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Emerging signals of declining forest 
resilience under climate change

Giovanni Forzieri1,5 ✉, Vasilis Dakos2, Nate G. McDowell3,4, Alkama Ramdane1 & 
Alessandro Cescatti1

Forest ecosystems depend on their capacity to withstand and recover from natural 
and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of 
sudden increases in tree mortality is raising concerns about variation in forest 
resilience2, yet little is known about how it is evolving in response to climate change. 
Here we integrate satellite-based vegetation indices with machine learning to show 
how forest resilience, quantified in terms of critical slowing down indicators3–5, has 
changed during the period 2000–2020. We show that tropical, arid and temperate 
forests are experiencing a significant decline in resilience, probably related to 
increased water limitations and climate variability. By contrast, boreal forests show 
divergent local patterns with an average increasing trend in resilience, probably 
benefiting from warming and CO2 fertilization, which may outweigh the adverse 
effects of climate change. These patterns emerge consistently in both managed and 
intact forests, corroborating the existence of common large-scale climate drivers. 
Reductions in resilience are statistically linked to abrupt declines in forest 
primary productivity, occurring in response to slow drifting towards a critical 
resilience threshold. Approximately 23% of intact undisturbed forests, corresponding 
to 3.32 Pg C of gross primary productivity, have already reached a critical threshold 
and are experiencing a further degradation in resilience. Together, these signals 
reveal a widespread decline in the capacity of forests to withstand perturbation that 
should be accounted for in the design of land-based mitigation and adaptation plans.

Forests cover about 41 million km2 — about 30% of the land surface. They 
play a fundamental role in the global carbon cycle, absorbing about 33% 
of anthropogenic carbon emissions, and are considered a key element 
for mitigating future climate change6. In addition, forests provide a 
series of ecosystem services that contribute to societal well-being, 
such as regulation of water flows, protection of soils and conserva-
tion of biodiversity7. Unfortunately, forest ecosystems are increas-
ingly endangered by numerous disturbances, including natural agents  
(for example, fires, wind storms and pathogens) and anthropogenic 
pressures2. The persistence and functionality of these ecosystems are 
highly dependent on their resilience, defined as the ability to with-
stand and recover from environmental perturbations3–5. Low-resilience 
forests are more sensitive to anomalies in external drivers and are 
potentially more exposed to abrupt and possibly irreversible shifts 
(for example, regime shifts)8. This is particularly critical in view of the 
ongoing intensification of disturbance regimes that could affect the 
provision of key ecosystem services in the near future9–11. At the same 
time, forest-based mitigation strategies that rely on sustained carbon 
sinks and stocks are becoming crucial to achieve the most ambitious cli-
mate targets. In this context, it is increasingly important to investigate 
the vulnerability of forest carbon stocks and fluxes to external pertur-
bations. However, little is known about how forest resilience has been 

evolving in response to global environmental change. Understanding 
the underlying mechanisms of forest resilience and its recent dynamics 
is therefore of paramount importance to develop sound conservation 
and management plans.

Theoretical studies have demonstrated that as systems approach a 
tipping point (that is, a threshold when a self-sustained runaway change 
starts), they lose resilience, so that small continuous external pertur-
bations can shift the system into an alternative configuration12. It has 
been proposed that such a loss of resilience can be detected from the 
increased temporal autocorrelation (TAC) in the state of the system, 
reflecting a decline in recovery rates due to the critical slowing down 
(CSD) of system processes that occur at thresholds3–5 (Supplementary 
Methods 1–3 and Supplementary Figs. 1 and 2). In such a framework, 
resilience is defined as the capacity of ecosystems to withstand per-
turbations and avoid state shifts, and not as the recovery to the initial 
state after a state change is induced by a major event. The reduction 
in resilience can be caused by impaired physiological functions that 
make the ecosystem unstable or at least more vulnerable to regime 
shifts under perturbations (for example, in terms of productivity, leaf 
area index or species composition)12–14. This property was leveraged in 
previous studies to assess spatial patterns of static forest resilience15–18. 
However, application of this method at large scales in a dynamic context 
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is challenging owing to the limited time series of observations, the 
presence of dominant seasonal frequencies in variations of both eco-
system responses and forcing signals, variations in autocorrelation 
of the forcing signals and the presence of stochastic noise4. So far 
these challenges have limited the study of the temporal evolution  
of forest resilience in real systems19–21 and led to the substantial lack of 
global-scale assessments. In this respect, the expanding availability of 
temporally consistent Earth observations over multiple decades is now 
offering new opportunities to monitor time-varying forest resilience 
at regional to global scales.

Here we estimate CSD from time series of satellite-based vegetation 
indices to investigate the space–time variation in forest resilience that 
has occurred over the past two decades at the global scale. Specifically, 
we retrieved the 1-lag TAC as a CSD indicator related to resilience3–5 from 
satellite-based retrievals of the kernel normalized difference vegeta-
tion index (kNDVI) derived for the 2000–2020 period at the global 
scale at 0.05° spatial resolution from the Moderate Resolution Imag-
ing Spectroradiometer sensor. kNDVI has recently been proposed as a 
robust proxy for ecosystem productivity22, and is therefore used in this 
study as a suitable metric to represent the state of forest ecosystems.

Trends and drivers of forest resilience
We initially explored the average TAC at the pixel level from the whole 
kNDVI time series (2000–2020; hereafter referred to as long-term 
TAC). This signal, by integrating the interplay between forest and 
climate, reflects the slowness of the forest–climate system resulting 
from the interplay of environmental drivers that affect plant growth 
and of the ecosystem capacity to recover from perturbations. A ran-
dom forest (RF) regression model23 was then developed to identify the 
emergent relationships between long-term TAC (response variable) 
and a suite of forest and climate metrics (environmental predictors; 
Methods and Extended Data Table 1). Results show that global forests 
are characterized by a considerable spatial variability in long-term TAC 
(Extended Data Fig. 1) largely explained by local environmental condi-
tions (R2 = 0.87; Extended Data Fig. 2 and Supplementary Discussion 1).  
To detect the resilience signal of the forest system and explore its 
temporal dynamics in response to changing environmental condi-
tions, we analysed the temporal evolution of TAC computed on kNDVI 
with 3-year rolling windows over the observational period. Factorial 
simulations of the previously developed RF model were performed to 
disentangle the contribution of the environmental factors and filter out 
the confounding signals originating from the TAC of climate drivers 
(details in Methods). This resulted in a time series of annual TAC and 
its temporal trend (δTAC) was used as an indicator of CSD to detect 
changes in forest resilience over time.

Results show a widespread and significant increase in TAC, and thus 
a temporal decline in resilience, in tropical, temperate and arid regions 
(1.63 × 10−3, 1.43 × 10−3 and 1.26 × 10−3 yr−1, respectively). By contrast, 
boreal forests show divergent local patterns with an average increas-
ing trend in resilience (−1.54 × 10−3 yr−1; Fig. 1a,b and Extended Data 
Table 2) prominently associated with a decline in TAC occurring in 
Eastern Canada and European Russia. We further explored the tem-
poral changes in resilience, by comparing the average TAC of kNDVI 
computed over two independent temporal windows (2000–2010 and 
2011–2020; Methods). We found a statistically significant increase 
over time at the global scale (53% of the globe experiences a positive 
relative change; Fig. 2c). However, the global signal is limited by the 
compensation of contrasting patterns across different climate regions. 
In fact, the statistically significant increase of TAC in tropical, arid and 
temperate forests (56–63% of land with positive relative change) is 
partially offset by an opposite trend occurring in boreal forests (56% 
of land with negative relative change). The patterns deriving from the 
comparison of the two independent decades are consistent with the 
trajectories of δTAC (Fig. 1a,b and Extended Data Fig. 3), confirming 

the validity of the finding. These emerging signals suggest worrying 
trajectories for the resilience of much of global forests. The signals 
are particularly robust because they are based on a single sensor (the 
Moderate Resolution Imaging Spectroradiometer) and a vegetation 
index (kNDVI) that showed enhanced correlation with primary pro-
ductivity and reduced noise and stability issues compared to other 
classical indices22 (Methods). Extensive sensitivity analyses further 
support the robustness of these emerging temporal drifts (Methods, 
Supplementary Discussion 2 and Extended Data Figs. 4–6).

Looking at the marginal contribution of the drivers of δTAC, we found 
that the widespread vegetation greening that occurred in recent  
decades (Extended Data Fig. 2c and Extended Data Fig. 7a), probably 
driven by CO2 fertilization and climate change24, had a positive effect 
on global resilience, most prominently in cold and temperate climates 
(Fig. 1d,e, forest density). However, the concurrent intensifications of 
water limitations and extreme climate events, particularly severe in 
tropical, arid and temperate regions (Extended Data Fig. 2d,e and 
Extended Data Fig. 7c–j) have offset the benefits of CO2 fertilization 
and greening (Fig. 1d,e; |δTAC| due to changes in background climate 
and climate variability > |δTAC| due to changes in forest density). This 
ultimately resulted in a net loss in forest resilience in these biomes 
(Fig. 1a–c). The increasing forest vulnerability to natural disturbances 
and the increased tree mortality throughout much of the Americas and 
in Europe over recent decades provide independent evidence of ongo-
ing decline of forest resilience25,26. The above-mentioned climate-related 
pressures have occurred in boreal forests as well, but their severity 
probably could not compensate the gain associated with the positive 
effect of CO2 fertilization and a warmer climate in most areas of this 
temperature-limited biome (Fig. 1d,e). However, the pattern observed 
at the high latitudes could eventually change in response to the expected 
decline in water availability due to the interplay between global warm-
ing and anticipated phenology27. In fact, recent observational studies 
suggest that global forests are switching from a period dominated by 
the positive effects of CO2 fertilization to a period characterized by the 
progressive saturation of the positive effects of fertilization on carbon 
sinks and the rise of negative impacts of climate change28,29.

Forest management and resilience
The results shown thus far have focused on the role of natural driv-
ers in modulating spatial and temporal variations in forest resilience. 
However, anthropogenic disturbances, such as forest management 
and land use change, have the potential to influence the ability of forest 
ecosystems to recover from perturbations by directly affecting tree 
species, age distribution, cover density, rooting depth and primary 
productivity1,30,31 (Extended Data Fig. 2c and Extended Data Fig. 7a,b). 
To factor out such effects, we analysed long-term TAC and δTAC for 
managed and intact forests under similar background climate (Meth-
ods and Extended Data Fig. 8). Intact forests have considerably lower 
long-term TAC (that is, higher forest resilience) than managed forests 
(0.13 and 0.21, respectively; Fig. 2a). This finding reinforces the expec-
tation that intact forests have a higher capacity to withstand external 
perturbations thanks to their typically higher structural complexity and 
species richness32,33. Independent observational evidence emphasizes 
the contribution of human pressures in the decline of forest resilience 
over recent decades1,26,30,34. Interestingly, in terms of temporal trends 
(δTAC), managed and intact forests do not present significant differ-
ences and show comparable fractions of forests experiencing positive 
trends (72% and 66%, respectively, Fig. 2b) and hence decreasing resil-
ience. This is an important finding because it suggests that the average 
level of forest resilience in a given climate is heavily affected by forest 
management, whereas its ongoing temporal variations (Fig. 1a,b) are 
controlled by large-scale climate signals. The observed global trends, 
therefore, plausibly reflect the effective climate-induced changes in 
the capacity of forests to withstand external perturbations.
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Resilience and primary productivity
Regardless of the forest type, changes in forest resilience may trigger 
variations in gross primary productivity (GPP) and vice versa, based on 
a mutual causal link. Understanding the interplay between these two 
variables is crucial given the role of GPP in the global carbon cycle35. We 
explored this by analysing the correlation of satellite-based GPP retriev-
als36 and TAC at the annual scale (short-term interplay) and comparing 
the trends in GPP and TAC (long-term interplay; Methods). In the short 
term, intact forests show a lower correlation between GPP and TAC than 
managed forests (Fig. 2c), probably because resilience is on average 
higher in intact ecosystems (Fig. 2a) and therefore probably less critical 
for productivity. Such bi-directional interactions translate into a nega-
tive correlation between GPP and TAC, with a closer link in dry and cold 
climates, probably reflecting the potential amplification of the two-way 

interplay in these regions (Fig. 2d,e). In the long term, about 70% of both 
managed and intact forests are experiencing a positive trend in GPP at 
present, but in 50% of these areas (about 36% in absolute terms), this 
occurs in combination with a positive trend in TAC (Fig. 2f, dark red pat-
terns). This implies that a considerable fraction of forest area is increas-
ing primary productivity while also experiencing a declining resilience, 
therefore leading to an expanding but more vulnerable forest sink. The 
widespread observations of rising tree mortality2, as well as observations 
of the growing terrestrial carbon sink37, confirm the co-occurrence of 
such antagonistic processes in response to global change2.

Early signals of abrupt forest decline
As a loss of forest resilience increases the sensitivity to external pertur-
bations14, we explored the potential of δTAC to work as an early-warning 
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Fig. 1 | Temporal variations of forest resilience and its key drivers. a, Spatial 
map of the temporal trend of TAC (δTAC). Positive δTAC values (for example, 
tropical forests) suggest a reduction in recovery rates and thus a decline in 
resilience, and vice versa for negative δTAC values (for example, boreal 
forests). The values are averaged over a 1° × 1° moving window for visual 
purposes. b, δTAC as in a binned as a function of climatological temperature 
and precipitation. The black dots indicate bins with average values that are 
statistically different from zero (two-sided Student’s t-test; P value ≤ 0.05).  
c, Frequency distribution of the differences in TAC computed for two 
independent temporal windows (2011–2020 minus 2000–2010) and shown 
separately for different climate regions. The numbers refer to the percentage 

of the observations lower and greater than zero; the asterisks indicate 
distributions with averages that are statistically different from zero (two-sided 
Student’s t-test; P value ≤ 0.05). The thin vertical line in each plot shows the 
distribution average. d, The cover fraction corresponding to each climate 
region and colour code reported in c and shown over the latitudinal gradient.  
e, The zonal average of the trend in TAC (δTAC) as determined by the three 
drivers (X) at 5° latitudinal resolution and the corresponding 95% confidence 
interval shown as a coloured line and shaded band, respectively. The colours 
reflect the three different driver categories: forest density, background 
climate and climate variability.
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signal of abrupt forest decline (theoretical framework described in Sup-
plementary Methods 1 and 2). To exclude the effect of land manage-
ment (for example, apparent abrupt declines (ADs) driven by forest 
harvest), we limited the analysis to global intact forests, with a focus 
on tropical and boreal regions that together cover about 97% of the 
investigated domain (Extended Data Fig. 8). ADs are defined here as 
sudden changes in the state of the forest ecosystem and detected, for 
a range of severities, as negative anomalies of 1 to 6 times the standard 
deviation (σ) of mean growing-season kNDVI with respect to the refer-
ence undisturbed mean in the time series. In this analysis, we quantify 
whether declining trends in resilience (that is, increases of δTAC) are 
associated with a consequent abrupt shift in the system, regardless of 
the disturbance type (details in Methods).

At the global level, intact forests have a probability of AD conditional 
on δTAC greater than 0.5 (Fig. 3a). This signal is statistically significant 
and increases with the severity of AD, suggesting that the progressive 
deterioration of ecosystem states, as tracked by the decline of resil-
ience, has probably contributed to the upsurge of negative anomalies 
in forest dynamics. The emerging relation is mainly driven by boreal 
forests, particularly those in central Russia and western Canada, where 
there is an emergent, localized decline in forest resilience (Fig. 1a). Such 
patterns may indicate that in these zones the AD is following the drifting 

towards a critical resilience threshold, which is probably triggered by 
the changes in environmental drivers occurring at the northernmost lat-
itudes38. Insect outbreaks, which are typically favoured by water stress39, 
may represent one of the main disturbances that have ultimately caused 
such ADs in the ecosystem state40,41. On the contrary, ADs in tropical 
forests are not statistically associated with high δTAC values (Fig. 3a). 
In these regions, fast and strong disturbance events, such as fires42 or 
droughts43, may induce an AD independently of long-term increasing 
trends in CSD (refs. 3,4; here represented by δTAC). The above-mentioned 
hypotheses are also consistent with the dominant climate drivers of 
δTAC in boreal and tropical regions (background climate and climate 
variability, respectively, Fig. 1d,e) and further supported by several 
independent pieces of evidence (for example, refs. 26,30,44,45).

Critical threshold mechanisms
To further explore the threshold mechanisms and the causality associ-
ated with ADs, we retrieved TAC for the year preceding the occurrence 
of an AD (hereafter referred to as observed TACAD)—and thus reflect-
ing the threshold value of resilience before the AD of the ecosystem. 
For each AD event, we retrieved the corresponding ecosystem toler-
ance expressed as the difference between TACAD and its average TAC 
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Fig. 2 | Effect of forest management on forest resilience and interplay with 
GPP. a, Frequency distributions of long-term TAC(2000–2020) for managed 
forests (MF) and intact forests (IF) located in a similar background climate.  
The coloured numbers report the respective averages, the top labels refer to 
the mean of the differences (diff.) in long-term TAC between managed and 
intact forests, and the asterisk indicates distributions that are statistically 
different (two-sided Student’s t-test; P value ≤ 0.05). b, The same as for a but for 
δTAC; the coloured numbers refer to the percentage of the observations lower 
and greater than zero (on the left and right of 0 on the x-axis, respectively).  

c, The same as for b but for the temporal correlation between annual GPP and 
TAC, denoted as ρ(GPP,TAC). d, A spatial map of ρ(GPP,TAC). e, ρ(GPP,TAC) 
binned as a function of climatological precipitation and temperature.  
The black dots indicate bins with average values that are statistically different 
from zero (two-sided Student’s t-test; P value ≤ 0.05). f, A spatial map of the 
areas, with different colours for the four combinations of positive/negative 
δGPP and δTAC. The cover fractions of each of the four classes for managed and 
intact forests are reported in stacked bars.
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computed in pre-disturbance conditions (details in Methods). This 
metric reflects the absolute increase in TAC that an ecosystem in equi-
librium can tolerate before reaching critical conditions of AD. We found 
that, despite the average slow recovery rates (Extended Data Fig. 1 and 
Supplementary Discussion 1), ecosystems frequently exposed to water 
limitations experience ADs at higher levels of TACAD (Fig. 3b), thanks 
to their higher tolerance compared to tropical–humid and cold–dry 
forests (Fig. 3c). These patterns are probably due to the long-term 
adaptation of tree species in arid regions that leads to structural and 
physiological adaptation to water limitations (for example, deeper 
rooting systems, resistance to cavitation and higher root/shoot ratio), 
whereas humid and cold biomes have a higher vulnerability to water 
shortage46,47.

To evaluate the proximity of present intact forests to their critical 
resilience threshold, we extrapolated in space the value of TACAD by the 
use of the RF regression algorithm and compared it with TAC retrieved 
for the year 2020. Proximity takes negative or zero values when TACAD 
has already been reached in 2020 and positive values when there are 
still margins before reaching the critical threshold (Methods). Results 
show that, at the end of our observational period, about 30% of global 
intact forests have already reached or overpassed their TACAD (Fig. 3d,e). 
More critically, about 23% experienced a concomitant increase in δTAC 
(Fig. 1a), therefore implying an ongoing reduction in ecosystem resil-
ience to levels that are already close to an AD and, potentially, to a tip-
ping point. We estimated that 3.32 Pg C of GPP is exposed to such critical 
conditions, prominently in tropical forests (93%), an amount about 
three times larger than the carbon losses due to deforestation in the 
Brazilian Amazon during the past ten years26. We point out that these 
critical conditions are not sufficient to determine a regime shift (Sup-
plementary Methods 3). However, they represent a strong indication of 

the rising risks of an increased instability and vulnerability to hazards 
of forest biomes. This is particularly critical for tropical forests, where 
the observed recent decline of the carbon sink48,49 could by further 
exacerbated by the continuous and progressive deterioration of forest 
resilience and the parallel increase in tree mortality and turnover rate.

Conclusions
Our analysis reveals that in recent decades both intact and managed 
forests have experienced substantial changes in resilience controlled 
by large-scale climate signals. We found that tropical, temperate and 
arid forests underwent a decline in resilience probably related to the 
concomitant increase in water limitations and climate variability. On 
the contrary, benefits induced by climate warming and CO2 fertilization 
have outweighed such negative effects in much of the boreal biome, 
ultimately leading to an increase in forest resilience. The increasing 
fragility to external perturbations in combination with an enhancement 
in productivity for a considerable fraction of global forests (about 
36%) confirms the co-occurrence of antagonistic processes driving 
photosynthesis and tree mortality in response to global change2. We 
estimate that about 23% of intact undisturbed forests have already 
reached their critical threshold for an AD and are experiencing a con-
comitant further degradation of resilience. Considering the expected 
transition from a CO2-fertilization-dominated period to a warming/
drying-dominated period27–29, the observed negative trajectories of 
forest resilience suggest potential critical consequences for key ecosys-
tem services, such as carbon sequestration. Therefore, it is becoming 
urgent to account for these trends in the design of effective forest-based 
mitigation strategies to avoid future unexpected negative events trig-
gered by the increasing vulnerability of carbon stocks. In this regard, 
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of climatological precipitation and temperature. The black dots indicate bins 
with average values that are statistically different from zero (two-sided 
Student’s t-test; P value ≤ 0.05). Negative values of proximity to TACAD 
represent areas where the threshold resilience for AD (TACAD) has been already 
overpassed, and vice versa for positive values. e, Frequency distributions of 
proximity to TACAD shown separately for different climate regions and 
computed over the whole domain (blue) and over those areas experiencing a 
concomitant positive δTAC (red). The coloured numbers refer to the 
percentage of the frequency distribution lower and greater than zero (on the 
left and right of 0 on the x -axis, respectively) with respect to the whole domain.
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our global data-driven assessment shows that resilience thinking50 
can be developed effectively in a science-based and solution-oriented 
framework to support the many challenges of forest management in 
times of rapid climatic changes.
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Methods

Climate drivers
To explore the impact of climate on forest resilience (see the follow-
ing sections), we used monthly averaged total precipitation, 2-m air 
temperature, evapotranspiration deficit and surface solar radiation 
downwards acquired from the ERA5-Land reanalysis product at 0.1° 
spatial resolution for the 2000–2020 period (https://cds.climate.coper-
nicus.eu/cdsapp#!/home). Evapotranspiration deficit was quantified 
as the total precipitation minus evapotranspiration. In this study, we 
referred to climate regions as defined by the Köppen–Geiger world 
map of climate classification51 (http://koeppen-geiger.vu-wien.ac.at/
present.htm). The original 31 climatic zones were merged into major 
zones and only those characterized by vegetation cover were included 
in our study (tropical, arid, temperate and boreal; Extended Data Fig. 8).

Vegetation dynamics
NDVI data acquired from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument aboard the Terra satellite was used to 
derive changes in global vegetation for the period 2000–2020. We used 
cloud-free spatial composites provided at 16-day temporal resolution 
and 0.05° spatial resolution (MOD13C1 Version 6; https://lpdaac.usgs.
gov/products/mod13c1v006/) and retained only pixels with good and 
marginal overall quality. The MODIS-derived NDVI dataset represents a 
state-of-the-art product of vegetation state whose retrieval algorithm is 
constantly improved52, and being derived from a unique platform and 
sensor, it is temporally and spatially consistent. Vegetation dynamics 
were analysed in terms of kNDVI, a nonlinear generalization of the NDVI 
based on ref. 22 and derived as follows:

kNDVI=tanh(NDVI ) (1)2

kNDVI has recently been proposed as a strong proxy for ecosystem 
productivity that shows high correlations with both plot level measure-
ments of primary productivity and satellite retrievals of sun-induced 
fluorescence22. In addition, kNDVI has been documented to be more 
closely related to primary productivity, to be resistant to saturation, 
bias and complex phenological cycles, and to show enhanced robust-
ness to noise and stability across spatial and temporal scales compared 
to alternative products (for example, NDVI and near-infrared reflec-
tance of vegetation). For these reasons, it has been retained in this study 
as the preferred metric to describe the state of the forest ecosystem.

To obtain an accurate estimate of resilience indicators, vegetation 
time series need to be stationary without seasonal periodic patterns 
or long-term trends53. To this aim, vegetation anomalies were obtained 
from kNDVI data by first subtracting the multi-year 16-day sample mean 
and then removing linear trends from the resulting time series. Missing 
data, due for instance to snow cover affecting the retrieval of reflectance 
properties, have been gap-filled by climatological kNDVI values. The 
time series of kNDVI-based vegetation anomalies was used to derive 
resilience indicators and assess their spatial and temporal variations 
(see next sections).

Interannual changes in vegetation were assessed in terms of 
growing-season-averaged kNDVI. To this end, a climatological grow-
ing season that spanned months with at least 75% of days in the green-
ness phase was derived from the Vegetation Index and Phenology 
satellite-based product54 (https://vip.arizona.edu/) and acquired for 
the 2000–2016 period at 0.05° spatial resolution. In addition, forest 
cover (FC) fraction was derived from the annual land-cover maps of 
the European Space Agency’s Climate Change Initiative (https://www.
esa-landcover-cci.org/)55 over the 2000–2018 period at 300-m spatial 
resolution. FC was retrieved by summing the fraction of broadleaved 
deciduous, broadleaved evergreen, needle leaf deciduous and needle 
leaf evergreen forest. FC was resampled to 0.05° to match the kNDVI 
spatial resolution.

Spatial patterns of slowness and its dependence on 
environmental factors
In this study, we quantified the resilience of forest ecosystems—their 
ability to recover from external perturbations—by the use of the 1-lag 
TAC (refs. 3–5). Such an indicator was initially computed on the whole 
time series of vegetation anomalies (2000–2020) for forest pixels 
with less than 50% missing data in the original NDVI and FC greater 
than 0.05 and referred to in the text as long-term TAC. This analysis 
was used to assess the spatial patterns of the forest slowness mediated 
by environmental factors that affect plant growth rates and capacity 
to recover from perturbations. The long-term TAC was explored both 
in the geographic and climate space (Extended Data Fig. 1). In the cli-
mate space, long-term TAC was binned in a 50 × 50 grid as a function 
of average annual precipitation and temperature, both computed over 
the 2000–2020 period, using the average as an aggregation metric 
weighted by the areal extents of each record. We retained only bins 
with at least 50 records.

To explore the potential drivers of long-term TAC, we developed 
an RF regression model23 and predicted the observed long-term TAC 
(response variable) based on a set of environmental features (predic-
tors). The use of machine learning in general and of RF in particular, 
being nonparametric and nonlinear data-driven methods, does not 
require a priori assumptions about the functional form relating the 
key drivers and the response functions. The environmental variables 
include vegetation properties (FC and growing-season-averaged kNDVI) 
and climate variables (total precipitation, 2-m air temperature, evapo-
transpiration deficit and surface solar radiation downwards). Each of 
the climate variables was expressed in terms of average, coefficient 
of variation and 1-lag autocorrelation and resampled to 0.05° spatial 
resolution to match the spatial resolution of kNDVI. All environmen-
tal variables were computed annually and then averaged over time, 
except the autocorrelation that was computed directly for the whole 
period, analogously to the long-term TAC. This resulted in a set of 14 
predictors representing the forest density, the background climate, the 
climate variability and its TAC in the observational period (Extended 
Data Table 1). The RF model was developed by splitting the observed 
long-term TAC into two separate samples: 60% of records were used 
for model calibration, and the remaining 40% were used to validate 
model performances in terms of coefficient of determination (R2), 
mean squared error and percentage bias (PBIAS). Each record refers 
to a 0.05° pixel. The RF implemented here uses 100 regression trees, 
whose depth and number of predictors to sample at each node were 
identified using Bayesian optimization. The general model formula-
tion is as follows:

f X εTAC = ( ) + (2)f

in which f is the RF regression model, X are the environmental predic-
tors and εf are the residuals. We found that the model explains 87% of 
the spatial variance (R2) of the observed long-term TAC with a mean 
squared error of 0.007 and an average overestimation of 0.058 (PBIAS; 
Extended Data Fig. 2a). By definition, machine learning methods are 
not based on the mechanistic representation of the phenomena and 
therefore cannot provide direct information on the underlying pro-
cesses influencing the system response to drivers. However, some 
model-agnostic methods can be applied to gain insights into the 
outputs of RF models. Here we used variable importance metrics to 
quantify and rank how individual environmental factors influence 
TAC (Extended Data Fig. 2b). Furthermore, using partial dependence 
plots derived from the machine learning algorithm RF, we explored 
the ecosystem response function (TAC) across gradients of vegeta-
tion and climate features (Supplementary Discussion 1 and Extended 
Data Fig. 2c–f).

https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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CSD indicators
To explore the temporal variation in forest resilience, we used CSD indi-
cators, here quantified in terms of temporal changes in TAC retrieved 
for two consecutive and independent periods ranging from 2000 to 
2010 and from 2011 to 2020, and assessed the significance of the change 
in the sampled mean aggregated for different climate regions through 
a two-sided t-test (Fig. 1c). This analysis was complemented by the 
computation of TAC on the annual scale over a 2-year lagged temporal 
window (3-year window size) to track the temporal changes in CSD. This 
resulted in a time series of TAC with an annual time step.

We point out that temporal dynamics of annual TAC are driven by 
two processes: the changes in the resilience of the system that affect 
the velocity of the recovery from external perturbations and the con-
founding effects of the changes in autocorrelation of the climate driv-
ers (Xac) that directly affect the autocorrelation of NDVI. Given the 
specific goals of this study, we factored out the second process from 
the total TAC signal to avoid that an increasing autocorrelation in the 
drivers would affect our analysis and conclusions about the resilience 
and the potential increase in instability56. For this purpose, we disen-
tangled the temporal changes in TAC due to variations in autocorrela-
tion in the climate drivers ( XTAC ac) by adopting the space-for-time 
analogy and applied the RF model (f) at an annual time step (t) in a set 
of factorial simulations as follows:

∣ X f X f X XTAC = ( ) − ( , ) (3)t t t
ac −ac ac

2000

The first term on the right side of equation (3) is the RF model simula-
tion obtained by accounting for the dynamics of all predictors, and the 
second term is the RF model simulation generated by considering all 
predictors dynamic except the factors of autocorrelation in climate 
that are kept constant to their first-year value (year 2000). For such 
runs, we used predictors computed on an annual scale over a 2-year 
lagged temporal window, consistently to the TAC time series. We found 
that the direct effects of autocorrelation in climate have led to a posi-
tive trend of TAC in dry zones (due to the increasing autocorrelation 
of the drivers in these regions) and to an opposite effect in temperate 
humid forests (Supplementary Fig. 3). To remove these confounding 
effects, the estimated term XTACt

ac is factored out from the TACt by 
subtraction to derive an enhanced estimate of annual resilience that 
is independent of autocorrelation in climate (Extended Data Fig. 3).

Long-term linear trends computed on the resulting enhanced TAC 
time series (δTAC) represent our reference CSD indicator used in this 
study to explore the changes in forest resilience. δTAC was quantified 
for each grid cell (Fig. 1a) and represented in the climate space following 
the methodology previously described (Fig. 1b). We then assessed the 
significance of the trends at bin level by applying a two-sided t-test for 
the sampled trend distributions within each bin. This significance test 
is independent from the structural temporal dependencies originat-
ing from the use of a 2-year lagged temporal window to compute the 
TAC time series.

Following an analogous approach described in equation (3), we disen-
tangled the effect of the variation in forest density, background climate 
and climate variability on temporal changes in TAC (Fig. 1d,e). We recog-
nize that other environmental factors not explicitly accounted for in our 
RF model could play a role in modulating the temporal variations in TAC. 
However, given the comprehensiveness of the suite of predictors used 
in equation (2) (Extended Data Table 1), it seems plausible that residuals 
mostly reflect the intrinsic forest resilience, the component intimately 
connected to the short-term responses of forests to perturbations, 
which is not directly related to climate variability. Forest ecosystem 
evolutionary processes could also play a role, but longer time series 
would be required to reliably capture these dynamics. Furthermore, 
abrupt declines (ADs) in the vegetation state and following recoveries, 
similarly to those potentially originating from forest disturbances 

(for example, wildfires and insect outbreaks), could influence the TAC 
changes. However, such occurrences, being distributed across the 
globe throughout the whole period, are expected to only marginally 
affect the resulting trend in TAC time series.

Sensitivity analysis
To assess the robustness of our results with respect to the modelling 
choices described above, we performed a series of sensitivity analyses 
for the difference in TAC retrieved for the two independent periods 
(2000–2010 and 2011–2020). To this aim, we tested their dependence 
on: the quality flag of the NDVI data used for the analyses (good, good 
and marginal); the gap-filling procedure tested on different periods 
(year and growing season); the inclusion or exclusion of forest areas 
affected by ADs; the threshold on the maximum percentage of missing 
NDVI data allowed at the pixel level (20%, 50% and 80%); the threshold 
on the minimum percentage of FC allowed at the pixel level (5%, 50% 
and 90%); and the pixel spatial resolution used for the analyses (0.05°, 
0.25° and 1°). In addition, we tested the sensitivity of the trend in total 
TAC signal on the moving temporal window length used to calculate 
autocorrelation at lag 1. Results obtained for the different configura-
tions were compared in terms of frequency distributions, separately 
for climate regions (Extended Data Fig. 4), and further explored in the 
climate space (Extended Data Figs. 5 and 6). Outcomes of the sensitivity 
analysis are discussed in Supplementary Discussion 2.

Interplay between GPP and CSD
Resilience and GPP interact with each other through mutual causal 
links. On one hand, a reduction in forest resilience makes the system 
more sensitive to perturbations with potential consequent losses in 
GPP (ref. 26). On the other hand, a reduction in GPP may lead to a decline 
in resilience according to the carbon starvation hypothesis, and may 
be associated with increasing hydraulic failure46. To explore the link 
between forest resilience and primary productivity, we quantified the 
correlation between TAC and GPP. Estimates of GPP were derived from 
the FluxCom Model Tree Ensemble for the 2001–2019 period at 8-daily 
temporal resolution and 0.0833° spatial resolution and generated 
using ecosystem GPP fluxes from the FLUXNET network and MODIS 
remote sensing data as predictor variables36 (http://www.fluxcom.
org/). Annual maps of GPP were quantified and resampled to 0.05° 
to match the temporal and spatial resolution of TAC time series. The 
Spearman rank correlation (ρ) was then computed between annual 
GPP and TAC over a 1° spatial moving window to better sample the 
empirical distribution of the two variables (Fig. 2d). The significance of 
ρ(GPP,TAC) was assessed over the climate space separately for each bin 
(Fig. 2e), similarly to the approach used to test the significance of δTAC. 
Furthermore, we explored the relationships between the trend in GPP 
(δGPP) and the trend in TAC (δTAC) by clustering the globe according 
to the directions of the long-term trajectories of the above-mentioned 
variables (Fig. 2f).

Disentangling the impact of forest management
To characterize TAC on different forest types and disentangle the 
potential effects originating from forest management, results were 
separately analysed for intact forests and managed forests. Intact 
forests were considered those forest pixels constituting the Intact 
Forest Landscapes57 dataset (https://intactforests.org/). Intact Forest 
Landscapes identifies the forest extents with no sign of significant 
human activity over the period 2000–2016 based on Landsat time 
series. The remaining forests pixels—not labelled as intact—were 
considered as managed forests (Extended Data Fig. 8). The resulting  
forest type map is consistent with those used for United Nations 
Framework Convention on Climate Change reporting58, although with 
more conservative estimates of intact forests in the boreal zone due 
to the masking based on FC and percentage of missing data applied 
in this study.

http://www.fluxcom.org/
http://www.fluxcom.org/
https://intactforests.org/
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We analysed the differences in long-term TAC (computed for the 

whole 2000–2020 period) between managed and intact forests by 
masking out the potential effect of climate background. To this aim, 
we compared the climate spaces generated separately for managed 
and intact forests by extracting only those bins that are covered by 
both forest classes. The resulting distributions—one for each forest 
class—have the same sample size, and each pair of elements shares 
the same climate background. Potential confounding environmental 
effects on average recovery rates are, therefore, minimized. We then 
applied a two-sided t-test for analysing the significance of the differ-
ence in the sampled means (Fig. 2a). An analogous approach was used 
to test the differences in δTAC and ρ(GPP,TAC) between managed and 
intact forests (Fig. 2b,c).

Early-warning signals of abrupt forest declines
When forest ecosystems are subject to an extended and progressive 
degradation, the loss of resilience can lead to an AD (refs. 3–5). Such 
abrupt changes can trigger a regime shift (tipping point) depending on 
the capacity of the system to recover from the perturbations (Supple-
mentary Methods 1 and 2). We investigated the potential of changes in 
TAC as early-warning signals of ADs in intact forests over the 2010–2020 
period. To this aim, we quantified at the pixel level ADs as the events 
occurring on a certain year when the corresponding growing-season 
average kNDVI was more than n-times local standard deviation below 
the local mean. Local mean and standard deviation (σ) were computed 
over the 10-year antecedent temporal window (undisturbed) period 
and n varies between 1 and 6 with higher values reflecting more severe 
changes in the state of the system. For each pixel and for each fixed n 
value, we recorded only the first AD occurrence, thus imposing a univo-
cal record for each abrupt change in the state of the system.

We then explored whether the retrieved ADs were statistically asso-
ciated with antecedent high values of δTAC. To avoid confusion with 
the attribution of causality, for each AD that occurred at time t (over 
the 2010–2020 period), we derived the δTAC over the temporal window 
2000 − (t − 1). The resulting trend in δTAC is therefore antecedent and 
independent of the changes in vegetation associated with the AD. Then, 
for each pixel with an AD at time t, we also extracted randomly one of 
the undisturbed (with no AD) adjacent pixels and retrieved δTAC over 
the same temporal window. This analysis produced two distributions 
of δTAC associated with pixels with and without ADs (AD and no AD, 
respectively). The two distributions have the same size and each pair 
of elements shares similar background climate. We calculated the prob-
ability of occurrence of AD conditional on the trend in δTAC ( δAD TAC) 
as the frequency of ADs for which δ δTAC(AD)| > TAC(no AD), and the 
significance of the difference in the two sampled means (AD and no AD) 
was evaluated through a two-sided t-test. Probability and significance 
were assessed for different climate regions and severity of ADs (Fig. 3a). 
High statistically significant probabilities suggest that the AD is fol-
lowing the drifting towards a critical resilience threshold plausibly 
associated with changes in environmental drivers.

We complemented the aforementioned analyses by retrieving the 
tolerance and proximity to AD, hereafter determined for a 3σ severity. 
We first quantified the TAC that proceeded the occurrence of an AD 
and followed a progressive loss of resilience as captured by positive 
δTAC. This value, hereafter referred to as abrupt decline temporal 
autocorrelation (TACAD), reflects the TAC threshold over which we 
observed an abrupt change in the forest state (Fig. 3b). The tolerance 
to AD was quantified as the difference between the local TACAD and 
the TAC value averaged over the 2000–2009 period to characterize 
the pre-disturbance conditions. The tolerance metric was explored 
across a gradient of aridity index59 (Fig. 3c).

TACAD can be directly retrieved only on those forest pixels that have 
already experienced an AD. As a considerable fraction of undisturbed 
forests could potentially be close to their critical TAC threshold, or even 
have already passed it, it is important to determine their TACAD. To this 

aim, we developed an RF regression model that expresses the TACAD 
as a function of the set X of environmental variables used in model f 
(equation (2)) but excluding the autocorrelation in climate drivers 
(Xreduced) already disentangled in the TAC signal. The general formula-
tion is as follows:

g X εTAC = ( ) + (4)AD reduced g

in which g is the RF regression model, Xreduced are the environmental 
predictors and εg are the residuals. Implementation, calibration and 
validation of g follow the same rationale described before for the f 
model. We found that the RF model explains 50% of the variance (R2) of 
the observed TACAD, with a mean squared error of 0.019 and an average 
underestimation of 0.86 (PBIAS).

The RF model was then used to predict the TACAD over the whole 
domain of intact forests and served as input to quantify the proximity 
to AD of undisturbed forest pixels at the end of the observational period 
(year 2020). Here we defined the proximity metric as the difference 
between the value of TAC in 2020 and TACAD. Proximity takes negative 
or zero values when TACAD has already been reached (TAC ≥ TAC2020

AD) 
and positive values when there are still margins before reaching  
the critical threshold (TAC < TAC2020

AD ). Together δTAC > 0  and 
TAC ≥ TAC2020

AD therefore represent the most critical conditions, as 
they indicate that the critical resilience threshold for AD has already 
been reached and the ecosystem is continuing to lose its capacity to 
respond to external perturbations. We finally quantified the amount 
of GPP potentially exposed to such critical conditions by linearly 
extrapolating the GPP for the year 2020 (available GPP data stop in 
2019) and overlaying it on the map of critical conditions (proximity to 
AD < 0 and δTAC > 0).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
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cdsapp#!/home) and from the Köppen–Geiger world map of climate 
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Code availability
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Extended Data Fig. 1 | Spatial variation of forest slowness. (a) Spatial map of long-term TAC computed for the whole 2000-2020 period. (b) Long-term TAC 
binned as a function of climatological temperature and precipitation.



Extended Data Fig. 2 | Performance and response functions of the 
resilience model. (a) Observed versus modelled long-term TAC. Number of 
binned records (N), coefficient of determination (R2), mean squared error 
(MSE) and percent bias (PBIAS) are shown in labels, while the frequency 
distribution in color. (b) Predictors of TAC and corresponding variable 
importance based on the random forest regression model of forest resilience. 

The four categories of environmental predictors are identified with hatched 
fill patterns; whereas the colors distinguish the different variables. (c) 
Dependence of TAC on predictors of forest density. (d), (e) and (f) as (c) but for 
predictors of background climate, climate variability and autocorrelation, 
respectively.
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Extended Data Fig. 3 | Temporal trajectories of forest resilience. Temporal 
changes in TAC computed over a 3-year moving window and displayed with 
respect to the reference year 2002 separately for the global (a), tropical (b), 
arid (c), temperate (d) and boreal (e) regions. Continuous lines refer to the 
regional averages, whereas shaded areas show their 95% confidence interval 
magnified by a factor of 10 for visual purposes.



Extended Data Fig. 4 | Sensitivity analysis of temporal changes in forest 
resilience (frequency distributions). (a–e) Frequency distribution of the 
differences in TAC computed for two independent temporal windows (2011-2020 
and 2000-2010) shown separately for different climate regions and for the use 
of different quality flags of NDVI data (QF). Numbers refer to the percentage of 

the frequency distribution lower and greater than zero (on the left and right 
y-axis, respectively). (f–j), (k–o), (p–t), (u–y) and (z–ad) as (a–e) but computed 
for different gap filling analyses (GF), inclusion/exclusion of areas affected by 
abrupt declines (AD), percentages of missing data (PMD), percentages of forest 
cover (PFC) and spatial resolution (PSR), respectively.
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Extended Data Fig. 5 | Sensitivity analysis of temporal changes in forest 
resilience (climate spaces). (a–b) Differences in TAC computed for two 
independent temporal windows (2011-2020 and 2000-2010), separately shown 
for different quality flags (QF), binned as a function of climatological 
temperature and precipitation. Black dots indicate bins with average values 

that are statistically different from zero (two-sided Student’s t-test; P-value ≤ 0.05). 
(c–d), (e–f), (g–i), ( j–l) and (m–o) as (a–b) but computed for different gap 
filling analyses (GF), inclusion/exclusion of areas affected by abrupt declines 
(AD), percentages of missing data (PMD), percentages of forest cover (PFC) and 
spatial resolution (PSR), respectively.



Extended Data Fig. 6 | Effects of varying lagged temporal windows lengths. 
(a–c) Trend in total TAC binned as a function of climatological temperature and 
precipitation, separately shown for different temporal window lengths (TWL). 

Black dots indicate bins with average values that are statistically different from 
zero (two-sided Student’s t-test; P-value ≤ 0.05).
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Extended Data Fig. 7 | Temporal variations in environmental predictors. 
(a-b) Temporal trends in environmental predictors of the category ‘forest 
density’ computed over a 3-year moving window and binned as a function of 
climatological precipitation and temperature. Black dots indicate bins with 

average values that are statistically different from zero (two-sided Student’s 
t-test; P-value ≤ 0.05). (c–f) and (g–j) as (a,b) but for environmental predictors 
of the categories ‘background climate’ and ‘climate variability’, respectively. 
Predictor acronyms are reported in Extended Data Table 1.



Extended Data Fig. 8 | Climate and forest domains. (a) Spatial map of climate regions. (b) Cover fraction of managed and intact forests for each climate region. 
(c) Spatial map of managed and intact forests. (d) Cover fraction of climate regions for each forest domain.
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Extended Data Table 1 | Environmental variables used in the resilience model

Forest and climate features used as predictors to characterize the response function of forest resilience within a RF predictive model.



Extended Data Table 2 | Long-term TAC and δTAC for different climate regions and forest domains

Values report the average and the corresponding lower and upper 95% confidence intervals (ci). Sample size of each domain is reported in terms of number of 0.05°x0.05° pixels.
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