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Forest ecosystems depend on their capacity to withstand and recover from natural
and anthropogenic perturbations (that is, their resilience)'. Experimental evidence of
suddenincreases in tree mortality is raising concerns about variationin forest
resilience?, yet little is known about how it is evolving in response to climate change.

Here we integrate satellite-based vegetation indices with machine learning to show
how forest resilience, quantified in terms of critical slowing down indicators®>, has
changed during the period 2000-2020. We show that tropical, arid and temperate
forests are experiencing a significant decline in resilience, probably related to
increased water limitations and climate variability. By contrast, boreal forests show
divergentlocal patterns with an average increasing trend in resilience, probably
benefiting from warming and CO, fertilization, which may outweigh the adverse
effects of climate change. These patterns emerge consistently in both managed and
intact forests, corroborating the existence of common large-scale climate drivers.
Reductionsinresilience are statistically linked to abrupt declines in forest

primary productivity, occurring in response to slow drifting towards a critical
resilience threshold. Approximately 23% of intact undisturbed forests, corresponding
t03.32 Pg C of gross primary productivity, have already reached a critical threshold
and are experiencing a further degradationinresilience. Together, these signals
reveal awidespread decline in the capacity of forests to withstand perturbation that
should be accounted for in the design of land-based mitigation and adaptation plans.

Forests cover about 41 million km*—about 30% of the land surface. They
play afundamentalroleinthe global carbon cycle, absorbing about 33%
of anthropogenic carbon emissions, and are considered akey element
for mitigating future climate change®. In addition, forests provide a
series of ecosystem services that contribute to societal well-being,
such as regulation of water flows, protection of soils and conserva-
tion of biodiversity’. Unfortunately, forest ecosystems are increas-
ingly endangered by numerous disturbances, including natural agents
(for example, fires, wind storms and pathogens) and anthropogenic
pressures®. The persistence and functionality of these ecosystems are
highly dependent on their resilience, defined as the ability to with-
stand and recover from environmental perturbations®>. Low-resilience
forests are more sensitive to anomalies in external drivers and are
potentially more exposed to abrupt and possibly irreversible shifts
(for example, regime shifts)8. Thisis particularly critical in view of the
ongoing intensification of disturbance regimes that could affect the
provision of key ecosystem services in the near future’ ™. At the same
time, forest-based mitigation strategies that rely on sustained carbon
sinks and stocks are becoming crucial to achieve the most ambitious cli-
mate targets. In this context, itisincreasingly important to investigate
the vulnerability of forest carbon stocks and fluxes to external pertur-
bations. However, littleis known about how forest resilience has been

evolvinginresponse to global environmental change. Understanding
the underlying mechanisms of forest resilience and its recent dynamics
istherefore of paramountimportanceto develop sound conservation
and management plans.

Theoretical studies have demonstrated that as systems approach a
tipping point (thatis, athreshold when aself-sustained runaway change
starts), they lose resilience, so that small continuous external pertur-
bations can shift the system into an alternative configuration'. It has
been proposed that such aloss of resilience can be detected from the
increased temporal autocorrelation (TAC) in the state of the system,
reflecting a decline in recovery rates due to the critical slowing down
(CSD) of system processes that occur at thresholds®*® (Supplementary
Methods 1-3 and Supplementary Figs.1and 2). In such a framework,
resilience is defined as the capacity of ecosystems to withstand per-
turbations and avoid state shifts, and not as the recovery to the initial
state after a state change is induced by a major event. The reduction
inresilience can be caused by impaired physiological functions that
make the ecosystem unstable or at least more vulnerable to regime
shifts under perturbations (for example, in terms of productivity, leaf
areaindex or species composition)? ™. This property was leveragedin
previous studies to assess spatial patterns of static forest resilience'> 8,
However, application of this method at large scales in adynamic context
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is challenging owing to the limited time series of observations, the
presence of dominant seasonal frequencies in variations of both eco-
system responses and forcing signals, variations in autocorrelation
of the forcing signals and the presence of stochastic noise®*. So far
these challenges have limited the study of the temporal evolution
of forestresilience in real systems' 2 and led to the substantial lack of
global-scale assessments. In this respect, the expanding availability of
temporally consistent Earth observations over multiple decadesis now
offering new opportunities to monitor time-varying forest resilience
atregional to global scales.

Here we estimate CSD from time series of satellite-based vegetation
indices toinvestigate the space-time variationinforestresilience that
hasoccurred over the past two decades at the global scale. Specifically,
weretrieved the1-lag TAC asa CSD indicator related to resilience® > from
satellite-based retrievals of the kernel normalized difference vegeta-
tion index (kNDVI) derived for the 2000-2020 period at the global
scale at 0.05° spatial resolution from the Moderate Resolution Imag-
ing Spectroradiometer sensor. KNDVI has recently been proposedasa
robust proxy for ecosystem productivity?, and is therefore used in this
study as a suitable metric to represent the state of forest ecosystems.

Trends and drivers of forest resilience

Weinitially explored the average TAC at the pixel level from the whole
kNDVI time series (2000-2020; hereafter referred to as long-term
TAC). This signal, by integrating the interplay between forest and
climate, reflects the slowness of the forest-climate system resulting
from the interplay of environmental drivers that affect plant growth
and of the ecosystem capacity to recover from perturbations. A ran-
dom forest (RF) regression model® was then developed to identify the
emergent relationships between long-term TAC (response variable)
and a suite of forest and climate metrics (environmental predictors;
Methods and Extended Data Table 1). Results show that global forests
are characterized by aconsiderable spatial variability in long-term TAC
(Extended DataFig.1) largely explained by local environmental condi-
tions (R*=0.87; Extended DataFig. 2 and Supplementary Discussion1).
To detect the resilience signal of the forest system and explore its
temporal dynamics in response to changing environmental condi-
tions, we analysed the temporal evolution of TAC computed on KNDVI
with 3-year rolling windows over the observational period. Factorial
simulations of the previously developed RF model were performed to
disentangle the contribution of the environmental factors and filter out
the confounding signals originating from the TAC of climate drivers
(details in Methods). This resulted in a time series of annual TAC and
its temporal trend (6TAC) was used as an indicator of CSD to detect
changesinforest resilience over time.

Results show awidespread and significantincreasein TAC, and thus
atemporal declineinresilience, intropical, temperate and arid regions
(1.63x107%,1.43 x10and 1.26 x 102 yr™, respectively). By contrast,
boreal forests show divergent local patterns with an average increas-
ing trend in resilience (-1.54 x 10 yr™; Fig. 1a,b and Extended Data
Table 2) prominently associated with a decline in TAC occurring in
Eastern Canada and European Russia. We further explored the tem-
poral changes in resilience, by comparing the average TAC of kKNDVI
computed over two independent temporal windows (2000-2010 and
2011-2020; Methods). We found a statistically significant increase
over time at the global scale (53% of the globe experiences a positive
relative change; Fig. 2c). However, the global signal is limited by the
compensation of contrasting patterns across different climate regions.
Infact, the statistically significantincrease of TAC in tropical, arid and
temperate forests (56-63% of land with positive relative change) is
partially offset by an opposite trend occurring in boreal forests (56%
ofland with negative relative change). The patterns deriving from the
comparison of the two independent decades are consistent with the
trajectories of 6TAC (Fig. 1a,b and Extended Data Fig. 3), confirming

the validity of the finding. These emerging signals suggest worrying
trajectories for the resilience of much of global forests. The signals
are particularly robust because they are based on a single sensor (the
Moderate Resolution Imaging Spectroradiometer) and a vegetation
index (kNDVI) that showed enhanced correlation with primary pro-
ductivity and reduced noise and stability issues compared to other
classical indices? (Methods). Extensive sensitivity analyses further
support the robustness of these emerging temporal drifts (Methods,
Supplementary Discussion 2 and Extended Data Figs. 4-6).

Looking at the marginal contribution of the drivers of 6TAC, we found
that the widespread vegetation greening that occurred in recent
decades (Extended Data Fig. 2c and Extended Data Fig. 7a), probably
driven by CO, fertilization and climate change?, had a positive effect
onglobalresilience, most prominently in cold and temperate climates
(Fig.1d,e, forest density). However, the concurrentintensifications of
water limitations and extreme climate events, particularly severe in
tropical, arid and temperate regions (Extended Data Fig. 2d,e and
Extended Data Fig. 7c-j) have offset the benefits of CO, fertilization
and greening (Fig. 1d,e; |6 TAC| due to changes in background climate
and climate variability > |6 TAC| due to changes in forest density). This
ultimately resulted in a net loss in forest resilience in these biomes
(Fig.1a-c). Theincreasing forest vulnerability to natural disturbances
andtheincreased tree mortality throughout much of the Americas and
inEurope over recent decades provide independent evidence of ongo-
ing decline of forest resilience®?. The above-mentioned climate-related
pressures have occurred in boreal forests as well, but their severity
probably could not compensate the gain associated with the positive
effect of CO, fertilization and a warmer climate in most areas of this
temperature-limited biome (Fig.1d,e). However, the pattern observed
atthehighlatitudes could eventually change in response to the expected
declineinwater availability due to theinterplay between global warm-
ing and anticipated phenology?. In fact, recent observational studies
suggest that global forests are switching from a period dominated by
the positive effects of CO, fertilization to aperiod characterized by the
progressive saturation of the positive effects of fertilization on carbon
sinks and the rise of negative impacts of climate change?®?.

Forest management and resilience

The results shown thus far have focused on the role of natural driv-
ers in modulating spatial and temporal variations in forest resilience.
However, anthropogenic disturbances, such as forest management
and land use change, have the potential toinfluence the ability of forest
ecosystems to recover from perturbations by directly affecting tree
species, age distribution, cover density, rooting depth and primary
productivity*®* (Extended Data Fig. 2c and Extended Data Fig. 7a,b).
To factor out such effects, we analysed long-term TAC and 6TAC for
managed and intact forests under similar background climate (Meth-
ods and Extended Data Fig. 8). Intact forests have considerably lower
long-term TAC (that s, higher forest resilience) than managed forests
(0.13and 0.21, respectively; Fig. 2a). This finding reinforces the expec-
tation that intact forests have a higher capacity to withstand external
perturbations thanks to their typically higher structural complexity and
speciesrichness®**, Independent observational evidence emphasizes
the contribution of human pressures in the decline of forest resilience
over recent decades***%*, Interestingly, in terms of temporal trends
(6TAC), managed and intact forests do not present significant differ-
ences and show comparable fractions of forests experiencing positive
trends (72% and 66%, respectively, Fig. 2b) and hence decreasing resil-
ience. Thisis animportant finding because it suggests that the average
level of forest resilience in a given climate is heavily affected by forest
management, whereas its ongoing temporal variations (Fig. 1a,b) are
controlled by large-scale climate signals. The observed global trends,
therefore, plausibly reflect the effective climate-induced changes in
the capacity of forests to withstand external perturbations.
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Fig.1| Temporal variations of forest resilience and its key drivers. a, Spatial
map of the temporal trend of TAC (§TAC). Positive STAC values (for example,
tropical forests) suggestareductioninrecovery ratesand thusadeclinein
resilience, and vice versafor negative 6 TAC values (for example, boreal
forests). The values are averaged over a1° x 1° moving window for visual
purposes.b, §TAC asinabinned as a function of climatological temperature
and precipitation. Theblack dots indicate bins with average values that are
statistically different from zero (two-sided Student’s -test; P value < 0.05).

¢, Frequency distribution of the differences in TAC computed for two
independent temporal windows (2011-2020 minus 2000-2010) and shown
separately for different climate regions. The numbersrefer to the percentage

Resilience and primary productivity

Regardless of the forest type, changes in forest resilience may trigger
variationsin gross primary productivity (GPP) and vice versa, based on
amutual causal link. Understanding the interplay between these two
variablesis crucial given the role of GPPin the global carbon cycle®. We
explored this by analysing the correlation of satellite-based GPP retriev-
als** and TAC at the annual scale (short-terminterplay) and comparing
thetrendsin GPP and TAC (long-terminterplay; Methods). In the short
term, intact forests show alower correlation between GPP and TAC than
managed forests (Fig. 2c), probably because resilience is on average
higherinintactecosystems (Fig.2a) and therefore probably less critical
for productivity. Suchbi-directional interactions translate into anega-
tive correlation between GPP and TAC, witha closer linkin dry and cold
climates, probably reflecting the potential amplification of the two-way
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ofthe observations lower and greater than zero; the asterisks indicate
distributions with averages that are statistically different from zero (two-sided
Student’st-test; Pvalue < 0.05). The thinverticallinein each plot shows the
distribution average.d, The cover fraction corresponding to each climate
regionand colour codereportedin cand shown over the latitudinal gradient.
e, Thezonal average of thetrend in TAC (6 TAC) as determined by the three
drivers (X) at 5°latitudinal resolution and the corresponding 95% confidence
interval shownasacolouredline and shaded band, respectively. The colours
reflectthe three different driver categories: forest density, background
climate and climate variability.

interplayinthese regions (Fig.2d,e).Inthe long term, about 70% of both
managed and intact forests are experiencing a positive trend in GPP at
present, butin 50% of these areas (about 36% in absolute terms), this
occursincombination withapositive trend in TAC (Fig. 2f, dark red pat-
terns). Thisimplies that aconsiderable fraction of forest areaisincreas-
ing primary productivity while also experiencing adeclining resilience,
thereforeleading to an expanding but more vulnerable forest sink. The
widespread observations of rising tree mortality? as well as observations
of the growing terrestrial carbon sink¥, confirm the co-occurrence of
such antagonistic processes in response to global change?.

Early signals of abrupt forest decline

Asaloss of forest resilience increases the sensitivity to external pertur-
bations™, we explored the potential of STAC to work as an early-warning
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Fig.2|Effect of forest managementonforestresilience and interplay with
GPP. a, Frequency distributions of long-term TAC(2000-2020) for managed
forests (MF) andintact forests (IF) located in asimilar background climate.
The coloured numbersreport the respective averages, the top labels refer to
the mean of the differences (diff.) in long-term TAC between managed and
intact forests, and the asterisk indicates distributions that are statistically
different (two-sided Student’s t-test; P value < 0.05). b, The same as for abut for
6TAC; the coloured numbers refer to the percentage of the observations lower
andgreater thanzero (ontheleft and right of 0 on the x-axis, respectively).

signal of abruptforest decline (theoretical framework described in Sup-
plementary Methods 1and 2). To exclude the effect of land manage-
ment (for example, apparent abrupt declines (ADs) driven by forest
harvest), we limited the analysis to global intact forests, with a focus
on tropical and boreal regions that together cover about 97% of the
investigated domain (Extended Data Fig. 8). ADs are defined here as
sudden changesin the state of the forest ecosystem and detected, for
arange of severities, as negative anomalies of 1to 6 times the standard
deviation (o) of mean growing-season KNDVIwith respect to the refer-
enceundisturbed meaninthe timeseries. In this analysis, we quantify
whether declining trends in resilience (that is, increases of S5TAC) are
associated withaconsequent abrupt shiftin the system, regardless of
the disturbance type (details in Methods).

Atthegloballevel, intact forests have a probability of AD conditional
onéTACgreater than 0.5 (Fig. 3a). This signal is statistically significant
andincreases with the severity of AD, suggesting that the progressive
deterioration of ecosystem states, as tracked by the decline of resil-
ience, has probably contributed to the upsurge of negative anomalies
in forest dynamics. The emerging relation is mainly driven by boreal
forests, particularly those in central Russiaand western Canada, where
thereisanemergent, localized declinein forest resilience (Fig. 1a). Such
patterns may indicate thatin these zones the AD is following the drifting
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¢, Thesame as for bbut for the temporal correlation between annual GPP and
TAC, denoted as p(GPP,TAC). d, A spatial map of p(GPP, TAC). e, p(GPP,TAC)
binned asafunction of climatological precipitationand temperature.
Theblack dotsindicate bins with average values that are statistically different
fromzero (two-sided Student’s t-test; P value < 0.05). f, A spatial map of the
areas, with different colours for the four combinations of positive/negative
6GPPand 6 TAC. The cover fractions of each of the four classes for managed and
intact forests arereported instacked bars.

towards a critical resilience threshold, which s probably triggered by
thechangesinenvironmental drivers occurring atthe northernmost lat-
itudes®. Insect outbreaks, which are typically favoured by water stress*,
may represent one of the main disturbances that have ultimately caused
such ADs in the ecosystem state*®*., On the contrary, ADs in tropical
forests are not statistically associated with high STAC values (Fig. 3a).
In these regions, fast and strong disturbance events, such as fires*? or
droughts*, may induce an AD independently of long-term increasing
trendsin CSD (refs. **; here represented by 5TAC). The above-mentioned
hypotheses are also consistent with the dominant climate drivers of
6TAC inboreal and tropical regions (background climate and climate
variability, respectively, Fig. 1d,e) and further supported by several
independent pieces of evidence (for example, refs, 26304445)

Critical threshold mechanisms

To further explore the threshold mechanisms and the causality associ-
ated with ADs, weretrieved TAC for the year preceding the occurrence
of an AD (hereafter referred to as observed TAC,,)—and thus reflect-
ing the threshold value of resilience before the AD of the ecosystem.
For each AD event, we retrieved the corresponding ecosystem toler-
ance expressed as the difference between TAC,, and its average TAC
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occurrence of AD conditional on the values of 6 TAC for different severities of
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computed in pre-disturbance conditions (details in Methods). This
metricreflects the absoluteincrease in TAC that an ecosystemin equi-
librium cantolerate before reaching critical conditions of AD. We found
that, despite the average slow recovery rates (Extended Data Fig.1and
Supplementary Discussion1), ecosystems frequently exposed to water
limitations experience ADs at higher levels of TAC,, (Fig. 3b), thanks
to their higher tolerance compared to tropical-humid and cold-dry
forests (Fig. 3¢). These patterns are probably due to the long-term
adaptation of tree species in arid regions that leads to structural and
physiological adaptation to water limitations (for example, deeper
rooting systems, resistance to cavitation and higher root/shoot ratio),
whereas humid and cold biomes have a higher vulnerability to water
shortage*®*.

To evaluate the proximity of present intact forests to their critical
resiliencethreshold, we extrapolatedin space the value of TAC,, by the
use of the RF regression algorithm and compared it with TAC retrieved
for the year 2020. Proximity takes negative or zero values when TAC,,
has already been reached in 2020 and positive values when there are
stillmargins before reaching the critical threshold (Methods). Results
show that, at the end of our observational period, about 30% of global
intact forests have already reached or overpassed their TAC,, (Fig. 3d,e).
More critically, about 23% experienced aconcomitantincreasein 6TAC
(Fig.1a), therefore implying an ongoing reduction in ecosystem resil-
ience to levels that are already close to an AD and, potentially, to a tip-
ping point. We estimated that 3.32 Pg C of GPP is exposed to such critical
conditions, prominently in tropical forests (93%), an amount about
three times larger than the carbon losses due to deforestation in the
Brazilian Amazon during the past ten years?. We point out that these
critical conditions are not sufficient to determine a regime shift (Sup-
plementary Methods 3). However, they represent astrong indication of
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therising risks of anincreased instability and vulnerability to hazards
of forest biomes. Thisis particularly critical for tropical forests, where
the observed recent decline of the carbon sink***’ could by further
exacerbated by the continuous and progressive deterioration of forest
resilience and the parallelincrease in tree mortality and turnover rate.

Conclusions

Our analysis reveals that in recent decades both intact and managed
forests have experienced substantial changes in resilience controlled
by large-scale climate signals. We found that tropical, temperate and
arid forests underwent a decline in resilience probably related to the
concomitant increase in water limitations and climate variability. On
the contrary, benefitsinduced by climate warming and CO, fertilization
have outweighed such negative effects in much of the boreal biome,
ultimately leading to an increase in forest resilience. The increasing
fragility to external perturbationsin combination with an enhancement
in productivity for a considerable fraction of global forests (about
36%) confirms the co-occurrence of antagonistic processes driving
photosynthesis and tree mortality in response to global change?. We
estimate that about 23% of intact undisturbed forests have already
reached their critical threshold for an AD and are experiencing a con-
comitant further degradation of resilience. Considering the expected
transition from a CO,-fertilization-dominated period to a warming/
drying-dominated period” ?, the observed negative trajectories of
forest resilience suggest potential critical consequences for key ecosys-
tem services, such as carbon sequestration. Therefore, itisbecoming
urgenttoaccount for these trendsin the design of effective forest-based
mitigation strategies to avoid future unexpected negative events trig-
gered by the increasing vulnerability of carbon stocks. In this regard,



our global data-driven assessment shows that resilience thinking>°
canbedeveloped effectively in ascience-based and solution-oriented
framework to support the many challenges of forest management in
times of rapid climatic changes.
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Methods

Climatedrivers

To explore the impact of climate on forest resilience (see the follow-
ing sections), we used monthly averaged total precipitation, 2-m air
temperature, evapotranspiration deficit and surface solar radiation
downwards acquired from the ERA5-Land reanalysis product at 0.1°
spatial resolution for the 2000-2020 period (https://cds.climate.coper-
nicus.eu/cdsapp#!/home). Evapotranspiration deficit was quantified
as the total precipitation minus evapotranspiration. In this study, we
referred to climate regions as defined by the Koppen-Geiger world
map of climate classification® (http://koeppen-geiger.vu-wien.ac.at/
present.htm). The original 31 climatic zones were merged into major
zones and only those characterized by vegetation cover were included
inourstudy (tropical, arid, temperate and boreal; Extended DataFig. 8).

Vegetation dynamics

NDVI data acquired from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument aboard the Terra satellite was used to
derive changesin global vegetation for the period 2000-2020. We used
cloud-free spatial composites provided at 16-day temporal resolution
and 0.05° spatial resolution (MOD13C1 Version 6; https://Ipdaac.usgs.
gov/products/mod13clv006/) and retained only pixels withgood and
marginal overall quality. The MODIS-derived NDVI dataset represents a
state-of-the-art product of vegetation state whose retrieval algorithm is
constantly improved®?, and being derived from aunique platformand
sensor, itis temporally and spatially consistent. Vegetation dynamics
were analysed in terms of KNDVI, anonlinear generalization of the NDVI
based onref. 2 and derived as follows:

KNDVI=tanh(NDVI?) 1

kNDVI has recently been proposed as a strong proxy for ecosystem
productivity that shows high correlations with both plot level measure-
ments of primary productivity and satellite retrievals of sun-induced
fluorescence®. In addition, KNDVI has been documented to be more
closely related to primary productivity, to be resistant to saturation,
biasand complex phenological cycles, and to show enhanced robust-
ness tonoise and stability across spatial and temporal scales compared
to alternative products (for example, NDVI and near-infrared reflec-
tance of vegetation). For these reasons, it has beenretainedin this study
asthe preferred metric to describe the state of the forest ecosystem.

To obtain an accurate estimate of resilience indicators, vegetation
time series need to be stationary without seasonal periodic patterns
orlong-term trends*. To this aim, vegetation anomalies were obtained
from kNDVIdata by first subtracting the multi-year 16-day sample mean
andthenremovinglinear trends from the resulting time series. Missing
data, dueforinstance to snow cover affecting theretrieval of reflectance
properties, have been gap-filled by climatological kNDVI values. The
time series of kKNDVI-based vegetation anomalies was used to derive
resilience indicators and assess their spatial and temporal variations
(see next sections).

Interannual changes in vegetation were assessed in terms of
growing-season-averaged kNDVI. To this end, a climatological grow-
ing season that spanned months with at least 75% of days in the green-
ness phase was derived from the Vegetation Index and Phenology
satellite-based product® (https://vip.arizona.edu/) and acquired for
the 2000-2016 period at 0.05° spatial resolution. In addition, forest
cover (FC) fraction was derived from the annual land-cover maps of
the European Space Agency’s Climate Change Initiative (https:/www.
esa-landcover-cci.org/)* over the 2000-2018 period at 300-m spatial
resolution. FC was retrieved by summing the fraction of broadleaved
deciduous, broadleaved evergreen, needle leaf deciduous and needle
leaf evergreen forest. FC was resampled to 0.05° to match the kNDVI
spatial resolution.

Spatial patterns of slowness and its dependence on
environmental factors

In this study, we quantified the resilience of forest ecosystems—their
ability to recover from external perturbations—by the use of the 1-lag
TAC (refs. *%). Such an indicator was initially computed on the whole
time series of vegetation anomalies (2000-2020) for forest pixels
with less than 50% missing data in the original NDVI and FC greater
than 0.05 and referred to in the text as long-term TAC. This analysis
was used to assess the spatial patterns of the forest slowness mediated
by environmental factors that affect plant growth rates and capacity
torecover from perturbations. The long-term TAC was explored both
inthe geographic and climate space (Extended Data Fig. 1). In the cli-
mate space, long-term TAC was binned in a 50 x 50 grid as a function
of average annual precipitation and temperature, both computed over
the 2000-2020 period, using the average as an aggregation metric
weighted by the areal extents of each record. We retained only bins
with atleast 50 records.

To explore the potential drivers of long-term TAC, we developed
an RF regression model® and predicted the observed long-term TAC
(response variable) based on a set of environmental features (predic-
tors). The use of machine learning in general and of RF in particular,
being nonparametric and nonlinear data-driven methods, does not
require a priori assumptions about the functional form relating the
key drivers and the response functions. The environmental variables
include vegetation properties (FC and growing-season-averaged kNDVI)
and climate variables (total precipitation, 2-m air temperature, evapo-
transpiration deficit and surface solar radiation downwards). Each of
the climate variables was expressed in terms of average, coefficient
of variation and 1-lag autocorrelation and resampled to 0.05° spatial
resolution to match the spatial resolution of kKNDVI. All environmen-
tal variables were computed annually and then averaged over time,
except the autocorrelation that was computed directly for the whole
period, analogously to the long-term TAC. This resulted in a set of 14
predictorsrepresenting the forest density, the background climate, the
climate variability and its TAC in the observational period (Extended
Data Table 1). The RF model was developed by splitting the observed
long-term TAC into two separate samples: 60% of records were used
for model calibration, and the remaining 40% were used to validate
model performances in terms of coefficient of determination (R?),
mean squared error and percentage bias (PBIAS). Each record refers
to a 0.05° pixel. The RF implemented here uses 100 regression trees,
whose depth and number of predictors to sample at each node were
identified using Bayesian optimization. The general model formula-
tionis as follows:

TAC=f(X) +& (2)

inwhichfis the RF regression model, X are the environmental predic-
tors and gqare the residuals. We found that the model explains 87% of
the spatial variance (R?) of the observed long-term TAC with a mean
squared error of 0.007 and an average overestimation of 0.058 (PBIAS;
Extended Data Fig. 2a). By definition, machine learning methods are
not based on the mechanistic representation of the phenomena and
therefore cannot provide direct information on the underlying pro-
cesses influencing the system response to drivers. However, some
model-agnostic methods can be applied to gain insights into the
outputs of RF models. Here we used variable importance metrics to
quantify and rank how individual environmental factors influence
TAC (Extended Data Fig. 2b). Furthermore, using partial dependence
plots derived from the machine learning algorithm RF, we explored
the ecosystem response function (TAC) across gradients of vegeta-
tionand climate features (Supplementary Discussion1and Extended
Data Fig.2c-f).


https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
https://lpdaac.usgs.gov/products/mod13c1v006/
https://lpdaac.usgs.gov/products/mod13c1v006/
https://vip.arizona.edu/
https://www.esa-landcover-cci.org/
https://www.esa-landcover-cci.org/

CSDindicators

Toexplore the temporal variationin forest resilience, we used CSD indi-
cators, here quantified in terms of temporal changes in TAC retrieved
for two consecutive and independent periods ranging from 2000 to
2010 and from 2011t0 2020, and assessed the significance of the change
inthe sampled mean aggregated for different climate regions through
atwo-sided t-test (Fig. 1c). This analysis was complemented by the
computation of TAC on the annual scale over a 2-year lagged temporal
window (3-year window size) to track the temporal changesin CSD. This
resulted in a time series of TAC with an annual time step.

We point out that temporal dynamics of annual TAC are driven by
two processes: the changes in the resilience of the system that affect
the velocity of the recovery from external perturbations and the con-
founding effects of the changesin autocorrelation of the climate driv-
ers (X, that directly affect the autocorrelation of NDVI. Given the
specific goals of this study, we factored out the second process from
the total TAC signal to avoid that anincreasing autocorrelation in the
drivers would affect our analysis and conclusions about the resilience
and the potential increase in instability*®. For this purpose, we disen-
tangled the temporal changesin TAC due to variations in autocorrela-
tion in the climate drivers (TAC|X,.) by adopting the space-for-time
analogy and applied the RF model (f) at an annual time step (¢) in a set
of factorial simulations as follows:

TAC [ Xpe=f (X)) =f (X450, X20%° 3)

Thefirst term on the right side of equation (3) is the RF model simula-
tion obtained by accounting for the dynamics of all predictors, and the
second term is the RF model simulation generated by considering all
predictors dynamic except the factors of autocorrelation in climate
that are kept constant to their first-year value (year 2000). For such
runs, we used predictors computed on an annual scale over a 2-year
lagged temporal window, consistently to the TAC time series. We found
that the direct effects of autocorrelation in climate have led to a posi-
tive trend of TAC in dry zones (due to the increasing autocorrelation
ofthe driversin these regions) and to an opposite effect in temperate
humid forests (Supplementary Fig. 3). To remove these confounding
effects, the estimated term TAC'|X,. is factored out from the TAC' by
subtraction to derive an enhanced estimate of annual resilience that
isindependent of autocorrelation in climate (Extended Data Fig. 3).

Long-term linear trends computed on the resulting enhanced TAC
time series (6TAC) represent our reference CSD indicator used in this
study to explore the changes in forest resilience. 5TAC was quantified
foreach grid cell (Fig.1a) and represented in the climate space following
the methodology previously described (Fig.1b). We then assessed the
significance of the trends at bin level by applying atwo-sided ¢-test for
the sampled trend distributions within each bin. This significance test
isindependent from the structural temporal dependencies originat-
ing from the use of a 2-year lagged temporal window to compute the
TAC time series.

Following an analogous approach described in equation (3), we disen-
tangled the effect of the variationin forest density, background climate
and climate variability on temporal changesin TAC (Fig.1d,e). We recog-
nize that other environmental factors not explicitly accounted forinour
RF model could play aroleinmodulating the temporal variations in TAC.
However, given the comprehensiveness of the suite of predictors used
inequation (2) (Extended Data Table1), it seems plausible that residuals
mostly reflect the intrinsic forest resilience, the component intimately
connected to the short-term responses of forests to perturbations,
which is not directly related to climate variability. Forest ecosystem
evolutionary processes could also play a role, but longer time series
would be required to reliably capture these dynamics. Furthermore,
abruptdeclines (ADs) in the vegetation state and following recoveries,
similarly to those potentially originating from forest disturbances

(for example, wildfires and insect outbreaks), could influence the TAC
changes. However, such occurrences, being distributed across the
globe throughout the whole period, are expected to only marginally
affect the resulting trend in TAC time series.

Sensitivity analysis

To assess the robustness of our results with respect to the modelling
choices described above, we performed aseries of sensitivity analyses
for the difference in TAC retrieved for the two independent periods
(2000-2010and 2011-2020). To this aim, we tested their dependence
on:the quality flag of the NDVI data used for the analyses (good, good
and marginal); the gap-filling procedure tested on different periods
(year and growing season); the inclusion or exclusion of forest areas
affected by ADs; the threshold on the maximum percentage of missing
NDVIdataallowed at the pixel level (20%, 50% and 80%); the threshold
on the minimum percentage of FC allowed at the pixel level (5%, 50%
and 90%); and the pixel spatial resolution used for the analyses (0.05°,
0.25°and1°).Inaddition, we tested the sensitivity of the trend in total
TAC signal on the moving temporal window length used to calculate
autocorrelation at lag 1. Results obtained for the different configura-
tions were compared in terms of frequency distributions, separately
for climate regions (Extended DataFig. 4), and further exploredinthe
climate space (Extended Data Figs. 5and 6). Outcomes of the sensitivity
analysis are discussed in Supplementary Discussion 2.

Interplay between GPP and CSD

Resilience and GPP interact with each other through mutual causal
links. On one hand, a reduction in forest resilience makes the system
more sensitive to perturbations with potential consequent losses in
GPP (ref. %).On the other hand, areductionin GPP may lead toa decline
in resilience according to the carbon starvation hypothesis, and may
be associated with increasing hydraulic failure*. To explore the link
between forest resilience and primary productivity, we quantified the
correlation between TAC and GPP. Estimates of GPP were derived from
the FluxCom Model Tree Ensemble for the 2001-2019 period at 8-daily
temporal resolution and 0.0833° spatial resolution and generated
using ecosystem GPP fluxes from the FLUXNET network and MODIS
remote sensing data as predictor variables® (http://www.fluxcom.
org/). Annual maps of GPP were quantified and resampled to 0.05°
to match the temporal and spatial resolution of TAC time series. The
Spearman rank correlation (p) was then computed between annual
GPP and TAC over a 1° spatial moving window to better sample the
empirical distribution of the two variables (Fig. 2d). The significance of
p(GPP,TAC) was assessed over the climate space separately for each bin
(Fig. 2e), similarly to the approach used to test the significance of 6 TAC.
Furthermore, we explored the relationships between the trend in GPP
(6GPP) and the trend in TAC (6TAC) by clustering the globe according
tothedirections of the long-termtrajectories of the above-mentioned
variables (Fig. 2f).

Disentangling the impact of forest management

To characterize TAC on different forest types and disentangle the
potential effects originating from forest management, results were
separately analysed for intact forests and managed forests. Intact
forests were considered those forest pixels constituting the Intact
Forest Landscapes® dataset (https:/intactforests.org/). Intact Forest
Landscapes identifies the forest extents with no sign of significant
human activity over the period 2000-2016 based on Landsat time
series. The remaining forests pixels—not labelled as intact—were
considered as managed forests (Extended DataFig. 8). The resulting
forest type map is consistent with those used for United Nations
Framework Convention on Climate Change reporting™®, although with
more conservative estimates of intact forests in the boreal zone due
to the masking based on FC and percentage of missing data applied
in this study.
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We analysed the differences in long-term TAC (computed for the
whole 2000-2020 period) between managed and intact forests by
masking out the potential effect of climate background. To this aim,
we compared the climate spaces generated separately for managed
and intact forests by extracting only those bins that are covered by
both forest classes. The resulting distributions—one for each forest
class—have the same sample size, and each pair of elements shares
the same climate background. Potential confounding environmental
effects on average recovery rates are, therefore, minimized. We then
applied a two-sided t-test for analysing the significance of the differ-
enceinthesampled means (Fig. 2a). An analogous approach was used
totest the differencesin 6TAC and p(GPP,TAC) between managed and
intact forests (Fig. 2b,c).

Early-warning signals of abrupt forest declines

When forest ecosystems are subject to an extended and progressive
degradation, the loss of resilience can lead to an AD (refs. >). Such
abrupt changes cantrigger aregime shift (tipping point) depending on
the capacity of the system to recover from the perturbations (Supple-
mentary Methods1and 2). We investigated the potential of changesin
TAC as early-warning signals of ADs in intact forests over the 2010-2020
period. To this aim, we quantified at the pixel level ADs as the events
occurring on a certain year when the corresponding growing-season
average kNDVIwas more than n-times local standard deviation below
thelocal mean. Local meanand standard deviation (o) were computed
over the 10-year antecedent temporal window (undisturbed) period
and nvaries between1and 6 with higher values reflecting more severe
changes in the state of the system. For each pixel and for each fixed n
value, werecorded only the first AD occurrence, thusimposing a univo-
calrecord for each abrupt change in the state of the system.

Wethen explored whether the retrieved ADs were statistically asso-
ciated with antecedent high values of §TAC. To avoid confusion with
the attribution of causality, for each AD that occurred at time ¢ (over
the2010-2020 period), we derived the 5TAC over the temporal window
2000 - (¢-1). Theresulting trend in 65TAC is therefore antecedent and
independent of the changes in vegetation associated with the AD. Then,
for each pixel with an AD at time ¢, we also extracted randomly one of
the undisturbed (with no AD) adjacent pixels and retrieved TAC over
the same temporal window. This analysis produced two distributions
of STAC associated with pixels with and without ADs (AD and no AD,
respectively). The two distributions have the same size and each pair
of elements shares similar background climate. We calculated the prob-
ability of occurrence of AD conditional on the trend in STAC (AD|6TAQ)
asthefrequency of ADs for which6 TAC(AD)|>6TAC (no AD), and the
significance of the differencein the two sampled means (AD and no AD)
was evaluated through atwo-sided ¢-test. Probability and significance
were assessed for different climate regions and severity of ADs (Fig. 3a).
High statistically significant probabilities suggest that the AD is fol-
lowing the drifting towards a critical resilience threshold plausibly
associated with changes in environmental drivers.

We complemented the aforementioned analyses by retrieving the
tolerance and proximity to AD, hereafter determined for a 3o severity.
We first quantified the TAC that proceeded the occurrence of an AD
and followed a progressive loss of resilience as captured by positive
O6TAC. This value, hereafter referred to as abrupt decline temporal
autocorrelation (TAC,p), reflects the TAC threshold over which we
observed an abrupt change in the forest state (Fig. 3b). The tolerance
to AD was quantified as the difference between the local TAC,, and
the TAC value averaged over the 2000-2009 period to characterize
the pre-disturbance conditions. The tolerance metric was explored
across a gradient of aridity index* (Fig. 3c).

TAC,,canbedirectly retrieved only on those forest pixels that have
already experienced an AD. As a considerable fraction of undisturbed
forests could potentially be close to their critical TAC threshold, or even
have already passed it, itisimportant to determine their TAC,. To this

aim, we developed an RF regression model that expresses the TAC,,
as afunction of the set X of environmental variables used in model f
(equation (2)) but excluding the autocorrelation in climate drivers
(Xeaucea) already disentangled in the TAC signal. The general formula-
tionis as follows:

TACxp =8 Xreduced) + &g (4)

in which gis the RF regression model, X;.q...q are the environmental
predictors and £, are the residuals. Implementation, calibration and
validation of g follow the same rationale described before for the f
model. We found that the RF model explains 50% of the variance (R2) of
the observed TAC,p,, withameansquared error of 0.019 and an average
underestimation of 0.86 (PBIAS).

The RF model was then used to predict the TAC,, over the whole
domain ofintact forests and served as input to quantify the proximity
to AD of undisturbed forest pixels at the end of the observational period
(year 2020). Here we defined the proximity metric as the difference
between the value of TACin2020 and TAC,p. Proximity takes negative
orzero values when TAC,, has already been reached (TAC?°2° > TAC,p
and positive values when there are still margins before reaching
the critical threshold (TAC?°?° < TAC,; ). Together 5TAC>0 and
TAC?%% > TAC,p therefore represent the most critical conditions, as
they indicate that the critical resilience threshold for AD has already
beenreached and the ecosystem is continuing to lose its capacity to
respond to external perturbations. We finally quantified the amount
of GPP potentially exposed to such critical conditions by linearly
extrapolating the GPP for the year 2020 (available GPP data stop in
2019) and overlaying it on the map of critical conditions (proximity to
AD<0and6TAC > 0).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The climate datasets used in this study are publicly available from the
ERAS5-Land reanalysis product (https://cds.climate.copernicus.eu/
cdsapp#!/home) and from the Koppen-Geiger world map of climate
classification (http://koeppen-geiger.vu-wien.ac.at/present.htm). NDVI
datawere acquired from MODIS (MOD13Cl1 Version 6, https://Ipdaac.
usgs.gov/products/mod13c1v006/), land surface phenology datawere
acquired from the Vegetation Index and Phenology satellite-based
product (https://vip.arizona.edu/), and FC data were acquired from
the European Space Agency’s Climate Change Initiative (https:/www.
esa-landcover-cci.org/). GPP fluxes are available from the FluxCom
product (http://www.fluxcom.org/) and the spatial delineation of intact
forests is available from the Intact Forest Landscapes dataset (http://
intactforests.org/).

Code availability

The custom MATLAB (R2017b) code written to analyse the data,
develop the RF model and generate figures is available at https://doi.
org/10.6084/m9.figshare.19636059.v1.
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Extended DataFig.1|Spatial variation of forest slowness. (a) Spatial map of long-term TAC computed for the whole 2000-2020 period. (b) Long-term TAC
binned as afunction of climatological temperature and precipitation.
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Extended Data Table 1| Environmental variables used in the resilience model

Variable name Category Acronym
Forest cover Forest density FC.f1d
Growing-season KNDVI Forest density gsKNDVI.fd
Total precipitation Background climate tp.bc
Total precipitation Climate variability tp.cv
Total precipitation Autocorrelation tp.ac
2-meter air temperature Background climate t2m.bc
2-meter air temperature Climate variability t2m.cv
2-meter air temperature Autocorrelation t2m.ac
Evapotranspiration deficit Background climate def.bc
Evapotranspiration deficit Climate variability def.cv
Evapotranspiration deficit Autocorrelation def.ac
Surface solar radiation downwards Background climate ssrd.bc
Surface solar radiation downwards Climate variability ssrd.cv
Surface solar radiation downwards  Autocorrelation ssrd.ac

Forest and climate features used as predictors to characterize the response function of forest resilience within a RF predictive model.



Extended Data Table 2 | Long-term TAC and 6 TAC for different climate regions and forest domains

Climate Forest Sar_nple TAC (2000-2020) 8TAC
regions type (#:il)fgls) Average Lower ci Upper ci Average Lower ci Upper ci
Managed 434485 3.34E-01 3.33E-01 3.35E-01 2.00E-03 1.98E-03 2.03E-03
Tropical Intact 167609 6.48E-02 6.43E-02 6.53E-02 1.10E-03 1.06E-03 1.14E-03
Global 602094 2.58E-01 2.57E-01 2.58E-01 1.63E-03 1.61E-03 1.66E-03
Managed 61001 6.84E-01 6.82E-01 6.85E-01 1.25E-03 1.19E-03 1.32E-03
Arid Intact 402 6.33E-01 6.12E-01 6.54E-01 1.88E-03 9.93E-04 2.77E-03
Global 61403 6.83E-01 6.82E-01 6.84E-01 1.26E-03 1.19E-03 1.33E-03

Managed 456084 4.43E-01 4.42E-01 4.44E-01 1.44E-03 1.41E-03 1.46E-03
Temperate Intact 9724 1.23E-01 1.20E-01 1.27E-01 1.19E-03 1.01E-03 1.37E-03

Global 465808 4.36E-01 4.35E-01 4.37E-01 1.43E-03 1.40E-03 1.45E-03

Managed 541654 2.93E-01 2.92E-01 2.93E-01 | -1.48E-03 -1.51E-03  -1.44E-03

Boreal Intact 54164 2.31E-01 2.30E-01 2.32E-01 | -2.14E-03 -2.25E-03  -2.03E-03
Global 595818 2.87E-01 2.87E-01 2.88E-01 | -1.54E-03 -1.57E-03 -1.51E-03

Managed 1493224 3.73E-01 3.72E-01 3.73E-01 6.54E-04 6.38E-04 6.71E-04

Globe Intact 231899 9.31E-02 9.26E-02 9.36E-02 | 7.15E-04 6.76E-04 7.54E-04
Global 1725123 3.31E-01 3.30E-01 3.31E-01 6.68E-04 6.53E-04 6.83E-04

Values report the average and the corresponding lower and upper 95% confidence intervals (ci). Sample size of each domain is reported in terms of number of 0.05°x0.05° pixels.
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The climate datasets used in this study are publicly available from the ERA5-land reanalysis product (https://cds.climate.copernicus.eu/cdsapp#!/home) and from
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acquired from the Moderate Resolution Imaging Spectroradiometer (MOD13C1 Version 6, https://Ipdaac.usgs.gov/products/mod13c1v006/), land surface
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Study description

Research sample

Sampling strategy

Data collection
Timing and spatial scale

Data exclusions

Reproducibility

Randomization

Our contribution provides the first observation-based global-scale assessment of how forest resilience evolved in recent decades in
response to global change. For this purpose, we developed a novel methodology that integrates theoretical bases of the resilience of
nonlinear dynamical systems approaching a tipping point, satellite-based kernel Normalized Difference Vegetation Index, recently
proposed as a strong proxy for ecosystem productivity, and machine learning techniques.

Spatial and temporal variations in forest resilience were retrieved from MODIS NDVI data, analysed at the pixel scale (0.05°) and
aggregated per climate regions (globe, tropical, arid, temperate, boreal) and forest types (managed, intact). Analyses produced at the
pixel level were meant to explore the local variations in forest resilience. Analyses conducted separately per climate region and forest
type were aimed at characterizing the overall trajectories of forest resilience over large climatically consistent zones and
disentangling the human-induced effect on vegetation dynamics (e.g., forest management). The MODIS NDVI product used in this
study (MOD13C1 Version 6) being derived from a unique platform and sensor, it is temporally and spatially consistent. Furthermore,
the 16-day acquisition time interval and the available temporal coverage (2000-2020) make the MOD13C1 product a suitable dataset
to explore spatial and temporal variations in forest resilience.

When statistics are analyzed at climate region/forest type scale, we included in the sample all pixels that have passed the screening
procedure (see section below “Data exclusions”). Sample sizes are typically larger than 50000 pixels (Supplementary Table 2) and
therefore are considered fully representative of the climate region/forest type investigated.

When results are binned in a 50x50 grid as a function of annual precipitation and temperature (e.g., Fig. 1b), we retained only bins
with at least 50 records. Such sampling strategy appears a reasonable compromise to identify major climate features and in parallel
to reduce possible noise in bins poorly representative.

When differences between managed and intact forests are analyzed, the potential effect of climate background has been removed.
To this aim, we compared the climate spaces generated separately for managed and intact forests by extracting only those bins that
are covered by both forest classes. The resulting distributions - one for each forest class - have the same sample size and each pair of
elements shares the same climate background. This method allows to filter out the potential confounding effect of climate
background in the two classes of forests. Similar approach was used to calculate the probability of abrupt decline conditional on
negative trend in resilience. The resolution of the climate spaces (50x50 bins) ensures samples of sufficient sizes for statistical
analyses.

All data utilized in this study are acquired from satellite-based datasets and reanalysis products (see section “Data availability”).
We quantify the spatial patterns of forest resilience at the global scale and explore its temporal evolution over the period 2000-2020.

Resilience indicators were derived for forest pixels with less than 50% missing data in the original NDVI data of good and marginal
quality and with forest cover greater than 0.05. In order to assess the robustness of our results with respect to the modelling choices
described above we performed a series of sensitivity analyses.

Sensitivity to the quality flag. The NDVI quality flag (QF) determines the reliability of the original satellite retrievals and therefore
affects the robustness of the derived estimates of forest resilience. The quality flags “good” (description: “use with confidence”) and
“marginal” (description: “useful, but look at other QA information”) are typical quality flags utilized for remote sensing applications.
In general, estimates based exclusively on the good quality flag are more robust but have lower spatial and temporal coverage
compared to those derivable including also data with marginal quality flags. We tested two different quality screening: QF = good and
QF = good & marginal.

Sensitivity to the percentage of missing data. The percentage of missing data (PMD) allowed at the pixel scale influences the spatial
domain of analysis. Pixels with PMD above a fixed threshold are masked out and are excluded from the analyses of forest resilience.
Lower values of PMD lead to a smaller spatial domain but characterized by pixels with a higher number of NDVI retrievals, the
opposite holds for higher values of PMD. We tested three different PMD thresholds: PMD<20%, PMD<50% and PMD<70%.
Sensitivity to the percentage of forest cover. The percentage of forest cover (PFC) allowed at the pixel scale influences the spatial
domain of the analysis, similarly to PMD. Pixels with PFC below a fixed threshold are masked out and are excluded from the analyses
of forest resilience. Higher values of PFC lead to smaller spatial domain but characterized by pixels more representative of the forest
conditions (higher forest extents at pixel level), the opposite holds for lower values of PFC. We tested three different PFC thresholds:
PFC>5%, PFC>50% and PFC>90%.

Overall assessment. Results of the sensitivity analysis shown in Extended Data Figs. 4-6 and presented in Supplementary Discussion 2
corroborate the robustness of our findings with respect to the modelling choices adopted in our approach (Methods). Therefore, the
implemented model setup (QA=good and marginal, PMD<50%, PFC>5%) appears a reasonable compromise to properly capture the
spatio-temporal dynamics of forest resilience.

Our data-driven modelling is highly reproducible within the computational accuracy on other computing platforms.

The Random Forest regression model (RF) we have developed is based on:
1) random record selection: each tree is built from a separate random sample of the data using bootstrap sampling.
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2) random predictor selection: in a standard tree, each split is created after examining every predictor and selecting the best split
from the number of predictors to sample.

The RF implemented in our study uses 100 regression trees, whose depth and number of predictors to sample at each node were
identified using Bayesian optimization.

Blinding n/a
Did the study involve field work?  [_]Yes — [X]No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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