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Abstract
Various methods of assessing the depth of anesthesia (DoA) and reducing intraoperative awareness during general anesthesia have
been extensively studied in anesthesiology. However, most of the DoA monitors do not include brain activity signal modeling. Here,
we propose a new algorithm termed the cortical activity index (CAI) based on the brain activity signals. In this study, we enrolled 32
patients who underwent laparoscopic cholecystectomy. Raw electroencephalography (EEG) signals were acquired at a sampling
rate of 128Hz using BIS-VISTATM with standard bispectral index (BIS) sensors. All data were stored on a computer for further
analysis. The similarities and difference among spectral entropy, the BIS, and CAI were analyzed. Pearson correlation coefficient
between the BIS and CAI was 0.825. The result of fitting the semiparametric regression models is the method CAI estimate
(�0.00995; P= .0341). It is the estimated difference in the mean of the dependent variable between method BIS and CAI. The CAI
algorithm, a simple and intuitive algorithm based on brain activity signal modeling, suggests an intrinsic relationship between the DoA
and the EEG waveform. We suggest that the CAI algorithm might be used to quantify the DoA.

Abbreviations: BIS = bispectral index, BMI = body mass index, DoA = depth of anesthesia, EEG = electroencephalography,
SpEn = spectral entropy.
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1. Introduction
Assessing anesthetic depth and reducing intraoperative aware-
ness during general anesthesia has historically been of great
interest in the field of anesthesiology.[1] Even though 10 million
patients undergo surgery under general anesthesia every year,[2] 1
in every 1000 to 2000 may temporarily regain consciousness or
even remain conscious during surgery.[3] Awareness during
surgery is associated with severe psychological sequelae such as
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posttraumatic stress disorder.[3] Consequently, quantifying both
the depth of anesthesia (DoA) and the level of consciousness of
patients is a very important research area in anesthesiology.
Many scientists have attempted to know how general

anesthetics induce unconsciousness, amnesia, and immobility,
but the mechanism is not completely understood[4]; however, it is
known that anesthetics suppress cortical neuronal activity. Thus,
analysis of the change in electroencephalography (EEG) pattern
deling, which suggests an intrinsic relationship between the depth of anesthesia
might be used to quantify the DoA.

with the ethical standards of the institutional and/or national research committee
l standards. This study was approved by the institutional review board of Korea
441).

tional Research Foundation of Korea (NRF) funded by the Ministry of Science,
am (or Industrial Strategic technology development program), (10049743,
lose firm-hospital communication) funded by the Ministry of Trade, industry &

ollege of Medicine, bMedical Device Innovation Center, Korea University Medical
jeon, d Department of Biostatistics, Korea University College of Medicine, Seoul,

ine, Korea University Anam Hospital, Korea University College of Medicine, 73,
m).

ense 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in

ee HW, Kim JB, Yang KS, Yoon SZ. Quantifying the depth of anesthesia based

ovember 2019

mailto:yoonsz70@gmail.com
http://creativecommons.org/licenses/by/4.0
http://dx.doi.org/10.1097/MD.0000000000018441


Huh et al. Medicine (2020) 99:5 Medicine
in relation to various factors such as anesthetic agents, methods
of anesthesia, and patient illnesses is a popular research topic.[5,6]

A few DoA systems that quantify brain activity have been well
developed with advanced mathematical algorithms based on a
large database of human studies. The bispectral index (BIS,
Covidien, Norwood, MA) and spectral entropy (SpEn; E-
Entropy, GE Healthcare, Helsinki, Finland) are well-known
examples of DoAmonitors utilizing EEG signals.[7] BIS and SpEn
are commonly used to guide the administration of volatile and
intravenous (IV) anesthetics as an index of the DoA.[8] The BIS
algorithm is a weighted summation of 3 processed variables: beta
ratio, synch fast slow, and burst suppression ratio.[5,7] BIS is
based on the bispectral analysis of EEG, which is modified based
on statistics derived from a large human database, combining the
3 aforementioned subparameters.[9,10] The usefulness of BIS in
monitoring anesthesia in patients has been well established.[11,12]

Meanwhile, the SpEn algorithm uses irregularity in the EEG and
frontal electromyogram power spectrums to calculate 2 indexes:
state entropy and response entropy.[7]

However, there are limitations for both BIS and SpEn
algorithms; for example, these monitors fail to accurately
represent DoA with regard to certain factors such as the type
of anesthetic agent and patient characteristics.[13] One of the
main reasons for the failure is the lack of signal modeling to
quantitatively describe the change in EEG during anesthesia.
Understanding the mechanism of the generation of EEG has to
precede the development of the signal model. Themain sources of
EEG are the postsynaptic potentials from the dendrites of the
pyramidal cells in the cortical layer.[10,14] These signals summate
and are recorded as EEG activity at the surface of skin. In other
words, EEG represents the summated electrical activity of
multiple sources located in the cortical layer, with the most
significant contribution from the superficial cortical layers.
During wakefulness, excitatory input from other neurons
provides a depolarizing drive that cause neurons to exhibit
single-spike tonic firing. During anesthesia, neurons switch into a
burst-firing mode. At intermediate anesthetic concentrations,
neurons oscillate between an active up-state and an inactive
down-state. As anesthetic dose increases, the up-state turns into a
short burst and the down-state becomes progressively longer.
Therefore, the percent of pyramidal cells in the active state can be
considered as a parameter that is directly reflecting the DoA.
We hypothesize that a signal model that gives a quantitative

description of changes in EEG with respect to the change in the
percentage of active pyramidal cells can explain not only many
features of EEG during anesthesia, such as burst suppression and
a decrease in high-frequency component, but also changes in the
indexes for the DoA. In addition, based on the signal modeling, a
time-domain method can be proposed to estimate the DoA from
EEG segments. Therefore, our primary end point was to validate
the proposed algorithm (cortical activity index [CAI]), by using it
to measure EEG signals from anesthetized humans and estimate
the DoA.
2. Materials and methods

2.1. Brain activity signal modeling: CAI

If a brain cell is activated by an external stimulus that exceeds a
particular threshold, the cell generates an electrical peak signal
that lasts for a short time with a relatively large amplitude. While
a patient is awakening, the brain activity is comparatively high,
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and it can increase the probability that the brain cell produces
peak signals. Since an EEG recording is an aggregation of peak
signals generated from the brain cells, the EEG signal in the
awakening state has more peak signal components. This is related
to the features of the EEG signal. As anesthesia progresses, the
frequency components of the EEG signal change. Furthermore,
the reason for this change in pattern could be related to the fact
that the ratio of peak signals contained in the EEG signal is rather
low when a patient is in a hypnotic state.
The fundamental process of CAI is to calculate the ratio of

peak signals present in the observed EEG signal.[15] According to
our definition, a peak signal is a portion of the observed EEG
signal that is higher than a predefined threshold in its amplitude.
Following this definition, we can calculate the density of the peak
signals in every epoch to derive CAI. Here, the density of the peak
signal is represented by the number of peak signal points per
epoch divided by all the signal points contained in 1 epoch. This
ratio is directly correlated with CAI. A high ratio indicates an
awakening state, and a low rate represents a deep hypnotic state.
At this point, the threshold that is applied to each epoch in the
time domain should be adaptive because the magnitude of the
EEG signals change during a surgical procedure. If the threshold
is fixed during the surgery, the derived value for the DoA will not
be appropriate. Since the amplitude of an EEG signal is low in an
awakening state, a low threshold has to be used. On the other
hand, a high threshold is applied during deep hypnotic state. The
amount of low-frequency components in the EEG signal is high
when a patient is anesthetized. Hence, using this feature, the
adaptive threshold can be defined as follows in eq. 1.[15] In eq. 1,
X represents an EEG signal, DFT denotes Discrete Fourier
Transform, and K and M are experimentally derived constant
values. In other words, this threshold quantifies the low-
frequency components of the observed signal. In summary, we
can obtain CAI by calculating the adaptive thresholds initially
and quantifying the density of the peak signal components that
are above the adaptive thresholds in each epoch[15]:

The adaptive threshold for CAI ¼ K
XM

i¼1

DFTðXÞi

2.2. Human anesthesia and data acquisition

This study was approved by the institutional review board of
Korea University Medical Center (MD15010) and is registered
at ClinicalTrials.gov (NCT02586441). After obtaining written
informed consent from each patient, 32 patients (American
Society of Anesthesiologists physical status I or II, age>18 years)
scheduled to undergo laparoscopic cholecystectomy under
general anesthesia were included in this study. Exclusion criteria
were medical conditions that might affect the level of conscious-
ness such as stroke, altered mental state, or dementia.
The patients were administered with glycopyrrolate 0.2mg as

premedication intramuscularly 30minutes before anesthesia.
Standard monitoring included electrocardiography, noninvasive
arterial blood pressure, pulse oximetry, and the BIS-VISTATM

sensor. Thereafter, anesthesia was induced with IV 1% propofol
(1.5–2.5mgkg�1) and 0.6mgkg�1 rocuronium bromide
(Esmeron; Merck Sharp and Dohme, Oss, Netherlands) to
facilitate tracheal intubation, followed by initiation of mechani-
cal ventilation. Tidal volume and respiratory rate were set at 8
to10mLkg�1 and 10 to 12 per minutes, respectively. During the
surgery, respiratory rate was adjusted to achieve normocarbia.



Table 1

Patients’ characteristics.

Patients’ demographics

Male/female 18/14
Age, yr 44.62±13.52
Weight, kg 69.95±14.86
Height, cm 163.54±8.65
BMI, kg/m2 25.96±4.77
Anesthetic time, min 81.36±34.49

Values are expressed as means±SD.
BMI=body mass index.
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Anesthesia was maintained with desflurane at an end-tidal
concentration of 6% to 7%, with a fraction of inspired oxygen of
0.5 (fresh gas flow; O2 at 1.5L/min and air at 2.5L/min).
Postoperatively, anesthesia was discontinued and the fractional
inspired oxygen concentration was increased to 1.0. The tracheal
tube was removed when the patient demonstrated purposeful
movement and facial grimacing andwas breathing spontaneously
and regularly. After extubation, BIS-VISTATM monitoring was
stopped, and the patients were transferred to a post-anesthesia
care unit. Raw EEG signals were acquired at a sampling rate of
128Hz using BIS-VISTATM with standard BIS sensors. All data
were stored on a computer for further analysis.
2.3. Statistical analysis

We obtained Pearson correlation coefficients among the 3
indexes (the CAI, SpEn, and BIS). Owing to the disparate ranges
for each index, CAI and SpEn were normalized using the
following formula:

Z ¼ Xindex �Xmean

s

for the agreement of indexes or fitting statistical models, where
Z is the standardized index, X is CAI and SpEn, and s is the
standard deviation for each index for statistical analysis.
We fitted the semiparametric regression model to test the

differences among the ZCAI, ZSpEn, andZBIS after adjusting for
the effect of sex, age, body mass index (BMI), as well as the linear
and nonlinear effect of time. We additionally fitted the
semiparametric regression model by each index. Semiparametric
regression models are regression models that include both
parametric and nonparametric regression models. In the
nonparametric regression model, a smoother is used for fitting
the trend of a dependent variable as a function of one or more
independent variables. Here, the nonparametric model is
expressed with smooth functions. When the smoothing parame-
ter is close to 1, a smoother curve is generated. Conversely, when
it is close to 0, a rougher curve is generated. The value of the
smoothing parameter was selected by generalized cross-valida-
tion.
All statistical analyses were performed using IBM SPSS

Statistics version 22.0 (IBM Corporation, Armonk, NY), R
3.1.3 (The R Foundation for Statistical Computing, Vienna,
Figure 1. A typical graph of human data showing CAI, SpEn, and BIS during the s
index with standardization. BIS=bispectral index, CAI = cortical activity index, S
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Austria), and SAS 9.4 (SAS Institute Inc, Cary, NC). We
considered P< .05 as statistically significant.
3. Results

3.1. Similarity between the CAI and BIS

Patients’ characteristics are presented in Table 1. The typical
graph of the CAI, SpEn, and BIS during the complete anesthetic
period is presented in Figure 1. The graphs of the ZCAI, ZSpEn,
and ZBIS for all the human clinical trials are presented in
Figure 2. BIS was not measured in 1 subject (subject 15). Pearson
correlation coefficients were 0.803 between the CAI and SpEn;
0.617 between the SpEn and BIS; and 0.825 between the CAI and
BIS (Table 2), respectively. CAI strongly correlated (>0.8) with
both BIS and SpEn, but the correlation of SpEn with BIS was
lower.

3.2. Differences between the CAI and BIS

In the basic statistical analysis, the minimum values were �1.3,
�1.5, and �10; the median values were �0.33, �0.4, and �0.5;
and the maximum values were 2.5, 4.7, and 2.5 for the ZCAI,
SpEn, and BIS, respectively (Table 3). The absolute values of
jMax–Minj were 3.8, 6.2, and 3.5 for ZCAI, ZSpEn, and ZBIS,
respectively. The result of fitting the semiparametric regression
model (except for subject 15) revealed the difference among the 3
algorithm performances along the time domain (Table 4).
In Table 4, the “Method”CAI estimate (�0.00995; P= .034) is

the estimated difference in the mean of the dependent variable
between “Method” CAI and BIS, after adjusting for the effect of
urgery; (A) shows the absolute CAI, SpEn, and BIS. (B) shows their normalized
pEn=spectral entropy.

http://www.md-journal.com


Table 2

Pearson correlation coefficient of CAI versus SpEn, SpEn versus
BIS, and CAI versus BIS in human subjects.

CAI versus SpEn SpEn versus BIS CAI versus BIS

Subject 1 0.748 0.651 0.907
Subject 2 0.807 0.717 0.905
Subject 3 0.749 0.707 0.888
Subject 4 0.650 0.428 0.881
Subject 5 0.755 0.660 0.895
Subject 6 0.654 0.610 0.858
Subject 7 0.902 0.852 0.931
Subject 8 0.761 0.665 0.793
Subject 9 0.827 0.723 0.852
Subject 10 0.834 0.668 0.827
Subject 11 0.606 0.162 0.730
Subject 12 0.885 N/A N/A
Subject 13 0.582 0.252 0.590
Subject 14 0.853 0.780 0.929
Subject 15 0.532 N/A N/A
Subject 16 0.739 0.423 0.768
Overall 0.803 0.617 0.825

BIS=bispectral index, CAI=cortical activity index, SpEn= spectral entropy.

Figure 2. The standardized CAI (ZCAI), SpEn (ZSpEn), and BIS (ZBIS) for human data are presented for each subject. BIS=bispectral index, CAI=cortical activity
index, SpEn=spectral entropy.
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the other variables in the model. The “Method” SpEn estimate
(0.00402; P= .39) is the estimated difference in the mean of the
dependent variable between “Method” SpEn and BIS, after
adjusting for the effect of the other variables in the model. There
was no significant difference in the “Method” between SpEn and
the BIS. The “male sex” estimate (�0.10644; P< .001) is the
estimated difference in the mean of the dependent variables
between male and female sexes, after adjusting for the effect of
the other variables in the model. The reference group is Female.
Table 3

Descriptive statistics of the CAI, SpEn, and BIS for the human
dataset.

Min Median Max Mean Variance

CAI 15.2 32.6 85.1 38.8 18.7
SpEn 10.5 13.5 26.2 14.3 2.6
BIS 22.6 35.6 97.3 46.6 23.0
ZCAI �1.3 �0.33 2.5 0 1
ZSpEn �1.5 �0.4 4.7 0 1
ZBIS �1.0 �0.5 2.5 0 1

ZCAI, ZSpEn, ZBIS are standardized variables.
CAI= cortical activity index, SpEn= spectral entropy.



Table 4

The results of fitting the semiparametric regression model (except for subject 15, cutting data after 5000 s) for the human dataset.

Regression model analysis

Parameter estimates

Parameter Parameter estimate Standard error t-value P-value

Intercept 0.51892 0.01496 34.69 <.0001
Method CAI �0.00995 0.0047 �2.12 .0341
Method SpEn 0.00402 0.0047 0.86 .3924
Method BIS 0 – – –

Sex M �0.10644 0.00384 �27.74 <.0001
Sex F 0 – – –

Age �0.00388 0.0001423 �27.25 <.0001
BMI �0.66818 0.04143 �16.13 <.0001
Linear (time) �6.953E-05 1.45E-06 �47.97 <.0001

Smoothing model analysis

Fit Summary for smoothing components

Component Smoothing parameter DF GCV Num unique obs

Spline (time) 1 4.205887 0.071423 5000

Smoothing model analysis

Analysis of deviance

Source DF Sum of squares Chi-square P-value

Spline (time) 4.20589 35098 50788.053 <.0001

Except for subject 15 and cut data after 5000 s.
BIS=bispectral index, BMI=body mass index, CAI= cortical activity index, SpEn= spectral entropy.
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The “Age” estimate (�0.00388; P< .001) is the estimated slope
for the BIS of “Method” in the Female group, after adjusting for
the other effects. Owing to the negative slope, the dependent
variable decreases as “Age” increases. The “BMI” estimate
(�0.66818; P< .001) is the estimated slope for the BIS of
“Method” in the Female group after adjusting for other effects.
Due to the negative slope, the dependent variable decreases as
“BMI” increases. The “Time” estimate (�6.953 � 10�5;
P< .001) is the estimated slope for the BIS of “Method” in the
Female group, after adjusting for the remaining effects. On
account of the negative slope, the predicted value of the
dependent variable decreases as “Time” increases. In Table 4,
the nonlinear contribution of the variable “Time” in the
nonparametric model using the spline function yields significant
results in the smoothing model analysis. When the smoothing
parameter is close to 1, and we could obtain a smooth curve.
From this result, the effect of CAI is significantly different from
that of the BIS; however, the effect of SpEn is not significantly
different from that of the BIS, after adjusting for the effect of the
remaining variables such as sex, age, BMI, and time. It indicates
that the overall trend of the data over time was similar; however,
it showed a significant difference between the CAI and BIS
methods, as shown in Table 4 and Figure 3.
Table 5 shows the results of fitting the semiparametric

regression models for each BIS, SpEn, and CAI, respectively.
For the CAI, the “Method” CAI estimate (�0.00995; P= .03) is
the estimated difference in the mean of the dependent variable
between “Method” CAI and BIS, after adjusting for the effect of
the remaining variables in the model. For the CAI, the estimated
parameters of sex, age, BMI, and the linear time effect were
�0.09651, 0.00365, 0.51868, and �0.0001257, respectively, at
the baseline of the female group (P< .001); for SpEn, the values
were 0.0805, 0.00445, 0.38957, and 0.0000306, respectively
5

(P< .001); and for the BIS, the values were 0.14748, 0.00351,
1.1332, and �0.000005003, respectively (P< .001). Figure 4
shows the smoothing component plot for each BIS, SpEn, and
CAI. Nonparametric prediction for all 3 variables was significant.
The CAI showed lesser difference than did BIS for sex and BMI,
and it decreased faster compared with the BIS and SpEn for the
linear time effect.

4. Discussion

In this study, we propose a new algorithm termed “CAI” based
on brain activity signal modeling with various regression models.
Our results showed that the proposed CAI algorithm was highly
consistent and strongly correlated with the results from BIS in
humans.
Based on the possibility that the CAI algorithmmay predict the

DoA, an experiment using human EEG was designed with 3
algorithms: CAI, SpEn, and BIS. After a standardization process,
the Pearson correlation coefficient between CAI and BIS showed
that correlation between CAI and BIS was the highest. Many
previous clinical studies have shown that BIS can provide
appropriate index values of the DoA in a steady state.[16–18]

Therefore, the authors suggest that a high correlation between
BIS and CAI may indicate that the CAI algorithm can predict
DoA reliably. Interestingly, according to the semi-parametric
regression model, the CAI values were significantly different from
the BIS values with regard to sex, age, BMI, and time values for
overall time (P< .001) (Table 4). Thus, the authors hypothesize
that the CAI may have a faster response time in representing
recent brain activity than the BIS (�6.953E-05, P<< .001)
According to the Pearson correlation coefficients, CAI was

strongly correlated (>0.8) with both BIS and SpEn, but SpEn
showed a lower correlation with BIS. In addition, the descriptive

http://www.md-journal.com


Figure 3. (A) The fitted (denoted by bold lines) plot from the semiparametric regression model. (B) The fitted (denoted by bold lines) plot from the semiparametric
regression model by the CAI, SpEn, and BIS. BIS=bispectral index, CAI=cortical activity index, SpEn=spectral entropy.
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statistics of CAI, SpEn, and BIS revealed that SpEn was
significantly lower than CAI or BIS. However, the descriptive
statistics of ZSpEn were not different from those of ZCAI or
ZBIS. Moreover, according to the semiparametric regression
model, there was no significant difference for the “Method”
between SpEn and the BIS. The “Method” SpEn estimate
(0.00402; P= .39) is the estimated difference in the mean of the
dependent variable between “Method” SpEn and BIS after
adjusting for the effect of the other variables in the model. Thus,
the authors conclude that there were no statistical differences
between CAI, BIS, and SpEn.
There are some limitations to our research. The first is that the

number of patients enrolled in the present study is very small. The
second is that we may not have clearly interpreted statistically
and clinically significant data. Finally, the novel DoA measure-
ment method proposed in the current study does not provide any
advantages over the existing methods. Therefore, it is likely that
subsequent large clinical trials will be required. In future studies,
6

a careful study protocol that takes into account the unanswered
questions in this study is needed.
In this study, we focused on brain electrical activity, notably

cortical neuronal activity. Furthermore, we hypothesized that the
percentage of pyramidal cells in an active state can be considered
a parameter that directly reflects the DoA. Based on the brain
activity signal modeling that estimates the changes in EEG with
respect to the proportion of active pyramidal cells, the CAI
algorithm was developed with the dynamic threshold decision
method. The proposed CAI algorithm is a simple and intuitive
one based on brain activity signal modeling that suggests an
intrinsic relationship between DoA and EEG waveform.
Furthermore, the CAI algorithm might prove useful and more
accurate in predicting the level of consciousness compared with
other algorithms. In summary, we propose that the newly formed
CAI algorithm is comparable to the well-established algorithms
used in current DoAmonitors, and it can be considered a suitable
alternative for future DoA monitoring systems.



Table 5

The results of fitting the semiparametric regression model by each index: CAI, SpEn, and BIS in the human dataset.

Regression model analysis

Parameter estimates

BIS SpEn CAI

Parameter Estimate Standard P-value Estimate Standard P-value Estimate Standard P-value

Intercept 0.59325 0.02332 <.0001 0.37968 0.0275 <.0001 0.58346 0.02399 <.0001
Male sex �0.14748 0.00621 <.0001 �0.0805 0.0071 <.0001 �0.09651 0.00619 <.0001
Female sex 0 – – 0 – – 0 –

age �0.00351 0.00023 <.0001 �0.00445 0.0002636 <.0001 �0.00365 0.0002299 <.0001
BMI �1.13326 0.06561 <.0001 �0.38957 0.0774 <.0001 �0.51868 0.0675 <.0001
Linear (time) �5.003E-05 2.38E-06 <.0001 �0.0000306 2.66E-06 <.0001 �0.0001257 2.32E-06 <.0001

Smoothing model analysis

Fit summary for smoothing components

BIS SpEn CAI

Component Smoothing parameter DF GCV Smoothing parameter DF GCV Smoothing parameter DF GCV

Spline (time) 1 4.171005 0.119241 1 4.221039 0.13827 1 4.221039 0.064197

Smoothing model analysis

Analysis of deviance

BIS SpEn CAI

Source DF Chi-square P-value DF Chi-square P-value DF Chi-square P-value

Spline (time) 4.17101 35693.932 <.0001 4.22104 5573.6537 <.0001 4.22104 22958.49 <.0001

BIS=bispectral index, CAI= cortical activity index, SpEn= spectral entropy.

Figure 4. The effect of nonparametric components plot from the semiparametric regression model for each index.
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