockers and beta-
blockers affect erectile function and testosterone levels. Serotonin reuptake inhibitors,
which are antidepressant and antipsychotic drugs, could lead to hyperprolactinemia,
which results in azoospermia and infertility, while diuretics such as aldosterone can lead
to infertility by inhibiting testosterone biosynthesis, inhibiting androgen binding to target
cells, and impairing sperm motility [78].

2. Spermatogonial Stem Cell as New Option to Treat Impaired Spermatogenesis

Spermatogenesis starts after puberty, in which spermatogonia undergo mitotic and
meiotic divisions, resulting in haploid spermatids and spermatozoa (Figure 1). The final
steps for spermatozoa maturation occur in the epididymis. Since spermatogenesis is
considered a stem cell-based mechanism [79], one way to treat male infertility caused
by impaired spermatogenesis is through stem cell transplantation (Figure 1). This is
because stem cells are unspecialized cells that can self-renew, regenerate, and differentiate
into other cell types [80]. SSCs can restore spermatogenesis when spermatogonial cells
get damaged and/or depleted [79,81]. Therefore, stem cell transplantation represents a
promising technique for reviving spermatogenesis in cancer patients and other patients
who suffer from impaired spermatogenesis [82,83]. Patients with cancer who undergo
radiation or chemotherapy suffer from male infertility as a consequence of the treatment
side effects. Therefore, fertility maintenance has become a major concern in the care of
prepubertal boys receiving cancer treatment. Accordingly, testicular biopsy is performed,
and autologous SSCs are isolated and cryopreserved before cancer treatment, followed
by stem cell transplantation intra-testicularly [82,84]. On the other hand, other stem cell
types have also been used for azoospermia treatment. For instance, mesenchymal stem
cells (MSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs),
and induced pluripotent stem cells (iPSCs) are obtained from normal somatic cells [3,83].

SSCs are characterized by their capacity to maintain the self-renewal process and
possess the pluripotency [85–87] where they can differentiate as any stem cell type; the basis
of spermatogenesis and male fertility are SSCs, which are rare and constitute only 0.03% of
all germ cells in rodent testicles, while SSCs are greatly outnumbered by the differentiating
spermatogonia, spermatocytes, spermatids, and sperm produced by them [88]. This
equilibrium retains the population of stem cells and satisfies the proliferative requirement
of the testis to generate millions of sperm daily [89]. The development of this unique cell
form provides novel biotechnological solutions to existing human issues as a result of
ongoing and comprehensive SSC biomedical research.

SSCs originate from gonocytes in the postnatal testis that originate from long-lived
primordial germ cells (PGCs) during early embryonic development. PGCs are a transient
cell population that are first detected in the epiblast stage embryo as a small cluster of
alkaline phosphatase-positive cells at around 7–7.25-days post coitum (dpc) in rodents,
while in humans, they were noticed in the yolk sac wall, close to the allantois around 24 dpc
in humans [90] and depends on the extraembryonic ectodermal expression of BMP4 and
BMP8b [86,87]. The PGCs are passively swept out of the embryo during the development of
the allantois until they begin to migrate through the hindgut to enter the oblivious gonadal
ridge in mice between 8.5 and 12.5 dpc, and between 29–33 dpc in humans [91]. During the
migration pattern process, approximately 3000 PGCs colonize the genital ridges [92]. PGCs
give rise to gonocytes that are enclosed in testicular cords constituted by Sertoli precursor
cells and peritubular myoid cells in the male gonads at approximately 13.5 dpc. The general
definition of gonocytes can indeed be subclassified into mitotic (M)-prespermatogonia,
T1-prospermatogonia, and T2-prospermatogonia [93]. M-prespermatogonia is found in
the middle of the testicular cords, farther from the basement membrane, and when they
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become T1-prospermatogonia and reach G0 mitotic arrest, they tend to proliferate until
around 16.5 dpc of rodent development [94]. Gonocytes begin proliferating and migrate
to the seminiferous tubules of the basement membrane within the first week after birth
(marking their transition to T2-prospermatogonia) [95]. The first round of spermatogenesis
occurs in T2-prospermatogonia that colonize the basement membrane and the initial pool
of SSCs that sustain spermatogenesis during post-pubertal life [93,96].
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Figure 1. The process of spermatogenesis. (A) A cross-section in the testis, showing the process of
spermatogenesis occurring in the seminiferous tubules with the aid of Sertoli cells. (B) After puberty,
spermatogonial stem cells proceed into infinite mitotic and meiotic divisions resulting in millions of
spermatozoa [97].

It is crucial to understand SSCs in the sense of the spermatogenic lineage they gen-
erate in an attempt to comprehend the regulation of SSCs. Spermatogonia, found on
the basement membrane of seminiferous tubules, are diploid germ cells. Spermatogenic
lineage development differs between rodents and humans [98]. In rodents, three types of
spermatogonia were originally identified based on their nuclear morphology [99]. Type
A spermatogonia are known to be the most primitive because the nucleus lacks hete-
rochromatin, a general feature of undifferentiated cells. There is a reasonable quantity
of heterochromatin in the nuclei of intermediate-type spermatogonia and a significant
amount of heterochromatin in type B spermatogonia, suggesting a more differentiated
state [100]. Studies have shown that undifferentiated type A spermatogonia can indeed be
subcategorized into spermatogonia of A single (As), A paired (Apr), and Aligned (Aal),
which vary only in their topographical configuration on the basement membrane of the
seminiferous tubule [101,102]. It generates an Apr when an As spermatogonium divides,
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that either (i) perform cytokinesis to produce two new As spermatogonia or (ii) persists
linked by an intercellular cytoplasmic bridge and generates a chain at the next division
of four Aal spermatogonia. Additional cell divisions contribute to the development of 8,
16, and occasionally 32 Aal spermatogonia chains; chains of 4–16 Aal are usually deemed
dedicated to the mechanism of differentiation. Therefore, the pool of stem cells contains
As and some Apr spermatogonia. Some may have argued that stem cells could expand to
larger clones [103,104]. The smaller chains of As, Apr, and four Aal spermatogonia were
uniformly distributed around the seminiferous epithelium. Larger Aal chains (8, 16, and 32)
differentiate A1 spermatogonia between stages IV and VIII of the seminiferous epithelium,
and at stage IX, these eventually lead to A2 spermatogonia. Therefore, unlike undifferen-
tiated spermatogonia, differentiating spermatogonia A1, A2, A3, A4, intermediate, and
B divide synchronously and occur at particular stages of the seminiferous epithelium. B
spermatogonia generate primary spermatocytes that advance into meiosis, and two meiotic
divisions contribute to the development of secondary spermatocytes and haploid sper-
matids, which induce morphological changes in 16 stages and gradually become sperm
close to completion from the seminiferous epithelium [105,106].

In humans, the A0/A1 model is an alternative to the As model of SSC self-renewal,
which is very close to the model of Adark and Apale used in non-human primates to
characterize stem cell potency [98]. Adark spermatogonia act as reserve stem cells, while
Apale spermatogonia are the self-renewing stem cells. There is only one generation of
type B spermatogonia before differentiation into spermatocytes, which makes human
spermatogenesis less efficient than in rodents [107]. A0 spermatogonia were identified as
single cells or pairs of cell types found in the seminiferous epithelium during all phases. In
these cells, mitotic measurements were seldom found, and therefore they were assumed
to not lead to stable spermatogenesis as reserve stem cells. These reserve stem cells are
triggered only by harmful threats, such as radiation, and disable spermatogenesis. A1–A4
spermatogonia are part of the functional stem cell pool. They inevitably lead either to
new A1 spermatogonia (described as self-renewal) or intermediate spermatogonia if A4
spermatogonia split (described as differentiation) [108–110].

SSCs locate within a standardized microenvironment called ′niche′, which, by main-
taining SSC self-renewal, quiescence, pluripotency, and differentiation, controls testicular
homeostasis [111]. In the atmosphere of stem cells that govern cell fate, a stem cell niche
is made up of cells, extracellular fluids, and local soluble factors. The basal region of the
seminiferous tubules containing Sertoli cells and peritubular myoid cells is the structural
basis for the SSC niche in mammalian testes [112]. Sertoli cells produce growth factors
that stimulate self-renewal (Glial cell line-derived neurotrophic factor, and basic fibroblast
growth factor) and differentiation (activin A, bone morphogenetic protein 4, and stem
cell factor) of the SSCs, as well as other factors to maintain the microenvironment such
as chemokine (C-X-C motif) ligand 12, vascular endothelial growth factor A, inhibin βA,
NOTCH and WNT5A [113,114]. Sertoli and peritubular myoid cells simultaneously release
the constituents of the basement membrane to which SSCs are linked through binding
proteins [115]. Sertoli cells sustain SSCs and differentiate germ cells in addition to sup-
porting spermatogenesis by supplying nutrients and modulating external signals [116].
Transplantation of normal Sertoli cells into the testes of infertile mutant patients with Sertoli
cell deficiency and successful induction of spermatogenesis by recipient-derived spermato-
gonia have shown the significance of Sertoli cells in germ cell proliferation [117,118]. A
protective blood-testis barrier (BTB) is a close junction between adjacent Sertoli cells, which
divides the seminiferous epithelium into basal and adluminal compartments and plays a
vital role in controlling germ cell proliferation [119]. BTB ensures preferential circulation
of substances between the luminal fluid, bloodstream, and interstitial fluid, providing
an immune-privileged environment in the adluminal compartment of the seminiferous
tubules for haploid germ cells [119].
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2.1. Spermatogonial Stem Cell Transplantation for Regeneration

Brinster and colleagues were the first to identify a technique for transplanting SSCs [120].
Fertility preservation in rodents after SSC transplantation indicates that this technique
could have medical application in humans [83,121]. The critical points are the success
of SSCs storage (good cryopreservation) and transplantation, and when transplanted, in-
duction of spermatogenesis [122]. Testicular biopsy and cryopreservation are promising
tools for people with cancer and undergoing cancer treatment. Scientists were able to
propagate SSCs in humans in vitro. However, more research is required to overcome some
challenges and improve outcomes [123]. Lim et al. proved that SSCs found in the testes
of patients with non-obstructive azoospermia can be extracted, isolated, and propagated
in vitro via a highly efficient culture system, resulting in the differentiation of germ cells
with developmental potential [124].

2.1.1. Testicular Biopsy/Tissue

Under sterile conditions, a biopsy is obtained from the testis of children with cancer
before undergoing treatment or from adult patients with azoospermia, regardless of the
cause. An alternative method for biopsy is to obtain testicular tissue in humans. In contrast,
in the case of animals such as rodents, whole testes are obtained and preserved in sterile
Hanks′ balanced salt solution (HBSS) [125]. To obtain a single-cell suspension from the
young, the testicular tissue must be digested via enzymatic digestion by mixing it with
trypsin–EDTA solution and DNase I solution. The cell suspension is washed with HBSS
after passing through a 40-m pore cell strainer, and then centrifuged (cool centrifuge) to ob-
tain a pellet. In the case of adult animals, the testes are mixed with collagenase solution and
DNase I solution, mixed until the separation of the seminiferous tubules, added in HBSS in
ice until complete sedimentation occurs, the supernatant discarded, the tubules washed
with HBSS to remove the interstitial cells, and then complete the same steps performed
in case of young cases until the pellets are obtained via cool centrifugation [126,127]. A
similar technique has been used in fish, such as Brycon orbignyanus [128].

2.1.2. SSCs Isolation

Goodyear and Brinster established a complete protocol for SSCs in mice, including
isolation, culturing, expansion, and eventually transplantation [126,127], while Jon Oatley
designed a protocol for cryopreservation and thawing [129]. The process of spermatogo-
nial stem cell isolation starts from the digestion (type I collagenase and trypsin) of the
obtained testicular tissue or the biopsy to obtain a single cell suspension via mechanical
disruptions or enzymes such as trypsin, as discussed above. This can be done via Percoll
isolation, which is a highly efficient tool used for separation depending on density gradient
centrifugation [125,130]. Therefore, it is used to obtain SSCs via a few simple steps. After
obtaining the pellet, HBBS is added for pellet resuspension, and diluted until it reaches
20 × 106 per volume of 5 mL. The cell suspension layer is obtained above Percoll solution.
The cell pellets are mixed with PBS-S, and the cell concentration is calculated. The cell
content is diluted to 5 × 106 cells/mL. Then the process of cell sorting is performed via
magnetic-activated Cell Sorting (MACS) to select Thymus cell antigen 1 (Thy1+) or octamer-
binding transcription factor 4 (Oct4+) or the promyelocytic leukaemia zinc finger (PLZF+)
cells which are specific for SSCs [125,130,131]. Thy1 antibody-conjugated microbeads
are added to the cell suspension (cell pellet with PBS) containing the SSCs with specific
dilutions, and then incubated at a specific temperature for a certain time. After sterilization
and preparation of the MACS column, the cell suspension containing the Thy1+ antibody
microbeads are allowed to pass, and the solution containing the Thy1+ cells in serum-free
medium is eluted, and the cell concentration calculated. Now we have Thy1+ cells, and by
this, the process of SSC isolation is completed [115,117]. Moreover, a discontinuous density
gradient is also used in the process of SSC isolation in fish, such as Brycon orbignyanus [128].
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2.1.3. SSCs Culturing and Expansion

After isolation of SSCs or after preservation, culture and expansion are required to
propagate the cells. Preparation of a primary culture of SSCs is done via preparation of
mitomycin-treated STO feeders [132], washing them with HBBS, and adding the SSCs
either freshly isolated or cryopreserved. Then, 0.5–1 × 105 Thy1+ cells are added in each
plate in 12-well tissue culture plates, and SFM, GDNF, and bFGF are added. The tissue
culture plate is placed in a CO2 incubator at 37 ◦C, and the medium is changed every
2–3 days. Then, the process of expansion is performed for the obtained undifferentiated
SSCS by washing with PBS and then using trypsin–EDTA for dissociation; the cells are
incubated in a CO2 incubator, the effect of trypsin is stopped by adding FBS, and cell
suspension is obtained by mixing and pipetting, followed by centrifugation to obtain
the pellet, SFM, centrifugation, and resuspended again in SFM, GDNF and bFGF. Finally,
the suspension is added to the STO feeder layer [127,129]. In humans, the xeno-free and
feeder-free culture systems are required for clinical applications [133,134]. For instance,
matrigel-based and hydrogel-based culture systems were successfully reported for mice
SCC culture [135,136]. While in human, three-dimensional culture system using agarose
gel was used to improve the differentiation of SCC to spermatocytes and spermatids [131].
Hydrogel-coated or gelatin-coated dishes together with growth factor (GDNG, bFGF,
GFRA1-Fc fusion protein, NUDT6, TGFB, EGF, and LIF) were used for propagation of
human GPR125+ spermatogonia [137–140].

2.1.4. SSCs Transplantation

SSC transplantation requires the preparation of recipients. The previous protocols
were about the preparation of SSCs from donors. Whether they are autologous or allo-
geneic or xenogeneic depends on the study purpose and the aim of protocol execution.
The initial trials showed the survival of human SCC in mice testis after six months of
injection. However, there was no human sperm resulted from this trial [141]. Furthermore,
SCC was successfully subsided to the seminiferous tubules after injection into azoopser-
mic mice [142]. Successful completion of SSC transplantation and retrieval of sperm was
reported after 12 months of SCC injection in irradiated dog testis [143]. Recently in the
monkey, SSC transplantation partially restored the functional sperm production when
testis was irradiated before and after puberty [144]. An important step towards application
in humans. In mice, preparation of the recipients is performed via injection of busulfan
intraperitoneally to remove the endogenous germ cells in the recipient mice, the injection
occurs in bodyweight and species-dependent doses. Animals are left for six weeks to guar-
antee complete depletion of spermatogenesis before the process of SSC transplantation, to
be able to assess and judge that the produced spermatogenesis comes from the transplanted
SSCs [129].

For SSC transplantation, there are two cases; the first case is wherein the whole testis
or the testicular tissue is freshly obtained, and therefore the preparation protocol is needed,
while the second case is wherein the cells are already isolated and cultured. In the case
of tissues of the whole testis, the tunica albuginea should be removed, the testes added
in HBBS, collagenase for separation of the seminiferous tubules, HBBS, trypsin-EDTA
added for digestion and cell dispersion, and centrifugation, washing, and resuspension
in SFM. In the second case of the culture, a cell suspension is directly performed in SFM.
Then, both cases complete the same pathway with the addition of trypan blue for easy
gross monitoring during injection, then directly microinjecting the cells in the seminiferous
tubule lumen, followed by monitoring and keeping the transplanted recipient males for an
additional eight weeks to allow for robust donor-derived spermatogenesis [129]. Figure 2
illustrates the sequences for SCCs transplantation. In contrast, in fish, a simple protocol
was designed to perform SSC transplantation from one species to another, that is, from
Brycon orbignyanus (donor) to Astyanax altiparanae (recipient). This was done via enzymatic
digestion of the testes, then isolation by density gradient, adding busulfan for germ cell
suppression, labeling the SSCs with PKH26, and injecting the recipient fish with SSCs via
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the urogenital papilla. Twenty-one days after transplantation, sperm were detected in the
lumen [128]. The various types of culture media used and the level of achievement in
testicular tissue culture in different species are summarized in Table 1.
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Table 1. Milestone and trends of using spermatogonial stem cells to treat impaired spermatogenesis and non-obstructive
azoospermia in different species.

Species Level of In Vitro Culture
Achieved

Time of In Vitro Culture
(Year Achieved) Culture Media Used Reference

Human Testicular tissue maintained Several weeks (1970) Eagle’s minimum
essential media (MEM) [92]

Propagation of SSCs but in
undifferentiated

Two months propagation
(2015)

StemPro-34 SFM
(serum free medium) [137]

Monkey Maintained SSCs Only short time (2012) Germline culture
medium [145]

Maintained SSCs Effective for longer time (2017) Stem-Pro medium [146]

Mouse Organ (testicular) fragment
maintained 6 days (1959) Eagle’s MEM [147]

Organ (testicular) fragment
maintained 4 weeks (1964) Eagle’s MEM [148]

Organ maintained and
differentiation of
spermatogonia to

spermatocytes

2–3 weeks of culture (1964) Eagle’s MEM [149]

Differentiation of type A
spermatogonia into meiotic
pachytene spermatocytes

After 3 weeks (1993) FSH supplemented
Eagle’s MEM [150]

Round spermatids observed
(able to fertilize oocyte) After 2 weeks of culture (2003) Gas-liquid interface

culture system [151]
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Table 1. Cont.

Species Level of In Vitro Culture
Achieved

Time of In Vitro Culture
(Year Achieved) Culture Media Used Reference

Obtained spermatid and
sperm (Produced

reproductively competent
offspring by

microinsemination)

After 2 months (2011) [the first
successful IVS]

Gas-liquid interface
culture system (serum

free)
[152]

Haploid male germ cells
obtained from infertile

mutant mouse (Offspring
produced)

Monitored growth (2012)

Agarose gel in α-MEM
supplemented with KO

serum replacement
(KSR) or AlbuMAX

[153]

IVS also achieved from
cryopreserved testis tissue

(Offspring produced)
Monitored growth (2014)

Agarose gel in α-MEM
supplemented with
KSR or AlbuMAX

[154]

Minipig
SSCs differentiate and

develop to a post-meiotic
stage

Ten days culture (2018)
MEM-α supplemented

with KO serum
replacement

[155]

2.2. In Vitro Spermatogenesis Using Spermatogonial Stem Cells

Testicular spermatogonial tissues from a prostate cancer patient were cultured for
27 days and developed into spermatids [92]. On the other hand, the culturing of germline
spermatids cells, from testicular tissue biopsies in obstructive azoospermia patients, pro-
vides new hope that immature spermatids could mature into mature sperm via in vitro
spermatogenesis (IVS) [156] (Figure 2). Similar findings have also been reported by Cre-
mades et al. (1999), where spermatids from non-obstructive azoospermia have been suc-
cessfully cultured, resulting in IVS, and round spermatids have developed into elongated
spermatids [93]. Recently, the Vero cell culture system has been complemented to enhance
IVS by supplementing culture media with 50% boar rete testicular fluid or in human
synthetic oviduct fluid and 10% human serum, improving IVS rate to 10%, and yielding
haploid sperm [94]. And, recently, through the development of an organotypic culture
system, IVS achieved from pre-pubertal human testicular tissue (immature spermatids)
has been reported from 16 days of culture, resulting in round spermatids [95].

The milestone progress in in vitro spermatogenesis using SSCs from cryopreserved
testicular organs was in 2011 using serum-free gas-liquid interface culture in mice [153].
Efforts were made in different species, humans, and Bama minipigs, and various levels of
success were attained (Table 1). For the IVS to achieve the required fertility, in addition to
spermatid elongation, additional evidence of fertility indicators must be obtained in terms
of genetic and epigenetic fertility in haploid cells. Perhaps, it is to be demonstrated and
clinically proven [10]. On the other hand, the scarcity of spermatid tissue to perform IVS
for the long term and the limitation of available data will not allow conclusive remarks
regarding its success. Some trials have been conducted to protect spermatids against
membrane damage and to augment the motility of differentiated spermatozoa. Dumont
et al. used retinol (vitamin A) to culture mouse prepubertal testicular tissue and found
an improvement in the differentiation of SSCs into motile spermatozoa after culturing
for 30 days [157]. Interestingly, IVS was improved in rats by supplementing the culture
medium with hormones (testosterone, thyroxin, FSH, and LH), antioxidants (glutathione
and ascorbic acid), and lysophospholipids (L-a-Lysophosphatidylcholine and lysophos-
phatidylserine) under hypoxic culture conditions for 70 days [158]. Recently, retinoic acid
in combination with stem cell factor (SCF) improved IVS and differentiation of SSCs in
rats by upregulating PRTM1, STRA8, c-KIT, PIWIL2, and OCT4 gene expression [159].
Furthermore, vitamin E was effective in IVS as a reactive oxygen species (ROS) scavenger
and an effective molecule to improve the yield of in vitro spermatogenesis from frozen
thawed prepubertal mouse testicular tissue [160].
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3. Other Stem Cell Types (iPSCs, ESCs, VSELs, and MSCs)

SSCs are used in this process; however, other stem cell types can also be used, par-
ticularly in patients who do not have SSCs. Therefore, other stem cells represent hope for
these people to allow them to have offspring in the future. ESCs are extracted from the
inner blastocyst cell mass and are considered to be pluripotent cells that can differentiate
into different cell lineages. They can also provide germ cell lines in vitro. However, there
is an ethical controversy regarding the use of embryonic stem cells in humans. Moreover,
during differentiation, ESCs lose their plasticity [3]. ESCs differentiate into male germ-like
cells in vitro, but the disadvantage is that they are not genetically related to patients [96].

On the other hand, VSELs present in humans and mice are pluripotent as they can self-
renew and regenerate. Since VSELs are not affected by chemotherapy, they can contribute
to germ cell development in men who have received chemotherapy as an infant [161,162].

On the other hand, iPSCs, which have the ability to be reprogrammed can be used
in the replacement of ESCs, thus preventing ethical controversy. The advantages of iPSCs
are an easy sampling technique, that is, somatic cells such as skin can be obtained and
then reprogrammed to produce germ cells. Therefore, there is currently research underway
on iPSCs to differentiate into SSCs in patients that do not have their own SSCs [3,83,132].
SSC-like cells (SSCLCs) have been generated from pluripotent stem cells and showed
self-renewal over four months of culture [163].

Mesenchymal stem cells (MSCs), which are multipotent stem cells, have been used in
various disciplines and diseases because of their easy isolation, culture, and immunomodu-
latory effects, and have a very high safety profile. MSCs have been used in male infertility,
as after injection of MSCs into a busulfan-induced azoospermic rat, complete spermato-
genesis was observed, and MSCs were able to restore fertility [164,165]. Interestingly,
co-transplantation of SSCs and TGFβ1-treated MSCs resulted in improving the reproduc-
tive efficiency of SSC transplantation even after transplanting half the number of SSCs [166].
Because of the easy retrieval and extensive work with animals, there are some registered
and recruiting clinical trials that use different kinds of stem cells (bone marrow-derived and
adipose-derived MSCs) for treating non-obstructive azoospermia and impaired spermato-
genesis in human subjects. However, none of these trials has posted a clinical efficiency
yet. In Table 2, we summarize the up-to-date trials existing on the website clinicaltrials.gov
(last accessed on 4 July 2021).

Table 2. Registered clinical trials that use stem cells for treating impaired spermatogenesis.

Subjects/Cases Intervention Outcome Geographic
Location Status Trial Identifier

Azoospermic
Patients

Bone Marrow Derived
Mesenchymal Stem Cells

No results
posted Cairo, Egypt Recruiting NCT02025270

Non-obstructive
Azoospermia

Bone marrow derived
CD34+, CD133+, and

mesenchymal stem cells

No results
posted Amman, Jordan Recruiting NCT02641769

Klinefelter
Syndrome

Azoospermia

Bone marrow
Mesenchymal stem cell

injection

No results
posted Cairo, Egypt Recruiting NCT02414295

Non-obstructive
Azoospermia

Bone Marrow Derived
Stem Cells

No results
posted Giza, Egypt Recruiting NCT02041910

Non-obstructive
Azoospermia

Bone Marrow Derived
Stem Cells

No results
posted Cairo, Egypt Recruiting NCT02008799

Azoospermia and
oligozoospermia

Adipose-Derived Adult
Stromal Vascular Cells

No results
posted

Samara, Russian
Federation

Enrolling by
invitation NCT03762967

clinicaltrials.gov
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4. Conclusive Remarks

Treatment of male infertility caused by impaired spermatogenesis via SSC transplan-
tation, though promising, has not attained its potential and proper implementation and
still has several obstacles. There is a need for more validation of the entire process of SSC
transplantation. The efficiency of cell and tissue cryopreservation must be sought with
high precaution as this step is very critical and the following alternative to treat infertility
depends on the efficiency and effectiveness of cryopreserved SSCs. This step is critical
for preserving the future fertility of children affected with cancer before they undergo
cancer treatment and for the survival of SSCs before their depletion and degeneration by
chemotherapy and radiotherapy.

In addition, cryopreservation, which is a crucial and critical challenge, may be affected
by the malignant contamination of the testes of children with cancer. There are major
concerns about enhancing the protocol efficiency without any damage to the testicular
niche [84]. The socio-cultural attitude of a community and its perspective also remains a
major challenge to the wider application of the possible alternative of SSCs under question.
This is mainly because adult patients who can preserve sperm obtained from ejaculated
semen or TESE are not being considered for stem cell therapies. There is a lack of experience
and knowledge regarding cryopreservation of testicular tissue in prepubertal patients, and
few institutions have the experience, infrastructure, or regulatory approval to process and
preserve testicular tissue [82].

Overall, tangible and accurate therapy options in children and adults for male infer-
tility are still in their infancy, and artificial reproductive assisted therapy has to progress
much to attain a satisfactory level of male infertility therapy, at least to date.
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