
molecules

Review

Grafting Dendrons onto Pillar[5]Arene Scaffolds †

Iwona Nierengarten 1, Michel Holler 1, Marine Rémy 1, Uwe Hahn 1, Aurélien Billot 2, Robert Deschenaux 2,*
and Jean-François Nierengarten 1,*

����������
�������

Citation: Nierengarten, I.; Holler, M.;

Rémy, M.; Hahn, U.; Billot, A.;

Deschenaux, R.; Nierengarten, J.-F.

Grafting Dendrons onto

Pillar[5]Arene Scaffolds . Molecules

2021, 26, 2358. https://doi.org/

10.3390/molecules26082358

Academic Editor: Ashok Kakkar

Received: 16 March 2021

Accepted: 14 April 2021

Published: 18 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7402 LIMA),
Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, CEDEX 2, 67087 Strasbourg, France;
iosinska@unistra.fr (I.N.); mholler@unistra.fr (M.H.); marine.remy@etu.unistra.fr (M.R.);
u.hahn@unistra.fr (U.H.)

2 Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland;
aurelien.billot@unine.ch

* Correspondence: robert.deschenaux@unine.ch (R.D.); nierengarten@unistra.fr (J.-F.N.)
† Dedicated to Dr. Jean-Pierre Majoral on the occasion of his 80th birthday.

Abstract: With their ten peripheral substituents, pillar[5]arenes are attractive compact scaffolds
for the construction of nanomaterials with a controlled number of functional groups distributed
around the macrocyclic core. This review paper is focused on the functionalization of pillar[5]arene
derivatives with small dendrons to generate dendrimer-like nanomaterials and bioactive compounds.
Examples include non-viral gene vectors, bioactive glycoclusters, and liquid-crystalline materials.
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1. Introduction

Dendrimers have been intensively investigated during the past decades and this field
largely crossed the boundaries between chemistry and other disciplines such as physics
and biology [1–5]. This paper being part of the special issue dedicated to Jean-Pierre
Majoral, it must be mentioned that his group played a major role in dendrimer chemistry
with the development of phosphorus dendrimers [6]. This beautiful chemistry has been
used for the construction of a very large variety of functional nanomaterials and bioactive
molecules [7–14]. As far as the synthesis of dendrimers is concerned, the convergent
and divergent stepwise approaches used for their preparation are often efficient but the
synthesis of high generation derivatives remains often difficult because of the large number
of synthetic steps [1–5]. An alternative approach to construct large molecules in a rapid
manner emerged in recent years and is based on the grafting of small dendrons to compact
multifunctional molecular scaffolds to generate globular dendrimer-like compounds in
a single step [15–26]. As part of this research, our group has intensively investigated
fullerene hexa-adducts for this purpose [15–18]. The grafting of twelve peripheral groups
onto the fullerene scaffold has been efficiently achieved by using click chemistry, thus
giving rapid access to globular multifunctional nanomaterials [26–35]. Easy accessibility
has been a clear advantage for their applicability in various fields. Examples include
solar energy concentrators to improve the efficiency of photovoltaic cells [36], liquid-
crystalline materials [37,38], bioactive glycoclusters [39–45], giant molecules with antiviral
properties [46,47], and non-viral gene transfection vectors [48]. More recently, we have also
shown that clickable pillar[5]arene scaffolds are versatile compact cores for the preparation
of dendrimer-like compounds for various applications. These results are summarized in
the present paper.
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2. Clickable Pillar[5]Arene Building Blocks

Pillar[5]arenes are macrocyclic compounds composed of hydroquinone units con-
nected by methylene bridges [49–52] (Figure 1). In this respect, they are directly related to
cyclotriveratrylenes (CTVs) and calix[n]arenes. These three classes of cyclophanes differ
by the relative position of the methylene moieties bridging their aromatic subunits. Their
shape is also very different. Whereas CTVs and calix[n]arenes generally adopt cone-shaped
conformations, pillar[5]arenes are tubular-shaped [50–52]. As a result, both rims of the
pillar[5]arenes are equivalent. With their ten peripheral alkoxy substituents, these com-
pounds are therefore attractive compact scaffolds for the construction of nanomaterials
with a controlled number of functional groups distributed around the macrocyclic core.
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americ macrocycles are preferentially formed in CHCl3 [55]. It is believed that the solvent 
molecules are somehow templating the cyclization step to preferentially generate a mac-
rocyclic product with the appropriate size for inclusion of a solvent molecule in its cavity 
[54]. On the other hand, the yield of these cyclooligomerizations is particularly high owing 
to the reversibility of the Friedel–Crafts reaction [56]. The formation of pillar[5]arenes is 
indeed thermodynamically driven and their high yielding synthesis is explained by dy-
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Figure 1. (A) Cyclotriveratrylene; (B) calix[4]arene; (C) pillar[5]arene. The calculated structures of the
methoxy-substituted derivatives highlight the different conformations adopted by these macrocycles:
cone-shape in the case of the CTV and the calix[4]arene, and tubular in the case of the pillar[5]arene.

As far as their synthesis is concerned, pillar[5]arenes are conveniently prepared
from 1,4-dialkoxybenzene and paraformaldehyde in the presence of a catalyst, typically
BF3.Et2O [53]. The outcome of the reaction is sensitive to the solvent and CH2Cl2 or
1,2-dichloroethane favors the formation of the cyclopentamers [54]. In contrast, cyclohex-
americ macrocycles are preferentially formed in CHCl3 [55]. It is believed that the solvent
molecules are somehow templating the cyclization step to preferentially generate a macro-
cyclic product with the appropriate size for inclusion of a solvent molecule in its cavity [54].
On the other hand, the yield of these cyclooligomerizations is particularly high owing
to the reversibility of the Friedel–Crafts reaction [56]. The formation of pillar[5]arenes
is indeed thermodynamically driven and their high yielding synthesis is explained by
dynamic covalent bond formation [56]. Their preparation is, however, very sensitive to
steric effects and hydroquinone monomers with large alkoxy substituents are not suited
for the preparation of pillar[5]arenes. To solve this limitation, the most efficient approach is
based on the post-functionalization of pillar[5]arene building block prepared in high yields
from simple monomers. For this purpose, copper catalyzed alkyne-azide cycloaddition
is particularly interesting [57]. This click reaction is effectively high yielding which is
essential to achieve the efficient grafting of ten peripheral groups onto a single molecular
scaffold [58]. Moreover, this chemistry is compatible with many functional groups thus
allowing the grafting of a large variety of molecules. As typical examples, clickable pil-
lar[5]arene scaffolds are depicted in Figure 2. These building blocks have been intensively
used to prepare bioactive compounds and advanced materials [59–65]. They have been
also functionalized with small dendrons to generate dendrimer-like nanostructures. These
results are summarized in the next section.
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Figure 2. Typical examples of clickable pillar[5]arene derivatives used for the construction of multi-
functional nanomaterials.

3. Bioactive Dendrimers with a Pillar[5]Arene Core
3.1. Dendritic Gene Delivery Vectors with a Pillar[5]Arene Core

The first example of dendrimers with a pillar[5]arene core have been reported by our
group [66]. Dendrons with peripheral Boc-protected amine functions have been grafted
onto both rims of pillar[5]arene building block 1. Subsequent treatment with trifluoroacetic
acid (TFA) gave deprotected dendrimers 3 and 4 (Figure 3).
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Figure 3. Dendronized pillar[5]arenes with peripheral ammonium functions (molecular weights
(MW): 5787.41 (3); 11368.67 (4)). These polycationic derivatives have been used as non-viral gene vec-
tors.

Dynamic light scattering (DLS) measurements revealed that both 3 and 4 form aggre-
gates in water at concentrations higher than 3 nM. At concentrations lower than 1.5 nM,
second-generation compound 4 no longer aggregates, whereas the first-generation ana-
logue still forms nanoparticles with an average size of ca. 70 nm. Under these conditions,
the hydrophobic interactions between the internal part of the dendrimers are vanished in
the case of 4, thus suggesting that the compound may adopt a nearly globular conforma-
tion despite the low generation number of the dendrons grafted onto the pillar[5]arene
core. The ability of 3 and 4 to bind DNA has been evidenced by electrophoresis, DLS
measurements, and transmission electron microscopy (TEM) [66–68]. Polyplexes have
been prepared from plasmid DNA (pCMV-Luc) and 3 or 4. Transfection efficiencies of
the resulting self-assembled nanoparticles have been evaluated in vitro with HeLa cells
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(Figure 4). Practically useful levels of transfection have been obtained for both 3 and 4.
At the same time, the high levels of total cellular proteins observed in these experiments
revealed very low toxicity. Interestingly, the first-generation dendrimer already has opti-
mum gene delivery capabilities. In this particular case, high efficiency is not associated
to high generation numbers to ensure DNA compaction into stable polyplexes suited for
transfection experiments as typically observed for dendrimers [69]. This has been explained
by the bolaamphiphilic character of 3 allowing to increase the stability of the nanoparticles
formed with DNA by the establishment of additional hydrophobic interactions.
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Figure 4. Schematic representation of the main step of gene delivery into a cell: (A) complexation of
DNA; (B) interaction with the cellular membrane; (C) entry into the cell; (D) release into the cytosol;
(E) intracellular transport into the nucleus where the DNA is expressed.

3.2. Glycoclusters Constructed on a Pillar[5]Arene Scaffold

Pillar[5]arene scaffolds have been also used to prepare glycoclusters decorated with
ten peripheral sugar residues [70–74]. These compounds have been assayed as multi-
valent ligands for various bacterial lectins and large binding enhancements have been
evidenced through the well-established glycoside cluster effect [75–79]. To further increase
the valency of the glycopillar[5]arene derivatives and hopefully their binding capabilities,
first-generation glycodendrons have been grafted onto the pillar[5]arene core. A series of
fucosylated compounds have been prepared from building block 2 and first-generation
dendrons with an alkyne function at the focal point. Glycoclusters 9 and 10 with 20 pe-
ripheral fucose subunits are depicted in Figure 5 together with their related decavalent
systems 6–8 and model compound 5. Compounds 5–10 have been assayed towards two fu-
colectins, namely LecB from Pseudomonas aeruginosa and BambL from Burkholderia ambifaria.
These studies have been carried out by A. Imberty and co-workers [74]. The dissociation
constants (KD) derived from isothermal titration microcalorimetry (ITC) experiments are
summarized in Table 1. LecB is typically not very sensitive to the multivalent presentation
of fucose residues [74]. This is explained by the topology of this lectin. The four binding
pockets are actually quite far from each other, thus preventing the simultaneous binding of
two fucose subunits of a multivalent ligand. As a result, binding enhancement resulting
from chelate cooperativity is not possible in this particular case. As anticipated, there is no
dramatic improvement when going from monovalent ligand 5 to the multivalent fucosy-
lated pillar[5]arenes 6–10. Decavalent compound 6 is even a weaker ligand, most probably
because of steric effects resulting from the short spacer that prevents optimal interactions of
the fucose residue in the binding pocket of LecB. The small binding enhancement observed
for 7–10 results exclusively from aggregation, as shown in Figure 6.
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Figure 5. Model monovalent ligand 5 and glycopillar[5]arenes with 10 and 20 peripheral fucose
subunits (MW: 3323.31 (6); 4204.41 (7); 4644.94 (8); 8028.18 (9); 10671.86 (10)).

Table 1. Isothermal titration microcalorimetry data for the interactions of glycopillar[5]arenes with
LecB and RSL.

Ligand Valency KD (nM) β 1

LecB from Pseudomonas aeruginosa 2

5 3 1 430 1
6 10 990 0.4
7 10 220 1.9
8 10 280 1.5
9 20 150 2.9
10 20 180 2.4

BambL from Burkholderia ambifaria 2

5 4 1 960 1
6 10 60 16
7 10 19 50
8 10 57 17
9 20 17 56
10 20 27 36

1 Calculated as the ratio of the value obtained for monovalent reference compound 5 to the value of the ligand. 2

From [74]. 3 From [80]. 4 From [81].

In this case, simultaneous binding of two fucose moieties of one glycopillar[5]arene
occurs to two different LecB proteins within the same aggregate. This is beneficial from an
enthalpic point of view. However, the positive enthalpic effect is largely counterbalanced
by a strong entropic penalty. As a result, the overall enhancement is rather weak when
going from 5 to 6–10.
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Figure 6. (A) Schematic representation of the clustering resulting from the association of a decavalent
glycopillar[5]arene derivative with Lec A. (B) Schematic representation of the simultaneous binding
of two fucose units of a decavalent glycopillar[5]arene derivative to BambL.

The topology of BambL is very different. In this case, six binding pockets are located
on the same face of the protein and the observed binding enhancement resulting from
the multivalent presentation of fucose residues with 6–10 when compared to monovalent
model 5 is likely mainly due to chelate cooperativity (Figure 6). The beneficial enthalpic
contribution resulting from chelate cooperativity is, however, affected by an entropic
penalty due to clustering. This is particularly true for ligands 9 and 10 with 20 peripheral
fucose residues. Overall, the valency number plays an important role in the affinity of
multivalent ligands 6–10 towards LecB and BambL, but the nature of the linker unit between
the core and the peripheral fucose moieties is also important. Nonetheless, compounds
6–10 are amongst the most potent ligands for LecB and BambL reported to date, thus
showing the potential of glycopillar[5]arenes for therapeutic applications based on an
anti-adhesive strategy [75–79].

4. Dendritic Liquid-Crystalline Pillar[5]Arenes

Pillar[5]arenes are attractive five-fold symmetrical hard-core units for the construc-
tion of original liquid-crystalline materials. The first examples have been constructed by
grafting cyanobiphenyl-based mesogenic units onto the pillar[5]arene core [82,83]. The
same design principle has been also used to design switchable liquid-crystalline deriva-
tives by incorporating azobenzene-containing mesogenic moieties on both rims of the
pillar[5]arene core [84]. In all the cases, smectic organization have been observed in the
liquid-crystalline phase. In contrast, when the pillar[5]arene core has been functionalized
with Percec-type poly(benzylether) dendrons [85], the peripheral subunits promote a to-
tally different supramolecular organization [86,87]. A typical example of dendronized
pillar[5]arene derivative is depicted in Figure 7. X-ray diffraction measurements revealed a
supramolecular organization into a hexagonal columnar liquid-crystalline mesophase. The
chemical information stored in the peripheral dendrons of 11 actually drives the conforma-
tional equilibrium towards the formation of a disc-like tertiary structure. As a result, the
compound adopts a perfect shape, allowing the self-organization into columnar assemblies
in which one molecule forms an entire disc, as schematically shown in Figure 8. Inter-
estingly, the columnar assembly generates infinite self-assembled nanotubes despite the
generated free volume. This work represents, therefore, a first step towards the preparation
of a new class of organic nanotubes.
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5. Self-Assembled Dendrimers

With their tubular structures, pillar[5]arene macrocycles are well-suited hosts for the
formation of inclusion complexes with a large variety of guests [88]. Jia and Li used the
complexation ability of pillar[5]arenes to self-assemble supramolecular dendrimers [89].
First and second-generation dendrons have been grafted onto a monohydroxylated pil-
lar[5]arene derivative to generate compounds 12 and 13, respectively (Figure 9). Their
self-assembly with a tritopic connector (14) has been investigated in CDCl3 solutions by
1H NMR binding studies. The 3:1 host-guest assemblies are rather stable under these
conditions. The formation of the star-shaped dendritic trimers has been further confirmed
by their diffusion coefficients estimated by diffusion-ordered NMR spectroscopy (DOSY).
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Finally, one should also mention the outstanding work of Yang and co-workers
on organometallic rotaxane dendrimers constructed with mechanically interlocked pil-
lar[5]arene moieties [90–96]. These compounds are out of the scope of the present paper
and this chemistry has been summarized in recent review articles [97].

6. Conclusions

Clickable pillar[5]arenes are versatile building blocks for the preparation of multi-
functional nanomaterials. Whereas only a very few examples of dendronized derivatives
have been reported so far, the easy access to dendritic-like structures with limited synthetic
efforts is very attractive for future applications. Pillar[5]arene-containing dendrimers have
already been used to generate non-viral gene delivery systems, bioactive glycoclusters,
and liquid-crystalline materials. These results pave the way to new generations of more
sophisticated advanced materials and bioactive compounds. Examples include hetero-
glycoclusters targeting several proteins and new gene vectors with additional functions
such as sugars for cell targeting or fluorescent moieties for monitoring cell uptake. The
host-guest properties of the pillar[5]arene macrocycle also open additional perspectives for
the design of new supramolecular functional dendrimers for different applications.
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