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Abstract Animals can effortlessly adapt their behavior by generalizing from past aversive

experiences, allowing to avoid harm in novel situations. We studied how visual information was

sampled by eye-movements during this process called fear generalization, using faces organized

along a circular two-dimensional perceptual continuum. During learning, one face was conditioned

to predict a harmful event, whereas the most dissimilar face stayed neutral. This introduced an

adversity gradient along one specific dimension, while the other, unspecific dimension was defined

solely by perceptual similarity. Aversive learning changed scanning patterns selectively along the

adversity-related dimension, but not the orthogonal dimension. This effect was mainly located

within the eye region of faces. Our results provide evidence for adaptive changes in viewing

strategies of faces following aversive learning. This is compatible with the view that these changes

serve to sample information in a way that allows discriminating between safe and adverse for a

better threat prediction.

DOI: https://doi.org/10.7554/eLife.44111.001

Introduction
To avoid costly situations, individuals must be able to rapidly predict future adversity based on previ-

ously learnt aversive associations, as well as actively sampled information from the environment.

However, new situations are seldom the same as previously experienced ones. To judge whether a

situation holds potential harm, a careful balance between stimulus generalization and selectivity is

needed. While fear generalization makes it possible to promptly deploy defensive behavior when

similar situations are encountered anew (Guttman and Kalish, 1956; Hovland, 1937; Pavlov, 1927;

Shepard, 1987; Spence, 1937; Struyf et al., 2015; Tenenbaum and Griffiths, 2001), selectivity

ensures that only truly aversive stimuli are recognized as aversive (Li et al., 2008; Onat and Büchel,

2015), thus avoiding costly false alarms. In real-world situations adversity predictions are based on

sensory samples collected through active exploration (Henderson, 2003; Itti and Koch, 2001). A

central part of active exploration are eye-movements which can rapidly determine what information

is available in a scene for recognizing adversity (Dowd et al., 2016). Yet, it is not known in how far

representations of adversity interact with active exploration during viewing of complex visual infor-

mation. Here we investigated this question by comparing exploration strategies during viewing of

faces before and after aversive learning.

The approach to study exploration of faces is motivated by the fact that faces are characterized

by subtle idiosyncratic differences on the stimulus continuum. Humans explore such complex stimuli

serially (Itti and Koch, 2001; Onat et al., 2014; Parkhurst et al., 2002; Tatler et al., 2005) and rely

heavily on their overt attentional resources due to well documented perceptual bottleneck for
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forming detailed representations of complex scenes (Ahissar and Hochstein, 2004; Hochstein and

Ahissar, 2002; Treisman and Gelade, 1980). Therefore, eye-movement recordings can mirror strat-

egies used for foraging information from different faces, which in turn informs us on the way how

aversive learning changes the exploration of relevant stimuli (Dowd et al., 2016; Henderson and

Hayes, 2018; König et al., 2016).

This way, face viewing behavior offers an ideal test bed for investigating changes in active explo-

ration strategies through learning. First, active viewing of faces is a key ability during daily social

interactions (Cerf et al., 2009; End and Gamer, 2017) where detecting minute differences in the

configuration of facial elements is crucial for inferring the identity or emotional content of a face

(Adolphs, 2008; Jack et al., 2014; Peterson and Eckstein, 2012). For humans, it is therefore a nat-

ural choice of stimuli to investigate how exploration strategies change with learning. Second, the

universal spatial configuration of facial elements makes it easily possible to generate faces with sub-

tle differences that globally form a perceptual similarity continuum (Dunsmoor et al., 2011;

Onat and Büchel, 2015). These key features make it possible to use a task that mimics a real-world

exploration context, and therefore offers the possibility to probe changes in exploration strategies

with aversive learning along a parametrically controlled stimulus continuum.

We investigated fear generalization using a two-dimensional perceptual space (Figure 1A, Fig-

ure 1—figure supplement 1) with faces arranged along a circle within this space (Butter, 1963;

Onat and Büchel, 2015). By pairing one item with an aversive outcome and keeping the most dis-

similar one neutral (opposite face separated by 180 degrees), we introduced an adversity gradient

defined exclusively along one perceptual dimension. The perceptual space can therefore be decom-

posed into threat-specific and unspecific components (Figure 1B, middle panel), where the latter

models perceptual similarity independent of adversity. This set of stimuli made it possible to dissoci-

ate independent contributions of perceptual factors related to similarity as such, from those relevant

for the prediction of threat.

We based our main analysis on multivariate eye-movement patterns and introduced a similarity-

based multivariate method that we termed fixation-pattern similarity analysis (FPSA). Instead of

focusing on how often arbitrary parts of a face are fixated (Hessels et al., 2016; Malcolm et al.,

2008; Schurgin et al., 2014) as in traditional fixation count-based approaches, FPSA uses simulta-

neously all available fixations to derive a similarity metric, similar to representation similarity analysis

in brain imaging (Kriegeskorte, 2008). This way, it respects the strong individuality of eye-move-

ments, that is idiosyncrasy (Coutrot et al., 2016; Kanan et al., 2015; Mehoudar et al., 2014;

Walker-Smith et al., 1977). Another benefit of this approach is that the circular organization of our

stimuli allowed us to formulate hypotheses on how the similarity relationships between exploration

patterns could change: More explicitly, we could model changes along the adversity-specific direc-

tion, while controlling for changes along the adversity independent direction defined purely by per-

ceptual differences. This way, the latter, unspecific dimension served as within-subject control

condition for changes independent from aversive learning. We hypothesized three possible scenar-

ios on how aversive learning might change exploration along the two-dimensional stimulus space

(Figure 1B–E, middle panels).

First, the Perceptual Expansion hypothesis predicts that exploration patterns should enable evalu-

ation of perceptual similarity with the CS+ face. This would result in exploration strategies that

strongly mirror the physical similarity relationships between faces (Figure 1C) and lead potentially to

globally increased dissimilarity following learning. As similarity information varies both on the specific

as well as the unspecific dimensions, the Perceptual Expansion hypothesis predicts a stronger, but

more importantly equal contribution of the underlying specific and unspecific components

(Figure 1C, middle panel).

Second, it is possible that aversive learning induces changes in eye-movements specifically along

the adversity specific dimension, in a way that exploration strategies would be tailored to target

locations that are discriminative of the CS+ and CS– faces. This would lead to exploration patterns

becoming more similar for faces sharing similar features with the CS+ and CS– faces, while simulta-

neously predicting an increased dissimilarity between these two sets of exploration patterns

(Figure 1D). Increased similarity only along the adversity-relevant dimension would then result in an

ellipsoid representation of similarity relationships. Therefore, the Adversity Gradient hypothesis

would lead to an increase of the adversity specific component without influencing the unspecific

component (Figure 1D, middle panel).
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Figure 1. Fixation-pattern similarity analysis. (A) eight exploration patterns (colored frames) from a representative

individual overlaid on eight face stimuli (1 to 8) calibrated to span a circular similarity continuum across gender

and identity dimensions. A pair of maximally dissimilar faces was randomly selected as CS+ (red) and CS– (cyan;

see color wheel). Similarity between the eight faces was calibrated to have a perfect circular organization with

lowest dissimilarity (blue) between neighbors, and highest dissimilarity (yellow) for opposing pairs. FPSA

summarizes the similarity relationship between the eight exploration patterns as a symmetric 8 � 8 matrix (bottom

right panel). 4th and 8th columns (and rows) are aligned with the CS+ and CS–, respectively. (B–E)

Multidimensional scaling representation of four theoretical similarity relationships investigated with FPSA (top

row). Each colored node represents one exploration pattern (red: CS+; cyan: CS–), where internode distances are

proportional their dissimilarity (bottom row). Shaded nodes in (C–E) depict the pre-learning state in (B).

Dissimilarity matrices are further decomposed onto basic similarity components (middle row) centered either on

Figure 1 continued on next page
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Third, exploration strategies could change so that viewing patterns are tailored to quickly identify

the CS+. A new sensorimotor strategy exclusively for the adversity predicting face would lead to a

localized change in the similarity relationships around the adversity-predicting CS+ face (Figure 1E).

Thus, the hypothesis of CS+ Attraction predicts an increased similarity of exploration patterns for

faces closely neighboring the CS+ face, decaying proportionally with increasing dissimilarity to the

CS+ face. This strategy is not exclusive and does not directly map to the specific or unspecific

components.

In sum, using FPSA we analyzed the similarity relationships between exploration patterns during

viewing of faces. We provide first evidence that exploration patterns during viewing of faces can be

adaptively tailored during generalization following aversive learning. First, aversive learning changed

exploration patterns in subtle ways that were not captured by univariate fixation counts, for example

in predefined regions of interest. Second, before learning, exploration patterns showed an approxi-

mately circular similarity structure that followed the physical stimulus similarity structure. Third, after

learning the similarity structure changed specifically along the adversity gradient, indicating that CS

+ and CS– exploration patterns were modified, while the similarity between other faces remained

largely unchanged.

Results
We created eight face stimuli that were organized along a circular similarity continuum characterized

by subtle physical differences in facial elements across two dimensions (gender and identity; see Fig-

ure 1—figure supplement 1 for stimuli). We calibrated the degree of similarity between faces using

a simple model of the primary visual cortex known to mirror human similarity judgments (Yue et al.,

2012) (see Figure 1—figure supplement 2 for calibration). The physical similarity relationship

between all pair-wise faces conformed with a circular organization (Figure 1A, top right panel), such

that dissimilarity varied with angular difference between faces (lowest for left and right neighbors

and highest for opposing faces) with equidistant angular steps. Participants (n = 74) freely viewed

these faces before and after an aversive learning procedure (Figure 2A) while we measured their

eye-movements. During the conditioning phase, one of the eight faces was introduced as the CS+,

being partially reinforced with an aversive outcome (UCS, mild electric shock in ~30% trials). The CS–

was the face most dissimilar to the CS+ (separated by 180˚) and was not reinforced. During the sub-

sequent generalization phase, all faces were presented again and the CS+ continued to be partially

reinforced to prevent extinction of the previously learnt association. These reinforced trials were

excluded from the analysis. To ensure comparable arousal states between the baseline and generali-

zation phases, we administered UCSs also during the baseline period, however they were fully pre-

dictable as their occurrence was indicated by a shock symbol (Figure 2A). Furthermore, we inserted

null trials during all phases (i.e. trials without face presentation but otherwise exactly the same) in

order to obtain reliable baseline levels for skin-conductance responses.

Figure 1 continued

the CS+/CS– (specific component) or +90˚/–90˚ faces (unspecific component). A third component shown in (E) is

uniquely centered on the CS+ face (Gaussian component). In (B), equal contribution of basic components results

in circularly similar exploration patterns. In (C), a stronger equal contribution results in a better global separation

of all exploration patterns, that is expansion (denoted by radial arrows). In (D), a stronger contribution of the

specific component results in a biased separation of exploration patterns specifically along the adversity gradient

defined between the CS+ and CS– nodes. In (E), the Gaussian component centered on the CS+ face can

specifically decrease the dissimilarity of exploration patterns for faces similar to the CS+, resulting in circularly

shifted nodes (circular arrows) while preserving the global circularity of the similarity relationships.

DOI: https://doi.org/10.7554/eLife.44111.002

The following figure supplements are available for figure 1:

Figure supplement 1. Face stimuli.

DOI: https://doi.org/10.7554/eLife.44111.003

Figure supplement 2. Calibration of faces using a simple V1 model tuned to human psychophysics.

DOI: https://doi.org/10.7554/eLife.44111.004
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Fear tuning profiles in subjective ratings and autonomic activity
As expected, the effect of learning was mirrored both in autonomous nervous system activity as well

as subjective ratings of UCS expectancy (Figure 2B). During the conditioning phase, skin-conduc-

tance responses (SCR) were on average 3.8 times higher for CS+ than CS– (Figure 2B, middle panel

bottom row, paired t-test, p<0.001) indicating that the CS+ face gained a stronger aversive quality

already during the conditioning phase. In line with this view, expectancy ratings gathered right at

the end of the conditioning phase were also highest for the CS+ face (Figure 2B, middle panel top

row).

Figure 2. Aversive learning procedure and univariate generalization profiles. (A) On every trial, one randomly

selected face was presented for 1.5 s preceded by a fixation cross placed outside of the face on either the left or

right side. In null trials, no face was shown (gray frame) resulting in a SOA of ~6 or~12 s. For each volunteer, a pair

of most dissimilar faces was randomly selected as the CS+ (red) and CS– (cyan, see color wheel). During baseline,

UCSs (shock sign) were completely predictable by the presentation of a triangular signboard. During conditioning

and generalization, the CS+ face was paired with an aversive outcome in ~30% of trials allowing recording of

responses from non-reinforced CS+ trials. (B) Group-level fear-tuning based on subjective ratings of UCS

expectancy (n = 74) and SCR (n = 63) for different phases. Responses are aligned to the CS+ of each volunteer

separately (errorbars: SEM across subjects). Black horizontal lines or curves indicate the winning model (p<0.001,

log-likelihood ratio test), that is horizontal null model or the Gaussian model. Gray shaded areas in SCR depict

response amplitudes evoked by null trials (mean and 95% CI). Scatter plots show amplitude parameter of Gaussian

fits (denoted by alpha symbol) for each volunteer. Horizontal lines within the scatterplots depict group-level

means, asterisks indicate significant differences in a (compared to baseline phase, paired t-test, ***: p<0.001).

DOI: https://doi.org/10.7554/eLife.44111.005
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As in previous studies, we characterized fear generalization by computing fear tuning profiles

based on subjective ratings and SCR. In both recording modalities, responses decayed with increas-

ing dissimilarity to the CS+ face and reached minimal values for CS–. We modeled these with a

Gaussian function centered on the CS+ face. At the group-level, model comparison favored the flat

null model over the Gaussian in both recording modalities before learning (p=0.44 for SCR, p=0.17

for ratings, log-likelihood ratio test; black horizontal lines in Figure 2B). However, following the con-

ditioning phase the Gaussian model fitted the data significantly better (comparison to flat null

model, p<0.001 for SCR and subjective ratings, log-likelihood ratio test). Fear-tuning profiles at the

single-subject level were in agreement with the overall group-level picture. As Gaussian generaliza-

tion curves on the group level can equally emerge from binary generalization profiles, for example a

boxcar shape spanning the CS+ and neighbors of different degrees, we tested whether a Gaussian

would explain single-subject tunings better than a binary profile (optimized with regards to ampli-

tude, width and offset). The Gaussian explained both ratings and SCR profiles of single subjects bet-

ter than the binary function (AICGauss <AICBin, Ratings: 72/74 and 68/74 subjects in conditioning

(median DAIC = �3.6) and generalization phase (median DAIC = �3.6), SCR: 58/63 subjects in the

generalization phase (median DAIC = �3.9). Therefore, we summarized fear-tuning profiles of indi-

vidual participants with the amplitude parameter of the fitted Gaussian function, which characterizes

the modulation depth of fear tuning (i.e. the strength of fear tuning) after accounting for baseline

shifts. The average amplitude parameter following the conditioning phase was significantly bigger

than the baseline phase in both recording modalities (paired t-test, p<0.001, see Figure 2B). In sum-

mary, univariate fear-tuning in SCR and subjective ratings confirmed that aversive learning was suc-

cessfully established and transferred towards other perceptually similar stimuli.

Multivariate fear tuning profiles in eye movements
We analyzed exploration behavior using fixation density maps (FDMs). These are two-dimensional

histograms of fixation counts across space, smoothed and normalized to have unit sum (see

Materials and methods section for details). When computed separately for different faces, FDMs

indicate how much different parts of a given face receive attentional resources. For each volunteer,

we computed a dissimilarity matrix that summarized all pairwise comparisons of FDMs (using 1 -

Pearson correlation as a pattern distance measure) and averaged these after separately aligning

them to each volunteer’s custom CS+ face (shown always at the 4th column and row in Figure 3A).

Furthermore, in order to gather an intuitive understanding of learning-induced changes in the simi-

larity geometry, we used multidimensional scaling (jointly computed on the 16 � 16 matrices, that is

all pairwise combinations of 8 conditions from baseline and generalization phase). Multidimensional

scaling (MDS) summarizes similarity matrices by transforming observed dissimilarities as closely as

possible onto distances between different nodes (Figure 3B) representing different viewing patterns

in 2D, therefore making it easily understandable at a descriptive level.

Already during the baseline period the dissimilarity matrix was highly structured (Figure 3A). In

agreement with a circular similarity geometry and the MDS depiction, lowest dissimilarity values

(1.05 ± 0.01; M ± SEM) were found between FDMs of neighboring faces (i.e. first off-diagonal),

whereas FDMs for opposing faces separated by 180˚ exhibited significantly higher dissimilarity values

(1.21 ± 0.01; paired t-test, t(73) = 7.41, p<0.001). Using the Perceptual Baseline Model (Figure 1B,

1st column), we investigated the contribution of physical characteristics of the stimulus set to the

observed pre-learning dissimilarity structure. This model uses a theoretically circular similarity matrix

(consisting of equally weighted sums of specific and unspecific components) as a linear predictor

(Figure 1B, theoretical similarity matrix). This model performed significantly better compared to a

null model consisting of a constant similarity for all pairwise FDMs comparisons (for Perceptual

Model adjusted r2 = 0.09; log-likelihood-ratio test for the alternative null model: p<10�5;

BICNullModel = �96.1, BICPerceptual = �244.7; see Supplementary file 1A for the results of model fit-

ting). We additionally fitted the Perceptual Model for every volunteer separately (Figure 3C, first

white bar). Model parameters at the aggregate level were significantly different from zero

(Figure 3C; w Circle = 0.09 ± 0.01, M ± SEM; t(73) = 7.99, p<0.001, BICPerceptual = �3.5 ± 1.8,

M ± SEM) indicating that exploration strategies prior to learning mirrored the physical similarity

structure of the stimulus set. This provides evidence that fixation selection strategies are, at least to

some extent, guided by physical stimulus properties during viewing of neutral faces.
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Figure 3. Fixation-pattern similarity analysis. (A) Dissimilarity matrices of exploration patterns for baseline (left

panel) and generalization phases (right panel). Fourth and eight columns (and rows) are aligned with each

volunteer’s CS+ and CS– faces, respectively. Asterisks on the upper diagonal denote significant differences from

the corresponding element in baseline. (B) Two-dimensional multidimensional scaling method used for

visualization of the 16 � 16 dissimilarity matrix (not shown) comprising baseline and generalization phases.

Distances between nodes are proportional to the dissimilarity between corresponding FDMs (open circles:

baseline; filled circles: generalization phase; same color scheme as in Figure 1). (C) Bar plots (M ± SEM) depict

predictor weights estimated for single-participants before (white bars) and after (gray bars) aversive learning (Left:

Perceptual Expansion Model; Middle: Adversity Gradient Model; Right: CS+ Attraction Model). wcircle: weight for

the circular component, which is the sum of equally weighted specific and unspecific components; wspecific/

wunspecific: weights for specific and unspecific components; wGauss: weight for Gaussian component centered

uniquely on the CS+. (**: p<0.01; ***: p<0.001, paired t-test).

DOI: https://doi.org/10.7554/eLife.44111.006

The following figure supplements are available for figure 3:

Figure supplement 1. Correlation between FPSA anisotropy and tuning strength.

DOI: https://doi.org/10.7554/eLife.44111.007

Figure supplement 2. Model parameters for Adversity Gradient Model across subsequent test runs.

DOI: https://doi.org/10.7554/eLife.44111.008

Figure supplement 3. Gaussian Mixture Models on individual anisotropy effects.

DOI: https://doi.org/10.7554/eLife.44111.009
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We observed significant changes between baseline and generalization dissimilarity values in an

element-wise comparison (Figure 3A, indicated by asterisks). This provides evidence for learning-

induced changes in the similarity relationships. Following learning, the circular Perceptual Model was

again significant (adjusted r2 = 0.35; p<0.001, log-likelihood ratio test), but now performed better

compared to the baseline phase (BICPerceptual = �244.7 for the baseline vs. BICPerceptual = �1697.4

for the generalization phase; see Supplementary file 1B for model fitting results). Critically, we

found a significant increase in the model parameter from baseline to generalization phase (w Circle =

0.13 ± 0.01; paired t-test, t(73) = 4.03, p<0.001; Figure 3C compare two leftmost bars) suggesting a

global increase in dissimilarity between FDMs. Overall, these results are compatible with the view

that aversive learning led to a better separation of exploration patterns globally, in agreement with

the Perceptual Expansion Model (Figure 1C).

However, as already visible in the multi-dimensional scaling method (Figure 3B), the separation

between exploration patterns occurred mainly along the adversity gradient defined by the CS+ and

CS– faces, whereas the separation along the orthogonal unspecific direction did not exhibit any

noticeable changes. Regarding individual dissimilarity values, this effect was subtle, with an increase

of average dissimilarity on the specific dimension from 1.21 ± 0.02 in baseline to 1.27 ± 0.02 in the

generalization phase (t(73) = 2.54, p<0.05, paired t-test),as compared to the orthogonal dimension

(1.21 ± 0.03 vs. 1.20 ± 0.02, t(73) = � 0.34, p = 0.73, paired t-test,). Accordingly, in the generaliza-

tion phase, dissimilarity along the specific dimension was bigger than along the unspecific dimension

(1.27 ± 0.03 vs. 1.20 ± 0.02, t(73) = 2.76, p<0.01, paired t-test). We thus extended the circular Per-

ceptual Model to capture independent variance along the two orthogonal directions using the

Adversity Gradient Model (Figure 1D). Model comparison indicated that the more flexible model

performed better than the simpler Perceptual Expansion Model (BICPerceptual = �1697.4 vs.

BICAdversity. = �1957.5; adjusted r2 = 0.48 vs. 0.35; see Supplementary file 1C–D for fitting results

with the Adversity Gradient model on baseline and generalization phases, respectively). A two-factor

(experimental phase �predictor type) repeated measures ANOVA showed a significant main effect

of experimental phase (i.e. before vs. after conditioning, F(1, 73) = 6.29, p<0.001), as well as a signif-

icant interaction of predictor (specific vs. unspecific) with experimental phase F(1,73) = 8.53,

p<0.005). Accordingly, post-hoc analyses showed that while the unspecific component did not

change from baseline to generalization phase (t(73) = 0.75, p = 0.45), the specific component gained

stronger contribution (t(73) = 4.64, p<0.001), and these learning-induced changes were significantly

larger in the specific as compared to unspecific component (t(73) = 2.92, p<0.005, paired t-test).

This observation provides evidence that increased overall dissimilarity was driven by changes in the

scanning behavior specifically along the task-relevant adversity direction. We will refer to this differ-

ence in dissimilarity (wspecific - wunspecific) as anisotropy. To explore whether the effect was stable

across individual subjects, we analyzed the prevalence of the effect, that is in how many subjects the

anisotropy increased from baseline (base) to generalization (gen) phase (wspecific_gen-wunspecific_gen >

wspecific_base-wunspecific_base). 48 subjects out of 74 (65%) showed stronger anisotropy of scanning pat-

terns after learning. Next, we studied whether explicit learning of shock contingencies predicted this

increase in anisotropy and found that within the subjects whose shock expectancy ratings indicated

successful conditioning (CS+>CS-, nlearner = 61), the prevalence was slightly higher (nanisotropy = 42,

i.e. 69%).

Given that only a portion of subjects showed the anisotropy effect, we tested whether this could

be interpreted as evidence for model heterogeneity in the population. We thus employed a Gauss-

ian mixture model analysis to fit the distribution of observed anisotropy values. We found that no

Gaussian mixture model of more than one component outperformed the single component model

(Figure 3—figure supplement 3). While the one and two component model were comparable in

their BIC, the additional Gaussian component of the more complex model covered only a very small

mixing proportion at the lower end of the distribution (4%, Figure 3—figure supplement 3b). Thus,

we conclude that the present data does not provide enough evidence for the presence of multiple

subpopulations.

The remodeling of the similarity geometry along the adversity gradient can also be accompanied

by exploration strategies that are specifically tailored for the adversity predicting face but not for

CS– resulting in localized changes only around the CS+ face. We subjected this view to model com-

parison by augmenting the previous model with a similarity component that consisted of a two-

dimensional Gaussian centered on the CS+ face. Positive contribution of this predictor would lead
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to more similar exploration patterns specifically around the CS+ (Figure 1E). It can thus capture

changes in similarity relationships that are specific to the CS+ face. The model comparison proce-

dure favored the simpler Adversity Gradient model over the augmented CS+ Attraction Model

(BICAdversity. = �1957.5 vs. BICCS+Attraction. = �1923.6 during the generalization phase; adjusted

r2 = 0.48; see Supplementary file 1E–F for fitting results with CS+ Attraction Model in baseline and

generalization phases, respectively). Hence the increase in the number of predictors did not result in

a significant reduction in explained variance. In line with this result, the parameter estimates for the

CS+ centered, Gaussian component were not significantly different from zero neither in baseline or

generalization phases (wGaussian = �0.009 ± 0.034 in baseline, t(73) = �0.27, p=0.78;

wGaussian = 0.02 ± 0.02 in generalization, t(73) = 0.74, p=0.46; Figure 3C). Also, pair-wise differences

between parameter estimates did not reach significance (t(73) = 0.72, p=0.47). We therefore con-

clude that further extensions of the Adversity Gradient model to include components for adversity-

specific changes around the CS+, did not result in a better understanding of the adversity-induced

changes in the similarity geometry of exploration strategies.

Due to our conditioning procedure, subjects explored CS+ and CS- faces more often than to the

other faces. Therefore, the increase found in the specific component could be explained by repeated

exposure of these faces. We tested this view with two different approaches. First, we evaluated

whether the observed anisotropy (wspecific - wunspecific) in the similarity geometry was relevant for the

aversive quality associated with the CS+ face. We hypothesized that stronger anisotropy could pre-

dict stronger aversive learning, as measured with the modulation depth of fear-tuning profiles com-

ing from subjective ratings and skin-conductance responses. We found weak, but significant

evidence for an association with an increased tuning strength in the ratings (r = 0.25, p=0.03), which

was only marginally present for SCR (r = 0.23, p=0.07) (Figure 3—figure supplement 1). Second, if

the increase in the specific component from baseline to test was merely driven by the exposure dur-

ing the conditioning phase, the unspecific component would also increase when subjects were

repeatedly exposed to the stimuli of the unspecific component over the three runs of the generaliza-

tion phase. However, the weights of the unspecific component did not increase when analyzed for

separate runs, but if anything showed a trend to decrease with further exposure (Figure 3—figure

supplement 2). Both findings suggest that separation of exploration patterns along the adversity

gradient was related to aversive learning and not to exposure differences.

Spatial changes in exploration strategy
While the FPSA detected increased similarity in eye-movement patterns dominantly along the spe-

cific component, it aggregates information across all spatial units and does therefore not give infor-

mation where and how subjects sample information differently after aversive learning. We thus

sought to complement our FPSA analysis in a model-free way and to further elucidate how spatial

exploration strategies changed. To this end, we aimed to test whether viewing behavior was predic-

tive of whether subjects observed CS+ or CS- stimuli (or a pair of faces along the orthogonal dimen-

sion). We trained support vector machines (SVM, Figure 4A) to decode CS+ from CS- trials and

�90˚ and +90˚ trials in each subject and tested whether classification accuracy differed between

faces along the adversity gradient and orthogonal to the adversity gradient. This analysis can be

linked to the found anisotropy of eye-movements, as the anisotropy suggests the classification accu-

racy along the specific dimension to exceed accuracy along the unspecific dimension due to stronger

dissimilarities.

SVMs were able to decode CS+ vs CS- trials with an accuracy of 56% in the generalization phase

compared to 50% in the baseline phase (Figure 4B). The unspecific direction (�90˚ vs 90˚) could be

decoded with an accuracy of 54% during the generalization phase and 52% during the baseline

phase. A repeated measures ANOVA showed a significant interaction of generalization phase and

component (F(72) = 5.4, p=0.02) and a main effect of phase (F(73) = 16.8, p=0.0001). These effects

are compatible with FPSA results and reinforce the notion that changes were subtle. We also tested

whether training SVMs across subjects instead of within subjects would reproduce this effect. Here

the interaction between generalization phase and component was not significant (F(73)=0.43,

p=0.51), suggesting that changes in viewing behavior are idiosyncratic and not necessarily compara-

ble across subjects. Compatible with this, a traditional ROI based count analysis also showed no

results (see below).
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Next, we were interested to see which locations in a face were informative for the classification

process. To this aim, we extracted hyperplanes from each subjects’ classification, converted them to

activation patterns (Haufe et al., 2014) and averaged activation patterns of subjects with the same

CS+ face. Figure 4 shows these activation patterns superimposed on different physical faces. Quali-

tatively speaking activation patterns were remarkably different across faces. Furthermore, comparing

activation patterns on a CS+/CS- combination with those activation patterns that have the opposite

CS-/CS+ combination (compare top and bottom row in Figure 4C), suggested that these pairs are

to some extent symmetric. In any case, all activation maps showed subtle changes along the eye

region that qualitatively varied with the combination of CS+ and CS- face. Yet, physical differences

between stimuli were not only present in the eye region, but spanned the whole face (Figure 4—

Figure 4. Classification of FDMs using support vector machines. (A) Classification of single trial FDMs using

support vector machines. Before training, single FDMs of CS+ and CS- trials were reduced in their dimensionality

(pixels) by a principal component analysis (PCA), resulting in a new representation in this feature space (red and

cyan dots). A SVM was then trained to decode CS+ from CS- trials by finding a multidimensional hyperplane

(dotted lines) separating CS+ from CS- patterns. The same was repeated for stimuli from the unspecific dimension

(not shown). (B) Accuracy of SVM classification along the specific and unspecific dimension, trained within- subject

for baseline (white) and generalization phase (gray) (M ± SEM, ***: t(73) = 4.8, p<0.001, *: t(73) = 2.1, p<0.05 paired

t-test) (see Source code 1) (C) Activation patterns derived from hyperplanes of classification of CS+ vs CS- trials as

shown in (A). Activation patterns were z-scored and averaged across subjects with the same underlying physical

CS+ facei (ni = [10, 12, 8, 10, 8, 10, 8, 8]), then superimposed on the respective face stimulus (see Source code 1).

DOI: https://doi.org/10.7554/eLife.44111.010

The following figure supplement is available for figure 4:

Figure supplement 1. Physical differences in opposing faces.

DOI: https://doi.org/10.7554/eLife.44111.011
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figure supplement 1). Moreover, these physical differences were also present for decoding along

the orthogonal dimension, for which classification results were lower. Therefore, sampling more dif-

ferently within the eye region could not be explained simply by the physical information they held.

Temporal and spatial unfolding of adversity-specific exploration
While SCRs and subjective ratings provide insights about the aggregate cognitive evaluations of a

given stimulus, eye-movements have the potential to provide information on how these cognitive

evaluations unfold over both spatial and temporal domains. Aiming to explore the changes induced

from aversive learning further with regards to these dimensions, we repeated the FPSA and fitted

the Adversity Gradient Model on data slices from different temporal or spatial windows. For each

temporal or spatial slice, we computed an anisotropy index, corresponding to the difference

between specific and unspecific model parameters (wspecific – wunspecific), and statistically evaluated

the difference between before and after learning. For this analysis, we focused on participants that

were able to correctly identify the CS+ based on their shock expectancy ratings (CS+>CS–, n = 61).

For the temporal analysis, we used a moving window of 500 ms with steps of 50 ms and

(Figure 5A). While the time-course of adversity-specific and unspecific components was not distin-

guishable before learning, they diverged rather early in the subsequent generalization phase. The

difference in anisotropy reached significance first at the time window corresponding to the interval

400–900 ms after stimulus onset (Figure 5A top row, paired t-test, p=0.03). As humans explore

visual scenes serially with fixational eye-movements, the order of fixations (1st fixation, 2nd fixation,

and so on) is another natural metric to evaluate temporal progress (Tatler et al., 2005). The same

analysis indicated that adversity-specific exploration started following the first fixation (note that the

first fixation is the landing fixation on the face following stimulus onset; Figure 5A) and stayed con-

stant during the stimulus presentation. Overall, the temporal FPSA indicated that humans started to

forage for adversity-relevant information early, as soon as after the first landing fixation.

We ran spatial FPSA at localized portions of the FDMs in a similar manner to a searchlight analysis

in brain imaging (Kriegeskorte et al., 2007). For a given spatial portion (defined by a square win-

dow of 30 pixels,~1 visual degree), we fitted the Adversity Gradient Model, and assigned specific

and unspecific weights to the center position of the searchlight (Figure 5B). The map that is

obtained by repeating this analysis at all spatial locations provides an indication of the facial loca-

tions that are explored either with a specific or unspecific exploration strategy. We found that both

before and after learning, specific and unspecific components were strongly localized around the

eye region (Figure 5B). We tested the difference in anisotropy between the baseline and generaliza-

tion phase within the three commonly used regions of interest at different facial elements (eyes,

nose and mouth; ROIs shown in Figure 5C) (Hessels et al., 2016; Malcolm et al., 2008;

Schurgin et al., 2014; Walker-Smith et al., 1977). We found this interaction to be significant only in

the eye region (Figure 5C; paired t-test uncorrected, p<0.024). This result could be explained by an

increased number of fixations around the eye region following learning and potentially result in a

stronger signal-to-noise ratio for parameter estimation (Diedrichsen et al., 2011). Indeed, the eye

region in this study accounted for ~72% of all fixations on the face . However, the increased anisot-

ropy during generalization occurred despite a decrease of ~5% in fixation density around the same

region (top row in Figure 5—figure supplement 1). This precludes the trivial explanation in terms of

increased saliency of the eye region as a potential explanation for differences in similarity compo-

nents. Overall, searchlight FPSA indicated that exploration strategies were specifically tailored to

forage for adversity-specific information around the eye region, which corroborated the findings

obtained by the SVM analysis described above.

Comparison of FPSA to common eye-movement features and ROI-
based analyses
As our model-based FPSA as well as machine-learning approaches are rather complex analyses, we

aimed to compare these methods to classical approaches used for the analysis of eye movements. In

an explorative approach, we tested whether aversive learning induced changes in classical measures

of viewing behavior, such as changes in the number of fixations, their duration, saccade length and

the entropy of individual FDMs for all eight faces. To be able to compare these features across sub-

jects, they were z-scored within phase and subject, then averaged across subjects to check for
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commonalities in these individual profiles.

Descriptive plots are shown in Figure 5—figure

supplement 2. We found that the number of fixa-

tions, the average saccade distance and entropy

showed significant differences between CS+ and

CS-, all of which were higher for the CS+. The

only measure exhibiting a significant generaliza-

tion profile, that is bell-shaped tuning curve, after

aversive learning was the saccade length

(p<0.001, log-Likelihood Ratio Test of Gaussian

against flat null-model). While simple outcome

measures such as fixation and saccade character-

istics changed over the course of the experiment,

their univariate nature prevents us from correct-

ing for changes not induced by aversive learning

- that is developed along the unspecific compo-

nent. To control for this and to connect the find-

ings to the anisotropy found by FPSA, we set up

a linear model testing whether the anisotropy in

these measures (i.e. specific – unspecific) could

predict the anisotropy of eye movements in the

subjects. However, none of the features was able

to robustly predict anisotropy (F(4,69) = 0.075,

p=0.55, R2
adjusted = -0.01).

We also compared FPSA on eye movement

patterns to common ROI-based analyses on fixa-

tion counts. We computed changes in fixation

counts in the three common regions of face stim-

uli, that is eyes, nose and mouth (same as

depicted Figure 5C). If conditioning before the

generalization phase lead to an increased

saliency of facial features that are diagnostic of

the CS+ face, one would expect a non-flat fear

tuning in the number of fixations towards these

facial features, which would receive more fixa-

tions with increasing similarity to the CS+ face. In

line with previous reports (Walker-Smith et al.,

1977), eyes together with the nose region were

the most salient locations across the baseline and

generalization phases, and attracted ~91% of all

fixation density, whereas the mouth region had

only a marginal contribution with ~3.5%. Investi-

gating changes from baseline to generalization

phase, we found that aversive learning increased

the number of fixations directed at the nose

(+3.6%) and mouth (+0.6%) regions at the

expense of the eye region (–5.1%). Most impor-

tantly, model comparison on fixation density

favored the flat null model for all regions even at

low statistical thresholds in all facial elements

across both baseline and generalization phases

(p>0.05, log-likelihood test; Figure 5—figure

supplement 1). While a weak tuning was appar-

ent in the mouth region during generalization,

this did not reach significance (p>0.1). Therefore,

our observations at the group-level were limited

Figure 5. Spatio-temporal fixation-pattern similarity

analysis. (A) Temporal development of adversity-

specific and unspecific exploration strategies (n = 61).

Parameters of the adversity categorization model (red:

specific; blue: unspecific) are computed using a moving

time window of 500 ms at intervals of 50 ms for

baseline (left panels) and generalization phase (right

panel). Numbers on the x-axis denote the center of the

moving window. Second row depicts the same analysis

with fixation points sorted by rank. Asterisks indicate

time points with statistically significant interaction

testing for difference in anisotropy (wspecific – wunspecific)

between test vs. baseline (*: p<0.05; Shaded area:

SEM) (B) Four maps resulting from the searchlight-FPSA

on FDMs from before and after conditioning (left vs.

right columns) and for unspecific and specific (top vs.

bottom rows) model parameters overlaid on an

Figure 5 continued on next page
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to unspecific changes in fixation density across

phases, that were independent of the adversity

gradient introduced through conditioning.

Discussion
The present work tested how aversive learning

changed the exploration of faces following

aversive learning. We used a stimulus contin-

uum that was defined by perceptual similarity,

as well as adversity-related information as two

independent perceptual factors. As an exten-

sion of similarity-based multivariate pattern

analyses used to investigate representational

content of neuronal activity in fMRI (Kriege-

skorte, 2008) and MEG/EEG (Cichy et al.,

2014; Kietzmann et al., 2017), we introduced

FPSA to characterize learning-induced changes

in eye-movement behavior during free viewing of faces. As expected, before aversive learning explo-

ration patterns mirrored the inherent circularity of stimulus similarity. This is compatible with the

view that the exploration of neutral faces in our experimental settings is, at least to some extent,

guided by physical characteristics, in contrast to a completely holistic viewing strategy

(Peterson and Eckstein, 2012). Aversive learning led to a specific increase in dissimilarity along the

direction of the induced adversity gradient. This adversity-specific exploration strategy appeared

early, as soon as the landing fixation, and lasted continuously for the duration of stimulus

presentation.

It is an ongoing debate, what kind of information drives generalization after aversive learning.

According to one prominent view, the perceptual model, the degree to which a novel stimulus is

considered as harmful is directly related to the degree of overlap between shared sensory features

with a previously learnt harmful stimulus. An alternative view proposes that fear generalization is an

active cognitive act (Shepard, 1987), related specifically to the prediction of potential threat in

uncertain situations (Onat and Büchel, 2015). According to the threat-prediction model, perceptual

factors can contribute to fear generalization, but only to the extent they are predictive of harmful

events (Lashley and Wade, 1946; Shepard, 1987; Tenenbaum and Griffiths, 2001;

Baddeley et al., 2007; Soto et al., 2014). Yet, in the majority of previous studies, perceptual similar-

ity between the generalization and learning samples has been explicitly used as a cue for signaling

the threat. As a result, threat-prediction has commonly been confounded by perceptual similarity,

making it impossible to dissociate their independent contributions. The finding that fixation strate-

gies change incrementally along the dimension that is predictive of threat, in our case captured by

the anisotropy of specific vs unspecific components, offers support for the threat-prediction model.

Still, there are at least two different scenarios that are compatible with a selective separation of

exploration patterns for the CS+ and CS– faces (Figure 6). This regards the way how learning poten-

tiates sensory features as being diagnostic for the prediction of harmful outcomes, thereby making

them target locations for attentional allocation. In the first scenario, aversive learning potentiates

combinations of visual features that are specific to the harm-predicting item, namely the CS+ face

identity (Figure 6A, square box). In an alternative view, aversive learning consists of recovering the

vector of features that defines the adversity gradient (Figure 6B, black arrow), leading to an

increased saliency for discriminative features that separate best the harm- and safety-predicting pro-

totypes. This feature vector could overlap with categorical knowledge that is either naturally present

(such as gender, ethnicity or emotional expression), or learned with experience (Dunsmoor and Mur-

phy, 2015; Kietzmann and König, 2010; Qu et al., 2016). While both scenarios lead to an

increased separation between the CS+ and CS– poles, as observed in the present study, they have

divergent predictions when tested with stimuli organized in three concentric circles (Figure 6B).

Potentiation of identity-specific representations would lead faces that are similar to the CS+ on outer

and inner circles to be explored similarly, resulting in a shrinkage of the similarity geometry around

the CS+ face and thereby leading to a shift in the center of ellipses (Figure 6B, right panel). On the

Figure 5 continued

average face. The map is masked to contain 90% of all

fixation density. (C) Difference of anisoptropy between

before and after aversive learning (generalization –

baseline) for three different ROIs (*: p<0.01, paired

t-test).

DOI: https://doi.org/10.7554/eLife.44111.012

The following figure supplements are available for

figure 5:

Figure supplement 1. Generalization profiles on ROI-

based fixation counts.

DOI: https://doi.org/10.7554/eLife.44111.013

Figure supplement 2. Generalization profiles of

common fixation features.

DOI: https://doi.org/10.7554/eLife.44111.014
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other hand, if learning consists of forming a vec-

tor representation of the adversity gradient, the

separation would add to differences that are

already present, resulting in three concentric

ellipses centered on the same point. Future inves-

tigations can distinguish these two hypotheses by

testing the presence of a shift in the center of

similarity geometry towards the CS+ face or not.

In either case, selective changes in the similar-

ity of exploration patterns are compatible with

theoretical work, that has shown that generaliza-

tion can be viewed as the formation of an internal

model of the environment in order to predict the

occurrence of behaviorally relevant events. She-

pard’s generalization theory conceives generali-

zation as the formation of a binary categorical

zone along a smooth perceptual continuum for

the prediction of harmful or safe events (She-

pard, 1987). In this view, empirical generalization

profiles can be understood as resulting from dif-

ferent stimuli to be registered into either the one

or the other category in a probabilistic manner.

In the same line, Bayesian frameworks refer

explicitly to probability distributions to represent

internal beliefs for the formation of generalization

strategies (Tenenbaum and Griffiths, 2001;

Tenenbaum et al., 2006). These theoretical

works have already pointed to the possibility that

humans can adaptively tailor generalization strat-

egies by appropriately structuring their internal

beliefs even in situations which are not defined

by perceptual factors. Our results provide sup-

porting evidence that these mechanisms have

their validity even in settings that are defined

solely by perceptual factors.

Introduction of the FPSA methodology was

not a choice, but rather a necessity to test the

outlined competing hypotheses. First, eye-move-

ment patterns during free-viewing of faces are

characterized by strong inter-individual variability

(Coutrot et al., 2016; Kanan et al., 2015;

Mehoudar et al., 2014; Walker-Smith et al.,

1977). This was also true in the present study,

where we could train linear classifiers to predict a

volunteer’s identity with an average accuracy

of ~80% based on fixation maps (results not

shown). This is possibly one major reason why we

did not observe adversity-tuned generalization profiles at different facial ROIs (Figure 5—figure

supplement 1). While this inter-individual variability in exploration patterns can dilute the sensitivity

of ROI-based approaches, FPSA exploits consistent changes in the similarity relationships of explora-

tion patterns that were defined within-subject. Second, and equally importantly, using multivariate

responses allowed to assess changes in similarity between all pairs of stimuli. It is not clear how the

same could be achieved with subjective ratings or SCR measurements that are collapsed over time.

For humans, faces are a rich source of information for judging potential outcomes in social inter-

actions. Face stimuli were thus a natural choice to investigate how active exploration strategies

change with learning. Together with the FPSA method, a two dimensional circular continuum of

Figure 6. Predictions on the influence of aversive

learning on sensory-motor foraging strategies. Before

learning, exploration strategies follow the circularity of

the stimulus space (orange circle) in line with their

presumed physical characteristics. (A) In one scenario,

conditioning leads humans to learn the specific feature

values that predict a harmful outcome (black square).

When tested subsequently with stimuli organized as

three concentric stimulus gradients, this scenario

predicts faces that are similar to the CS+ face to be

explored similarly. This results in a global shift in the

center of gravity towards the CS+ face as indicated by

yellow, orange and red horizontal dashes indicating the

center of corresponding ellipses. (B) Humans learn the

feature vector (black arrow) that best separates harmful

and safety predicting stimuli. When tested with the

concentric circular stimulus set, this scenario predicts

three concentric ellipses sharing the same center of

gravity (gray horizontal line).

DOI: https://doi.org/10.7554/eLife.44111.015
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faces allowed us to test different hypotheses that would have not been easily possible using a one-

dimensional perceptual gradient. However, the circular continuum was based on two arbitrary

dimensions (identity and gender). Any prior experiences that participants had in real-life situations

with these dimensions might potentially bias our results. For example, males could generally be per-

ceived more dangerous than females (Navarrete et al., 2009). Therefore, any real-life categories

present in the stimulus set might induce prior expectations about the potential harmfulness that

have to be relearned during the aversive conditioning process. Yet, as the face chosen as CS+ was

carefully counterbalanced across participants, we consider the individual impact of arbitrarily chosen

dimensions to cancel out across subjects.

On the group-level, we found the adversity gradient model to be most compatible with observed

changes in exploration patterns. While the majority of participants was in line with this view, on the

individual level, many participants actually did not exhibit the effect of interest. We tested a possible

heterogeneity of our participant sample, which was not supported by a Gaussian mixture model

analysis. Future investigations should aim to understand whether this type of subtle effects results

from motivational aspects during this type of learning tasks, or a genuine source of noise in the

adversity learning and its interaction with exploration behavior. In any case, the rather small effects

call for replication out of sample, as well as further investigations testing the predictions derived

from our data. The above mentioned design of multiple circles as stimulus material (Figure 6) would

allow to replicate, verify or falsify the predictions made in this study, as three circles would allow

more specific and stronger predictions that could then be tested on an independent sample.

Could our results be explained by an unbalanced exposure to the CS+ and CS– faces that were

presented during the conditioning phase? As participants have seen these faces more often, one

can argue that this could potentially bias eye movement patterns. While we cannot completely

exclude a contribution of exposure, we have shown that anisotropy correlates with indicators of

aversive learning as measured by subjective ratings and, to lesser extent with autonomous activity.

Furthermore, the unspecific component did not increase with exposure over multiple runs, which

would be expected if it was solely driven by exposure. Therefore, we believe that the major drive

that leads to the separation of patterns along the specific axis are due to the affective nature of

learning, rather than occurring merely as a result of exposure.

Eye-movements patterns can provide important insights about what the nervous system tries to

achieve as they summarize the final outcome of complex interactions at the neuronal level

(König et al., 2016). Our results demonstrate that changes induced by aversive generalization

extend beyond autonomous systems or explicit subjective evaluations, but can also affect an entire

sensory-motor loop at the systems level (Dowd et al., 2016). Furthermore, the methodology applied

here can easily be extended to neuronal recordings, where gradients of activity during generalization

have been successfully used to characterize selectivity of aversive representations. Therefore, it will

be highly informative to test different hypotheses we outlined here using neuronal recordings with

representational similarity analysis during the emergence of aversive representations.

Materials and methods

Participants
Participants were 74 naı̈ve healthy males and females (n = 37 each) with normal (or corrected-to-nor-

mal) vision (age = 27 ± 4, M ± SD) and without history of psychiatric or neurological diseases, any

medical condition or use of medication that would alter pain perception. Participants had not partici-

pated in any other study using facial stimuli in combination with aversive learning before. They were

paid 12 Euros per hour for their participation in the experiment and provided written informed con-

sent. All experimental procedures were approved by the Ethics committee of the General Medical

Council Hamburg.

Data sharing
The dataset used in this manuscript has been published as a dataset publication (Wilming et al.,

2017). We publicly provide the stimuli as well as the Matlab (MathWorks, Natick MA) code necessary

for the reproduction of all the results including figures presented in this manuscript (Onat and
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Kampermann, 2017). The code can be used to download the data as well. Code used for linear sup-

port vector machines (see below) is accompanying this publication as Source code 1.

Stimulus preparation and calibration of generalization gradient
Using a two-step procedure, we created a final set of 8 calibrated faces (Figure 1A, see also Fig-

ure 1—figure supplement 1) that were perceptually organized along a circular similarity continuum

based on a model of the primary visual (V1) cortex. Using the FaceGen software (FaceGen Modeller

2.0, Singular Inversion, Ontario Canada) we created two gender-neutral facial identities and mixed

these identities (0%/100% to 100%/0%) while simultaneously changing the gender parameters in

two directions (more male or female). In the first step, we created a total of 160 faces by appropri-

ately mixing the gender and identity parameters to form five concentric circles (see Figure 1—figure

supplement 1) based on FaceGen defined parameter values for gender and identity. Using a simple

model of the primary visual cortex known to closely mirror human perceptual similarity judgments

(Yue et al., 2012), we computed V1 representations for each face after converting them to gray-

scale. The spatial frequency sensitivity of the V1 model was adjusted to match human contrast sensi-

tivity function with bandpass characteristics between 1 and 12 cycles/degree, peaking at six cycles/

degrees (Blakemore and Campbell, 1969). The V1 model consists of pair of Gabor filters in quadra-

ture at five different spatial scales and eight orientations. The activities of these 40 channels were

averaged in order to obtain one single V1 representation per face. We characterized the similarity

relationship between the V1 representations of 160 faces using multidimensional scaling analysis

with two dimensions (Figure 1—figure supplement 2). As expected, while two dimensions

explained a large variance, the improvement with the addition of a third dimension was only minor,

providing thus evidence that the physical properties of the faces were indeed organized along two-

dimensions (stress values for 1D, 2D and 3D resulting from the MDS analysis were 0.42, 0.04, 0.03,

respectively). The transformation between the coordinates of the FaceGen software values (gender

and identity mixing values) and coordinates returned by the MDS analysis allowed us to gather Face-

Gen coordinates that would correspond to a perfect circle in the V1 model. In the second step, we

thus generated eight faces that corresponded to a perfect circle. This procedure ensured that faces

used in this study were organized perfectly along a circular similarity continuum according to a sim-

ple model of primary visual cortex with well-defined bandpass characteristics known to mirror human

similarity judgments. Furthermore, it ensured that dimensions of gender and identity introduced

independent variance on the faces.

To present these stimuli we resized them to 1000 � 1000 pixels (originals: 400 � 400) using bilin-

ear interpolation, and slightly smoothed with a Gaussian kernel of 5 pixels with full-width at half max-

imum of 1.4 pixels to remove any possible pixel artifacts that could potentially lead participants to

identify faces. Faces were then normalized to have equal luminance and root-mean-square contrast.

The gray background was set to the same luminance level ensuring equal brightness throughout of

the experiment. Faces were presented on a 20’ monitor (1600 � 1200 pixels, 60 Hz) using Matlab

R2013a (Mathworks, Natick MA) with psychophysics toolbox (Brainard, 1997; Pelli, 1997). The dis-

tance of the participants’ eyes to the stimulus presentation screen was 50 cm. The center of the

screen was at the same level as the participants’ eyes. Faces spanned horizontally ~17˚ and

vertically ~30˚, aiming to mimic a typical face-to-face social situation. Stimuli are available in

Onat and Kampermann (2017).

Experimental paradigm
The fear conditioning paradigm (similar to Onat and Büchel, 2015) consisted of baseline, condition-

ing and test (or generalization) phases (Figure 2A). Participants were instructed that the delivery of

UCSs during baseline would not be associated with faces, however in the following conditioning and

generalization phases they were instructed that shocks would be delivered after particular faces

have been presented. In all three phases, subjects were instructed to press a button when an odd-

ball stimulus appeared on the screen.

Four equivalent runs with exactly same number of trials were used during baseline (one run) and

generalization phases (three runs) consisting of 120 trials per run (~10 min). Every run started with an

eye-tracker calibration. Between runs participants took a break and continued with the next run in a

self-paced manner. We avoided having more than one run in the baseline period in order not to
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induce fatigue in participants. At each run during the baseline and generalization phases, eight faces

were repeated 11 times, UCS trials occurred five times and one oddball was presented. This con-

sisted of a blurred unrecognizable face, which volunteers were instructed to press a key. We pre-

sented 26 null trials with no face presentation but otherwise the same trial structure (see below

sequence optimization). In order to keep arousal levels comparable to the generalization phase,

UCSs were also delivered during baseline, however they were fully predictable by a shock symbol

therefore avoiding any face to UCS associations.

During the conditioning phase, participants saw only the CS+ and the CS– faces (and null trials).

These consisted of 2 maximally dissimilar faces separated by 180˚ on the circular similarity continuum

and randomly assigned for every participant in a balanced manner. The conditioning was 124 trials

long (~10 min) and CS+ and CS– faces were repeated 25 times. CS+ faces were additionally pre-

sented 11 times with the UCSs, resulting in a reinforcement rate of ~30%. The same reinforcement

ratio was used during the subsequent generalization phase in order to avoid extinction of the learnt

associations.

Stimulus presentation sequence was optimized for the deconvolution of the skin-conductance

responses. This regards the choice of conditions and the duration of interstimulus intervals. Faces

were presented using a rapid-event design with a stimulus onset asynchrony of 6 s and stimulus

duration of 1.5 s. The presentation sequence was optimized using a modified m-sequence with 11

different conditions (Buracas and Boynton, 2002; Liu and Frank, 2004) (eight faces, UCS, oddball,

null). An m-sequence is preferred as it balances all transitions from condition n to m (thus making

the sequence as unpredictable as possible for the participant) while providing an optimal design effi-

ciency (thus making deconvolution of autonomic skin conductance responses more reliable). How-

ever, all conditions in an m-sequences appear equally number of times. Therefore, in order to

achieve the required reinforcement ratio (~30%), we randomly pruned UCS trials and transformed

them to null trials. Similarly, oddball trials were pruned to have an overall rate of ~1%. This resulted

in a total of 26 null trials. While this deteriorated the efficiency of the m-sequence, it was still a good

compromise as the resulting sequence was much more efficient than a random sequence. Resulting

from the intermittent null trials, SAOs were 6 or 12 s approximately exponentially distributed.

Face onsets were preceded by a fixation-cross, which appeared randomly outside of the face

either on the left or right side along an virtual circle (r = 19.6˚, + /- 15˚ above and below the horizon-

tal center of the image). The side of fixation-cross was balanced across conditions to avoid con-

founds that might occur (Arizpe et al., 2015). Therefore, the first fixation consisted of a landing

fixation on the face.

Calibration and delivery of electric stimulation
Mild electric shocks were delivered by a direct current stimulator (Digitimer Constant Current Stimu-

lator, Hertfordshire UK), applied by a concentric electrode (WASP type, Speciality Developments,

Kent UK) that was firmly connected to the back of the right hand and fixated by a rubber glove to

ensure constant contact with the skin. Shocks were trains of 5 ms pulses at 66 Hz, with a total dura-

tion of 100 ms. During the experiment, they were delivered right before the offset of the face stimu-

lus. The intensity of the electric shock applied during the experiment was calibrated for each

participant before the start of the experiment. Participants underwent a QUEST procedure

(Watson and Pelli, 1983) presenting UCSs with varying amplitudes selected by an adaptive algo-

rithm and were required to report whether a given trial was ‘painful’ or ‘not painful’ in a binary fash-

ion using a sliding bar. The QUEST procedure was repeated twice to account for sensitization/

habituation effects, thus obtaining a reliable estimate. Each session consisted of 12 stimuli, starting

at an amplitude of 1mA. The subjective pain threshold was the intensity that participants would rate

as ‘painful’ with a probability of 50%. The amplitude used during the experiment was two times this

threshold value. Before starting the actual experiment, participants were asked to confirm whether

the resulting intensity was bearable. If not then the amplitude was incrementally reduced and the

final amplitude was used for the rest of the experiment.

Eye tracking and fixation density maps
Eye tracking was done using an Eyelink 1000 Desktop Mount system (SR Research, Ontario Canada)

recording the right eye at 1000 Hz. Participants placed their head on a headrest supported under
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the chin and forehead to keep a stable position. Participants underwent a 13 point calibration/valida-

tion procedure at the beginning of each run (1 Baseline run, 1 Conditioning run and 3 runs of Gener-

alization). The average mean-calibration error across all runs was Mean = 0.36˚, Median = 0.34˚,

SD = 0.11. 91% of all runs had a calibration better than or equal to. 5˚.

Fixation events were identified using commonly used parameter definitions (Wilming et al.,

2017) (Eyelink cognitive configuration: saccade velocity threshold = 30˚/second, saccade accelera-

tion threshold = 8000˚ per second2, motion threshold = 0.1˚). Fixation density maps (FDMs) were

computed by spatially smoothing (Gaussian kernel of 1˚ of full width at half maximum) a 2D histo-

gram of fixation locations, and were transformed to probability densities by normalizing to unit sum.

FDMs included the center 500 � 500 pixels, including all facial elements where fixations were mostly

concentrated (~95% of all fixations).

Shock expectancy ratings and autonomic recordings
After baseline, conditioning and generalization phases, participants rated different faces for subjec-

tive shock expectancy by answering the following question, ‘How likely is it to receive a shock for

this face?”. Faces were presented in a random order and rated twice. Subjects answered using a 10

steps scale ranging from ‘very unlikely’ to ‘very likely’ and confirmed by a button press in a self-

paced manner.

Electrodermal activity evoked by individual faces was recorded throughout the three phases.

Reusable Ag/AgCl electrodes filled with isotonic gel were connected to the palm of the subject’s

left hand using adhesive collars, placed in thenar/hypothenar configuration. Skin-conductance

responses were continuously recorded using a Biopac MP100 AD converter and amplifier system at

a sampling rate of 500 Hz. Using the Ledalab toolbox (Benedek and Kaernbach, 2010b;

Benedek and Kaernbach, 2010a), we decomposed the raw data to phasic and tonic response com-

ponents after downsampling it to 100 Hz. Ledalab applies a positively constrained deconvolution

technique in order to obtain phasic responses for each single trial. We averaged single-trial phasic

responses separately for each condition and experimental phase to obtained 21 average values (9 (8

faces + one null condition) from baseline and generalization and 3 (2 faces + one null condition)

from the conditioning phase). CS+ trials with UCS were excluded from this analysis. These values

were first log-transformed (log10(1+SCR)) and subsequently z-scored for every subject separately

(across all conditions and phases), then averaged across subjects. Therefore, negative values indicate

phasic responses that are smaller than the average responses recorded throughout the experiment.

Due to technical problems, SCR data could only be analyzed for n = 63 out of the 74 participants.

Nonlinear modeling and model comparison
We fitted a Gaussian function to generalization profiles obtained from subjective ratings, skin-con-

ductance responses and fixation counts at different ROIs by minimizing the following likelihood term

in (1) following an initial grid-search for parameters

LðDðxÞj�; sÞ ¼ S� log½NðDðxÞ�Gðxj�Þj0; sÞ� (1)

where x represents signed angular distances from a given volunteer’s CS+ face; G(x|�) is a Gaussian

function that was used to model the adversity tuning. It is defined by the parameter vector �, which

codes for the amplitude (difference between peak and base) and width of the resulting generaliza-

tion profile; D(x) represents the observed generalization profile for different angular distances; and

N(x| 0, s) is the normal probability density function with mean zero and standard deviation of s. The

fitting procedure consisted of finding parameters’ values that minimized the sum of negative log-

transformed probability values. Using log-likelihood ratio test we tested whether this model per-

formed better than a null model consisting of a horizontal line, effectively testing the significance of

the additional variance explained by the model. G(x) was in the form

GðxÞ ¼ aexpð�ðx:=sGÞ
2=2Þ (2)

a represents the depth of adversity tuning which corresponds to the difference between peak and

baseline responses, sG controls the width of the tuning.

As Gaussian shaped generalization profiles on the group level can equally result from binary pro-

files on subject level, we compared model fits of individual Gaussian tunings to binary profiles. The
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binary profile was defined by an amplitude parameter a, width and offset (base value) parameter

and can be found at Tuning.binary_freeY at Onat and Kampermann (2017).

When comparing model-fits of these two profiles in individual subjects, we compare the likeli-

hoods L(D(x) | �, s) of Gaussians to binary fits in each subject using the Akaike Information Criterion

(AIC) to penalize for the more complex binary function (dfbin = 3 vs. dfGauss = 2).

Fixation-pattern similarity analysis
FPSA was conducted on single participants. Condition specific FDMs (eight faces per baseline and

generalization phases) were computed by collecting all fixations across trials on a single map which

was then normalized to unit sum. We corrected FDMs by removing the common mean pattern

(done separately for baseline and generalization phases). We used 1 - Pearson correlation as the sim-

ilarity metric. This resulted in a 16 � 16 similarity matrix per subject. Statistical tests for element-wise

comparison of the similarity values were conducted after Fisher transformation of correlation values.

The multidimensional scaling was conducted on the baseline and generalization phases jointly using

the 16 � 16 similarity matrix as input (mdscale in MATLAB). Importantly, as the similarity metric is

extremely sensitive to the signal to noise ratio (Diedrichsen et al., 2011) present in the FDMs, we

took precautions that the number of trials between generalization and baseline phases were exactly

the same in order to avoid differences that would have been caused by different signal to noise

ratios. To account for unequal number of trials during the baseline (11 repetitions) and generaliza-

tion (3 runs x 11 = 33 repetitions) phases, we computed a similarity matrix for each run separately in

the generalization phase. These were later averaged across runs for a given participant. This ensured

that FDMs of the baseline and generalization phases had comparable signal-to-noise ratios, there-

fore not favoring the generalization phase for having more trials.

We generated three different models based on a quadrature decomposition of a circular similarity

matrix. A circular similarity matrix of 8 � 8 can be obtained using the term M˜M, where M is a 8 � 2

matrix in form of [cos(x) sin(x)], and the operator ˜ denotes the outer product. x represents angular

distances from the CS+ face, is equal to 0 for CS+ and p for CS–. Therefore, while cos(x) is symmetric

around the CS+ face, sin(x) is shifted by 90˚. For the Perceptual Baseline and Perceptual Expansion

models (Figure 1B and C) we used M˜M as a predictor together with a constant intercept. For the

Adversity Gradient model depicted in Figure 1D, we used cos(x) ˜cos(x) and sin(x)˜sin(x) to inde-

pendently model ellipsoid expansion along the specific and unspecific directions, respectively.

Together with the intercept this model comprised three predictors. Finally, the CS+ Attraction

model (Figure 1E) was created using the predictors of the tuned exploration model in conjunction

with a two-dimensional Gaussian centered on the CS+ face (in total four predictors). We tested dif-

ferent widths for the Gaussian and took the one that resulted in the best fit. This was equal to 65˚ of

FWHM and similar to the values we observed for univariate explicit ratings and SCR responses.

All linear modeling was conducted using non-redundant, vectorized forms of the symmetric dis-

similarity matrices. For an 8 � 8 dissimilarity matrix this resulted in a vector of 28 entries. Different

models were fitted as mixed-effects, where intercept and slope contributed both as fixed- and ran-

dom-effects (fitlme in Matlab). We selected mixed-effect models as these performed better than

models defined uniquely with fixed-effects on intercept and slope. To do model selection, we used

Bayesian information criterion (BIC) as it compensates for an increase in the number of predictors

between different models. Additionally, different models were also fitted to single participants (fitlm

in Matlab) and the parameter estimates were separately tested for significance using t-test.

For the analysis of temporal and spatial unfolding of adversity specific exploration patterns, the

same analysis was run, but restricted to include only the given time windows/fixations. In this analy-

sis, we only included participants who had a significant fear-tuning of explicit shock ratings from the

generalization phase (n = 61). For the time-windowed approach, periods of 500 ms were used,

repeated shifted by 50 ms, thereby obtaining a rolling-window analysis, while fixation-wise analyses

were based on FDMs that included only on the given (1st, 2nd, and so on) fixation.

Classification with linear support vector machine
We used single trial FDMs for validation of linear support vector machines (Chang and Lin, 2011),

that were trained to classify exploration patterns obtained during viewing of CS+ and CS– faces or

orthogonal faces. Analyses using SVM were executed using scikit learn and python
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(Pedregosa et al., 2011). The code has been included as Source code 1 accompanying this publica-

tion. To reduce the dimensionality, FDMs were first downscaled 10 times resulting in a vector of

2500 pixels and by discarding pixels whose standard deviation across all conditions and subjects was

much larger than its mean (mean/std > 0.075). We further reduced dimensionality by projecting

FDMs onto their principal components using N principal components that explained 50% of the total

variance in each run. SVMs were trained with l2 regularization and for each individual subject to

account for idiosyncrasy in scanning patterns. We used 3-fold cross validation and ensured that all

parameters were exclusively estimated from training data. In total we evaluated four SVMs per sub-

ject, two with data from the baseline phase and two with data from the generalization phase. For

visualization purposes, SVMs were also trained on 100% of the trials. We converted resulting hyper-

planes to activation patterns (Haufe et al., 2014) and averaged across subjects that shared the

same combination of CS+ and CS- faces.
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