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High-pressure (HP) environments represent the largest volumetric majority of habitable

space for microorganisms on the planet, including the deep-sea and subsurface

biosphere. However, the importance of pressure as an environmental variable affecting

deep microbial life and their biogeochemical functions in carbon cycling still remains

poorly understood. Here, we designed a new high-volume HP-sediment core sampler

that is deployable on the payload of a remotely operated vehicle and can maintain

in situ HP conditions throughout multi-month enrichment incubations including daily

amendments with liquid media and gases and daily effluent sampling for geochemical

or microbiological analysis. Using the HP core device, we incubated sediment and

overlying water associated with methane hydrate-exposed on the seafloor of the Joetsu

Knoll, Japan, at 10 MPa and 4◦C for 45 days in the laboratory. Diversity analyses

based on 16S rRNA and methane-related functional genes, as well as carbon isotopic

analysis of methane and bicarbonate, indicated the stimulation of both aerobic and

anaerobic methanotrophy driven by members of the Methylococcales, and ANME,

respectively: i.e., aerobic methanotrophy was observed upon addition of oxygen

whereas anaerobic processes subsequently occurred after oxygen consumption. These

laboratory-measured rates at 10 MPa were generally in agreement with previously

reported rates of methane oxidation in other oceanographic locations.

Keywords: methanotrophs, high pressure incubation, methane hydrate, stable isotope probing, marine sediment

INTRODUCTION

The deep-sea and the underlying marine sediment and rock represent the most volumetrically
abundant habitats on the planet for microorganisms, where in situ pressure increases with depth.
However, our understanding of the diversity, physiology, and adaptability of high pressure (HP)-
tolerant (piezotolerant), HP-preferring (piezophilic), and HP-requiring (obligately piezophilic)
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microorganisms remains limited. The first active microbial
communities from deep-sea sediments were described in 1957
from >10,000 meters below sea level (mbsl) in the Philippine
Trench (Zobell and Morita, 1957). The first isolation of an
obligate piezophilic species from deep-sea sediments did not
occur until over 20 years later, which was a gammaproteobacterial
Colwellia species (Yayanos et al., 1981). Since then, driven by
the widespread use of molecular techniques, the diversity of
piezotolerant and (obligately) piezophilic microorganisms has
been extended to many clades of Bacteria (Yanagibayashi et al.,
1999; Kato et al., 2008; Nagata et al., 2010; Zhang et al., 2015) and
Archaea (Zeng et al., 2009; Birrien et al., 2011; Zhang et al., 2015),
and probably varies significantly depending on the particular
environmental setting.

Preliminary experiments have shown sediment-hosted
microbial communities from the deep-sea habitat to be
sensitive to changes in pressure: diversity, as measured by
16S rRNA genes, diverges over time if deep-sea sediments are
maintained at atmospheric vs. at representative hydrostatic
pressures (Yanagibayashi et al., 1999). Unsurprisingly, then,
metabolic activity also differs whether experiments on deep-sea
sediments are conducted at low or high pressures (Picard and
Ferdelman, 2012). The sulfate-coupled anaerobic oxidation of
methane (AOM), a major microbial metabolism worldwide
in marine sediments, has been observed to proceed ∼5-fold
faster during in vitro laboratory incubations when pressures
mimic ∼100m water depth (1.1 MPa) vs. atmospheric pressure
(0.1 MPa; Nauhaus et al., 2002). Similarly, higher rates of
sulfate reduction correlated with higher pressure in a study of
Guaymas Basin hydrothermal sediments, with pressure up to
45 MPa (∼4,500 mbsl) tested (Kallmeyer and Boetius, 2004).
Physical and physiological adaptations of microorganisms to
high-pressure might include alterations to fatty acid synthesis,
membrane protein structure, ribosomal structure/assembly,
methods of motility, and other as-yet unidentified modifications
(Bothun et al., 2004; Simonato et al., 2006; Kato et al., 2007).
Recently, piezophilic bacteria were isolated from ∼2 km-deep
subseafloor sediments, which were buried in energy-limited
deep sedimentary environment and most likely persisted as
spores over geologic time (Inagaki et al., 2015; Fang et al.,
2017).

A significant obstacle in the study of piezophilic
microorganisms has been sample recovery. High-pressure
(e.g., deep-sea and subsurface) environments are generally
difficult and expensive to access, and even once accessed it
is challenging to maintain samples at HP during transport
back to a research vessel and/or the home laboratory. Because
of these logistical challenges, development of new sampling
technology has been identified as a top priority in the field
of HP-microbiology (e.g., Kim and Kato, 2010; Kato, 2011;
Zhang et al., 2011, 2015). Development of deep-subsurface
coring technologies which can maintain in situ pressure through
recovery represents good progress, but can only be deployed
on large drilling vessel such as the JOIDES Resolution or
Chikyu at great expense and time commitment (Parkes et al.,
2009; Kubo et al., 2014). Development of an affordable HP-
sampling and experimental device that could be deployed on

the payload of a piloted or remotely operated vehicle (ROV),
which could retain in situ pressure through sample retrieval
and shipment back to onshore laboratories would enable many
members of the scientific community to pursue environmental
microbiology research at high pressures. A device meeting
many of these criteria was developed at the Japan Agency
for Marine-Earth Science and Technology (JAMSTEC) in the
1990s, and successfully deployed, but was limited to small
volumes of surface sediments (<50mL) and was specifically
designed to perform dilution-to-extinction experiments rather
than stable isotope-probing or amendment incubations at
high pressure in the laboratory (Kyo et al., 1991; Kato et al.,
2008).

In order to address the technical considerations of working
in deep-sea HP-environments, we designed, manufactured, and
tested a new HP-core sampler (hereafter, “HP-Core”). The goal
for this device was to be (i) deployable on the payload of
an ROV, (ii) to have a “push core-like” structure enabling
sampling down to >10 cm below seafloor, (iii) to maintain
HP through recovery onboard ship and shipment to onshore
laboratories, (iv) to have inlet ports for adding liquid media
and/or gas phase (including stable isotope) amendments to
the incubation chamber, and (v) to have an outlet port
to enable time-course tracking of an experiment without
sacrificing pressure on the entire vessel. After fabrication,
deployment of the new HP-sampling device was tested on
deep-sea sediments at the Joetsu Knoll, Japan, during the
JAMSTEC research vessel (R/V) Natsushima cruise NT13–15
in July 2013 at a depth of 985m (i.e., 9.9 MPa). Subsequent
onshore incubation of the deep-sea sediments within the HP-
Core, including liquid media and gaseous amendments, was
performed for 45 days at the Kochi Core Center (KCC),
Japan. We report here microbiological and geochemical results
indicating a successful deployment and onshore use of the HP-
Core.

At the Joetsu Knoll, massive methane hydrates outcrop on
the seafloor, sourced mainly from thermogenically produced
methane (Matsumoto et al., 2005). In addition to this rich
source of reduced carbon, the Joetsu Knoll is bathed in
oxygen-rich bottom water (>210µmol/kg; Gamo and Horibe,
1983; Gamo, 2011), fueling diverse chemosynthetic microbial
consortia. Previous 16S rRNA clone libraries from sediments
at the Joetsu Knoll have revealed the presence of anaerobic
methane oxidizing archaea (e.g., ANME-1 and ANME-2) in
addition to other diverse Archaea and Bacteria (Yanagawa
et al., 2011). Despite the high concentration of oxygen in
overlying bottom waters, the presence, distribution, and/or
activity of aerobic methanotrophs associated with methane
hydrates has not been specifically investigated at the Joetsu
Knoll. In this study, we incubated outcrop sediment samples
associated with methane hydrates under the HP condition
with stable isotope-labeled substrates, and then investigated
the methanotorophic microbial communities in response to O2

addition by analyzing sequences of 16S rRNA genes and methane
monooxygenase intergenic spacer region (MISA) between two
methane mono-oxygenase genes (pmoC and pmoA; Tavormina
et al., 2010).
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MATERIALS AND METHODS

Experimental Setup
Sample collection was performed during the NT13–15 cruise

aboard the R/V Natsushima during July 2013. The study site,

the Joetsu Knoll, is a well-characterized location of methane
seepage offshore the Joetsu City, Niigata Prefecture, Japan

(Figure 1; 37◦31.1′N, 137◦58.0′E, 985 mbsl). Two methane

hydrates-containing sediment cores were collected during Dive
1555 of the ROV Hyper-Dolphin. Sediment was collected into

the HP-Core (internal volume: ∼920mL, maximum pressure to

use: 50 MPa) by abrading the internal core cylinder against an
exposed vertical wall of sediment interlaced with white methane

hydrates (Figure 1). The HP-Core’s internal cylinder (label “1”
in Figure 2b) was then immediately placed into the external
cylinder (label “3” in Figure 2b) and secured by tightening
(using label “2” in Figure 2b). In this manner, sediment was
collected at environmentally relevant pressure and sealed into
the HP-Core in situ, in order to maintain pressure throughout
core recovery and onshore experimentation (see Figure 1 for
in situ sampling photographs; see Figure 2a for arrangement
of HP-Core on the ROV Hyper-Dolphin payload). During this
deployment, we discovered that the Teflon seal on the HP-Core

was compromised, most likely by small sediment grains lodged
against the Teflon core liner which resulted in a partial loss of
pressure (from 9.9 Mpa down to ∼2 MPa) during transit of the
ROV Hyper-Dolphin from seafloor to the R/V Natsushima. The
core was immediately re-pressurized up to 10 MPa onboard ship
by injection of 0.2 µm-filtered artificial seawater; specifically,
we dissolved the following components into 1 L of MilliQ
water (Merck Millipore, Massachusetts, USA): 0.14 g KH2PO4,
0.54 g NH4Cl, 3.05 g MgCl2·6H2O, 0.11 g CaCl2, 20.45 g
NaCl, and 10mL trace element solution (1.5 g nitrilotriacetic
acid, 3.0 g MgSO4·7H2O, 0.59 g MnCl2·4H2O, 1 g NaCl, 0.1 g
FeSO4·7H2O, 0.18 g ZnSO4·7H2O, 0.01 g CuSO4·5H2O, 0.02 g
AlK(SO4)2·12H2O, 0.01 g H3BO3, 0.007 g Na2SeO3·H2O in 1 L
of MilliQ H2O). The HP-Core apparatus was stored at 4◦C and
10 MPa onboard, during shipment, and upon arrival at the KCC
laboratory. Besides the HP-Core, a second core was collected
from adjacent hydrate-containing sediment into a traditional M-
type corer (hereafter, “M-Core”). The material collected into the
M-Core contained a mixture of sediment and bottom water,
which by the time of recovery onboard ship had separated by
density. Immediately onboard ship, subsamples of the “M-Core
water” and “M-Core sediment” were frozen at −80◦C for later
DNA extraction and sequencing.

FIGURE 1 | Contextualization of study site. (a) Map of central Japan, including the Joetsu Knoll study site. (b) Image capture from the ROV Hyper-Dolphin Dive 1555,

demonstrating the sampling location along a several meter-sized wall of methane hydrate and bacterial mats. Samples were taken from roughly in the area of the

black circle. (c) Sediment capture using the HP-Core sampler. (d) Sediment capture using the M-Core sampler.
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FIGURE 2 | (a,c) Photographs and (b,d) schematics of the HP-Core. An aluminum chassis (a,c) holds the stainless-steel cylinders comprising the HP-Core. This

chassis can be attached to the payload of a remotely operated vehicle (e.g., ROV Hyper-Dolphin) for deployment (a). This does not preclude the simultaneous

deployment of other sampling equipment, including push cores and collection boxes (a). After recovery of the HP-Core onboard ship or onshore, the HP-Core (still

supported by the aluminum chassis) is connected to pressure and temperature loggers, an HPLC pump for influent media, and an outflow hose for effluent sampling.

The influent line [2] enters at the bottom of the HP-Core [1], while the effluent line [3] exits from the top of the HP-Core [1]. The HP-Core is ∼0.5m in height.

A unique and hence important function of the HP-Core
system is the ability to supply liquid and gas substrates
while maintaining the constant pressure in the chamber.
In this study, the HP-Core was kept for the duration of
experimentation (total 45 days) in a walk-in 4◦C refrigerator
in the laboratory (Figures 2c,d). Twelve days after collection
from the seafloor, the HP-Core was amended with 13CH4 (50mL

of 50% 13CH4) and 15N2 (50mL of 50% 15N2) and daily
tracking of pressure, temperature, dissolved inorganic carbon
concentration (DIC), and δ13CDIC began for the course of a
45-day experiment in the HP incubation of seafloor microbial
assemblages (Figures 3, 4). Temperature and pressure were
continuously monitored (1t = 1 s), with daily samples taken
for δ13CDIC. During daily sampling, pressure was kept at 10
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FIGURE 3 | Log of HP-Core temperature and pressure over the duration of

incubation. Temperature was maintained at ∼4.5◦C by storing the HP-Core in

a walk-in refrigerator throughout the experiment. Pressure was maintained at

∼10 MPa (chosen to match the environmental pressure at the sampling depth

of 985 mbsl) by injection of sterile artificial seawater via modified HPLC pump.

Spikes in the pressure log record the daily effluent sampling for δ13CDIC,

during which time pressure fluctuated as the effluent port was opened. Over

the course of >40 days, user technique improved and the fluctuations in

pressure decreased in magnitude.

MPa by injection of sterile artificial seawater that contained
no carbon sources (see Supplementary Text). Samples for
microbial community analysis were taken from the sediment
water slurry at 11, 25, and 45 days (hereafter, T11, T25, and
T45, respectively). Samples collected during the time course
experiment at T11 and T25 consisted of water from the effluent
outflow at the top of the HP-Core. This involved bleeding
6mL of effluent from the top port, followed by filtration onto
a 0.2 µm-pore sized polycarbonate membrane and freezing
at −80◦C. The final T45 time point consisted of sediment
at the bottom of the HP-Core during the takedown of the
experiment. 13CH4 and 15N2 were injected at the start of the
HP incubation experiment followed by periodic additions of
100% O2 on days 29, 30, 35, 37, 39, and 44 to stimulate
aerobic methane-oxidation (Figure 4). In all cases 10mL (at
room condition) of O2 was injected, which corresponds to the
O2 concentration in situ (∼210µmol/kg, Gamo, 2011), with the
exception of the first injection on day 29, which was half this
volume.

Dissolved Inorganic Carbon (DIC) and δ
13C

Measurement
Carbon concentration and isotopic measurements were
conducted on 0.2 µm-filtered effluent water samples <24 h
after collection. Measurements were performed on an
isotope-monitoring gas chromatography/mass spectrometry
(irm-GC/MS) Thermo Finnigan Delta Plus XP isotope-ratio
mass spectrometer connected to TRACE GC as previously
described (Ijiri et al., 2012).

DNA Extraction and Sequencing
DNA was extracted from M-Core sediment and water samples
using the MoBio PowerMax soil DNA isolation kit, according
to manufacturer protocols (∼5 g slurry/extraction). The T11,
T25, and T45 (duplicate samples of T45 were extracted and
sequenced) time points were extracted with theMoBio PowerSoil
DNA isolation kit, according to manufacturer protocols (∼0.5
g/extraction). In addition, duplicate T45 sediments were
separately subjected to a simplified hot alkaline DNA extraction
(Morono et al., 2014), in which sequential cell lysis is performed
in heated 1M sodium hydroxide solution (Supplementary
Text).

Samples were prepared for iTag-sequencing of the V4
region of the 16S rRNA gene, according to a slightly modified
version of the Earth Microbiome Project’s recommended
protocol (see Mason et al., 2015 for protocol modifications).
New England Biolabs Q5 polymerase enzyme was additionally
substituted for 5-PRIME Hot Master Mix. Sequencing was
performed on an Illumina MiSeq platform at Laragen, Inc.
Culver City, CA, and data processing [joining paired ends,
trimming sequences, chimera checking, 97% operational
taxonomic unit (OTU)-picking, and taxonomic assignment]
were performed as previously described (Case et al., 2015).
Nonmetric multidimensional scaling (NMDS) analyses were
performed in the R environment using the “vegan” package on
square-root-transformed tables of relative sequence abundance
(Oksanen et al., 2013; R Core Team, 2014).

In addition to sequencing of 16S rRNA genes, an assay of
the monooxygenase intergenic spacer region (“MISA”) between
two methane mono-oxygenase genes (pmoC and pmoA) was
performed following previously described protocols (Tavormina
et al., 2010; see Supplementary Text for modified primer
sequences) on two samples: M-Core sediment and T45 sediment.
Transformation of the MISA fragment into E. coliwas performed
with the 10G Elite Solo kit (Lucigen Inc., Culver City, CA).
Inserts were amplified with the Lucigen Corporation GC
Vector Amplification pSMART kit and separately digested
with Hae III and Rsa I restriction enzymes in order to
generate restriction fragment length polymorphism (RFLP)
patterns. Unique inserts were sequenced at Laragen, Inc. The
resulting traces were manually checked for quality, translated
to amino acid sequences, aligned against pure culture and
previously published pmoA fragments in MUSCLE (Edgar,
2004), and trimmed to the pmoA amino acid positions 5–49
of M. capsulatas Bath (an approach employed in Tavormina
et al., 2010). These pmoA fragments, both experimental
and from known organisms, were used to generate a 100-
bootstrap, maximum likelihood tree in RAxML (Stamatakis,
2014).

DNA Accession Numbers
The 16S rRNA gene sequence data have been submitted to
the NCBI BioProject database under the BioProject ID of
PRJNA416818. The pmoA and pmoC sequence data are available
in the GenBank database with the accession numbers of
MG149702-MG149775.
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FIGURE 4 | Time-resolved record of HP-Core incubation. Daily δ13CDIC measurements are given in black circles. Colored circles represent sampling or amendments

(see legend). Gray diamonds are the calculated methane oxidation rate between each day and the day prior. Inset shows the same data on a smaller y-axis in order to

better resolve trends within the first 40 days of the experiment.

RESULTS

High-Pressure Sediment Core Sampler
Of the five goals planned for the first deep-sea deployment of
the HP-Coring device, all were successful, with the exception
of partial depressurization during core recovery. The first goal,
to develop a HP-Core deployable on the submersible payload,
was achieved by deployment with the ROV Hyper-Dolphin.
Furthermore, the relatively small HP-Core footprint enabled
simultaneous deployment of other sampling devices during the
dive [e.g., 6 push cores, a plastic tote for recovery of push cores
previously deployed on the seafloor, a temperature probe and
deep-sea high-pressure CO2 injection system (Ohtomo et al.,
2015), and the “M-type” corer], demonstrating that use of
the HP-Coring device can be incorporated with other ROV-
based scientific objectives and does not require an exclusive
deployment.

Our second goal was to collect a core >10 cm in length using
the HP-Core. Due to the nature of the hydrate environment at
the Joetsu Knoll, we did not deploy the HP-Core like a traditional
vertical push core at the seabed, we instead abraded the HP-Core
against a wall of methane hydrate interspersed with sediments
and bacterial mats. Abrading the HP-Core against the wall of
hydrate and sediment allowed us to visualize the glass-made
corer during sampling and gauge how the device was responding
during the first deployment of this new technology. Using this
approach enabled recovery of a significant amount of sediment,
similar to the amount captured in a traditional push core.

Unfortunately, the third technical goal, to maintain in situHP
conditions through recovery onboard ship, was not met during
the NT13–15 cruise. The HP-Core arrived at the sea surface
having lost ∼8 MPa of pressure down to ∼2 MPa, believed to
be the result of small sediment grains that compromised the
Teflon seal where the core interfaces with the core liner. Pressure
was immediately restored with filtered seawater upon recovery,
and held stably during incubation at sea, transport and over the
course of the 45 days-experiment in the lab, demonstrating its
resilience to shipping and handling.

Goals four and five were to demonstrate the addition of liquid
and gas amendments to the incubator under pressure during the
HP-incubation experiment, and to be capable of extracting time-
resolved output samples. Successful sampling from the outflow
port for geochemical analysis was performed daily. Sampling
resulted in a minor loss of internal pressure (generally <1
MPa, dependent on the user’s skill level; Figure 3). Pressure was
restored after sampling by pumping in fresh, sterile artificial
seawater. Additionally, gas-phase amendments were injected in-
line with seawater replacement throughout the incubation.

Geochemical Results
Over the course of 45 days, δ13CDIC was observed to increase
after 13CH4 addition. The first∼30 days showed slow progressive
enrichment 13CDIC (Figure 4; for DIC concentration, see
Supplementary Figure 1). A model of exponential increase in
daily δ13CDIC values fit from the data between T29 and T32
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(R2 = 0.97; Figure 4), matches the data from the later time
interval T33–T45 very well; and this increase appears to be
associated with the direct injection of O2 beginning at T29.
Stepwise rates of methane oxidation at 10 MPa were calculated
by subtracting the moles of 13C observed between time points
(tn-tn−1), based on the assumption that new 13C in the DIC pool
represented newly oxidized 13CH4 (Equation 1; a factor of 2 was
added because the methane amendment was only 50% 13CH4).
The trend in methane oxidation rate, by definition, mirrors
the increase in δ13CDIC and shows increasing rates of methane
oxidation late in the HP-incubation experiment.

CH4 oxidation rate (nM/day)

= 2 • 106 • [([DIC]n • VHP−Core)

− ([DIC]n/(1+ Rstd((δ
13Cn/1000)+ 1)))

− ([DIC]n−1/(1+ Rstd((δ
13Cn−1/1000)+ 1)))]/(t− t−1)

(1)

Within the initial period of the experiment prior to rapid increase
in methane oxidation rate (T0–T29), slow but measurable
methane oxidation was observed (c.f. inset of Figure 4), with
higher rates (increase in δ13C) over the first 10 days relative to
days T11–T29.

Microbial Diversity Analysis
The microbial diversity was analyzed by 16S rRNA iTag-
sequencing from the background M-core, collected adjacent
to the HP-core, and from different time points in the HP-
Core incubation, including effluent samples from T11 and
T25, and the final HP-Core sediment samples from T45
(Figures 5, 6). TheM-core samples, including both sediment and
overlying water, were characterized by high relative abundances
of OTUs-associated with Candidate Division JS1 bacteria (20–
30%), Desulfobacteraceae (6–10%), Methylococcales (2–12%),
and ANME archaea (1–4%); (Figure 5; Supplementary Data).
Analysis of the liquid effluent samples sampled from the pressure
incubation experiment during T11 and T25 did not detect OTUs
associated with ANME archaea orMethylococcales. Instead, these
samples showed high relative abundance of Helicobacteraceae
(9–17%), as well as other OTU’s associated with Epsilon-,
Delta-, and Gammaproteobacteria and Bacteroidetes (Figure 5).
Sediment samples collected at the termination of the HP-core
incubation (T45) showed harbored much of the same diversity
of Epsilon-, Delta-, and Gammaproteobacteria observed in the
HP-Core effluent samples, with the exception of the recovery
of JS1 OTUs (2–4%) and a high percentage of Methylococcales.
had a high relative abundance of OTU’s associated with
Pisirickettsiaceae (16–20%), which was a minor component of
the M-Core and HP-Core effluent samples (Figure 5). The
extraction method (MoBio power soil kit vs. Hot Alkaline
lysis) appears to contribute a minor difference in the overall
microbial 16S rRNA signature recovered from T45 sediments.
When extracted with the MoBio kit, aMethylococcales-associated
OTU is recovered at about two-thirds the relative abundance as
recovered in samples extracted with the Hot Alkaline method.
In contrast, a BD1-5-associated OTU is twice as abundant

FIGURE 5 | Heat map of major OTUs identified in the 16S rRNA gene

iTag-sequence dataset. OTUs were only selected for presentation if they were

present at >2% relative abundance in the M-Core, HP-Core-effluent (T11 and

T25), or HP-Core-sediment (T45) samples. M-Core samples are characterized

by their richness in Candidate Division JS1 bacteria. T11 and T25 effluent

samples host a wide diversity of Delta-, Epsilon-, and Gammaproteobacteria,

but notably differ from the T45 samples which are rich in a

Methylococcales-associated OTU. The full table of 16S rRNA gene data is

provided in the Supplementary Data.

in MoBio-extracted samples as compared to Hot Alkaline-
extracted samples (Figure 5). These differences are apparent in
multidimensional ordination, where the T45 samples overall
plot closely together, but are distinctly separate according
to extraction method (Figure 6). This variation may be due
to differential lysis, as has been reported in other studies
(Morono et al., 2014).

Analysis of putative methanotrophic bacterial diversity was
also assessed using the particulate monooxygenase-targeted
MISA assay targeting both particulate methane monooxyganse
(pmoA) and ammonium monooxygenase (amoA) genes
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FIGURE 6 | Nonmetric multidimensional scaling (NMDS) plot of 16S rRNA

iTag-sequence data from this study. The microbial communities in the samples

naturally break into three categories: M-Core sediments, HP-Core effluent, and

HP-Core sediments. Among the HP-Core sediments, DNA extraction method

accounts for a measurable but small difference in recovered microbial

community composition.

(Tavormina et al., 2010). Using the MISA assay, we screened the
overlying water from the M-Core and T45.1-MoBio sediment,
and detected diverse pmoA sequences with a lower proportion
of amoA sequences, with some overlap in MISA fragments
recovered between the in situ M-Core and HP-Core after
the 45-day incubation. Both samples showed a high relative
abundance of a pmoA sequence putatively associated with
gammaproteobacterial methanotrophs (Patterns 1 and 16 in
Figure 7). Overall the pmoA sequences recovered in both
samples were more similar to one another than to other pmoA
genes reported from other sites or from cultured organisms
(Figure 7).

DISCUSSION

The HP-Core was successfully deployed on the payload of
the ROV Hyper-Dolphin during Dive 1555, capturing sediment
in a challenging deep-sea environment and retaining methane
hydrate-associated sediment within the reaction chamber
through recovery onboard ship. The loss of partial pressure
during recovery was unfortunate; however, the HP-Core
successfully maintained high pressure through shipping and
during the course of 45 days of experimentation. There is no
indication that the HP-Core would not have continued to retain
pressure for a significantly longer experimental duration. To
prevent the partial pressure loss during the core recovery, the
back-up pressure function (e.g., N2 reservoir that supports the

pressure at a pre-defined value as an accumulator; see Kubo et al.,
2014) would be an option.

Based on our experience with this first deployment, when
deploying this first generation of the HP-Core, we recommend
choosing carefully the sampling site and being cautious to avoid
unnecessary sediment disturbance—excess sediment clouding
bottom waters increases the likelihood of a compromised Teflon
seal. Depending on time constraints, it is advisable to choose
a seafloor location, hold the vehicle steady for enough time
to let particles settle out, and only then to perform sampling.
Additionally, it is good practice to perform HP-Core sampling
as the last function of a deep-sea dive. This minimizes both
the amount of jostling on the HP-Core and the time duration
between sampling and recovery onboard ship.

Some recommendations can be made for future iterations of
the technical design for the HP-Core. The first generation had
one outflow sampling port, located at the top of the vessel. This
port worked well, but daily outflow samples only represented the
suspended microbial community at the top of the incubation.
Based on our 16S rRNA sequencing data (Figures 5, 6), we
suspect this resulted in the different microbial community
observed between the suspended slurry and microorganisms
primarily associated with sediments settled at the bottom of the
column. Future iterations of the HP-Core would be improved by
havingmultiple outflow ports located at various heights along the
incubation column. Similarly, the inflow port for adding liquid
media and gas amendments only existed at the bottom of the
incubation column. Although this worked for our experimental
design, it is conceivable that future experiments would benefit
from an ability to add amendments from either the top or bottom
of the chamber–requiring engineering of additional inflow ports
in future designs.

Microbially Mediated Methane Oxidation
during HP Incubation with 13CH4
During the 45-day incubation, DIC and δ13CDIC data (collected
and analyzed daily) suggested methane oxidation (Figure 4). In
the first 11 days (T0–T11) of the experiment methane oxidation,
as determined by incorporation of 13C into the DIC pool,
appeared to be accelerating. However, it then plateaued and
between T11 and T28 little methane oxidation was observed. We
suspect the methane oxidation at the start of the incubation was
associated with aerobic methanotrophy which ceased when O2

was fully consumed. The theoretical amount of O2 consumed
by aerobic methanotrophy can be calculated by stoichiometric
conversion using the following equation and 13CDIC data to track
the number of moles of methane consumed between T0 and T11:

CH4 + 2O2 ⇋ CO2 + 2H2O (2)

With 4.25µmol/kg of CH4 consumed between T0 and T11
(calculated from data in Figure 4), corresponding oxidation
of 8.50µmol/kg of O2 is required. This is a relatively small
amount compared to known bottom water O2 concentrations
in the deep-sea (>220µmol/kg), but it is likely that through
the course of shipment of the HP-Core to KCC and static
storage for 12 days at 4◦C prior to 13CH4 addition, oxygen levels
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FIGURE 7 | Maximum likelihood tree of pmoA gene sequences generated in the MISA assay (trimmed to amino acids 5–49 of M. capsulatas Bath) from the M-Core

and HP-Core T45 incubation. Sequences from this study are defined as “Pattern_x” according to unique Hae III and Rsa I-digested RFLP profiles. Sequences from

cultured organisms and sequenced genomes of methane- and ammonia-oxidizers are given with their species name. Labels denote the phylogenetic groupings and

predicted oxidation metabolisms. Multiple sequence alignments were generated in MUSCLE and the tree was generated in RAxML with 100 bootstraps. Black circles

represent relative abundance of pmoA sequences in the M-Core water and T45.1-MoBio samples. The largest contrast between the two samples is seen in the

abundance of different methane-oxidizing Gammaproteobaceria-affiliated pmoA patterns.

may have been depleted in the incubation chamber relative to
in situ concentrations from aerobic respiration (e.g., via sulfide
oxidation or organic carbon) Respiratory processes could have
continued during T0–T11, all independent of 13C-label and thus
undetected by our geochemical measurements.

Between T11 and T28, the rate of methane oxidation was
slower, with 7µmol/kg of CH4 oxidized during the 7 days. If we
assume that during this period methane-oxidation there was a
shift to anaerobic oxidation of methane coupled to sulfate (AOM;
Equation 3), then only 7µmol/kg of sulfate are stoichiometrically
required:

CH4 + SO2−
4 ⇋ HS− +HCO−

3 +H2O (3)

This is well within the bounds of seawater chemistry, where
sulfate is present at ∼28 mmol/kg. Anaerobic conditions during
this period were supported by oxidation-reduction potential
(ORP) measurements. When the first ORP measurement was

taken, at T29, it was at the very reduced value of −300mV.
Although we do not have ORP data to help define exactly when
anaerobic conditions began during the incubation, it is clear that
by T29 anaerobic conditions prevailed.

The apparent rapid switch to aerobic methanotrophy in the
high-pressure incubation was triggered by the addition of oxygen
at T29, stimulating an exponential rise in δ13CDIC shortly after
injection. Over the course of six oxygen injections between T29
and T45, 55mL of 100% O2 were added to the incubation
chamber, corresponding to 242µmol/kg of O2. Conversion of
δ13CDIC into consumption of methane, results in an estimated
consumption of 143µmol/kg of O2 from aerobic methanotrophy
between T29 and T45, within the range of the injected O2.
Regular ORP measurements between T29 and T45 reflected the
addition of oxygen but also its rapid consumption: after T30,
ORP averaged−33mV (max= 67mV, min=−120mV).

The hypothesis of sequential aerobic, anaerobic, and aerobic
phases in the HP-Core incubation chamber are additionally
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supported by sequencing data of the 16S rRNA and pmoA genes
(Figures 5–7). M-core samples, taken from sediments nearby the
sampling location for the HP-Core at the Joetsu Knoll, revealed
the presence of diverse anaerobic methanotrophs belonging
to ANME-1, -2, and -3 as well as aerobic methanotrophs
of the gammaproteobacterial Methylococcales order (Figure 5).
The presence of aerobic methanotrophs in the M-Core, and
presumably in the neighboring HP-Core at the time of collection,
is further supported by recovery of pmoA genes related to
gammaproteobacterial methane oxidizers (see Figure 7; Inagaki
et al., 2004b; Tavormina et al., 2010). In addition, the
microbial diversity observed in the HP-Core incubation at T45
suggests ingrowth of aerobic methanotrophs in the HP-incubated
sediments amended with oxygen by the end of experimentation,
with relatively abundant Methylococcales and loss of OTUs
associated with ANME archaea (Figure 5).

In addition, the incubated T45 sediments were also
enriched in other putative aerobic gammaproteobacteria
(e.g., Colwelliaceae) and epsilonproteobacteria (e.g.,
Campylobacteraceae) OTUs than the M-core sediment.
These OTUs were also observed at high relative abundance
in the T11 and T25 effluent samples, suggesting they grew up
during the course of the high-pressure incubation (Figure 5).
Members of the Colwelliaceae are known piezophiles (Kusube
et al., 2017) and in situ experiments in the deep-sea suggest
they increase in abundance in response to environmental
perturbation (Case et al., 2015). Similarly, many members of
the epsilonproteobacteria recovered in the HP-Core incubation
(Sulfurimonas and Sulfurovum spp.) are related to hydrogen
or sulfide-oxidizers within the Campylobacteriales (Inagaki
et al., 2003, 2004a; Campbell et al., 2006; see Supplementary

Data). As oxygen was depleted in the HP-Core incubation
chamber, sulfate would have been used as an electron acceptor,
producing sulfide (both in AOM and other anaerobic respiratory
processes). This might explain the increased abundance of
epsilonproteobacteria-associated OTUs at T11 onward.

Comparison of Methane Oxidation Rates
Measured in the HP Incubation to
Previously Published Rates
The rates of anaerobic methane oxidation calculated from
our HP-incubation experiment are consistent with previously
published rates of anaerobic methane oxidation (Figure 8).
Methane oxidation rates are often observed to vary by many
orders of magnitude, depending on the site, methane flux and
electron acceptor concentrations (Rudd et al., 1974; Harrits
and Hanson, 1980; Devol, 1983; Iversen et al., 1987; Reeburgh
et al., 1991; De Angelis and Lilley, 1993; Ward and Kilpatrick,
1993; Hoehler et al., 1994; Joye et al., 1999; Valentine et al.,
2001; Nauhaus et al., 2002; Girguis et al., 2003; Carini et al.,
2005; Bowles et al., 2011; Boetius and Wenzhöfer, 2013;
Timmers et al., 2015). Our 13CDIC derived rates of methane
oxidation in the HP-Core incubation between T11 and T29
(presumed to be primarily attributed to sulfate coupled-AOM)
were low compared to measurements from other high pressure
deep-sea seep incubations (Nauhaus et al., 2002; Timmers
et al., 2015), and more similar to rates reported from coastal
systems (Hoehler et al., 1994) or methane seep sediments with
widely measured rates (Bowles et al., 2011). Rates of aerobic
methanotrophy measured in the HP-Core incubation at 10
MPa were typically elevated above the majority of previously

FIGURE 8 | Comparison of ambient methane oxidation rate measurements between this study and previous studies. Two values are given for this study: calculated

methane oxidation rates for the period of putative aerobic conditions (T0–T10 and T29–T45; in gray) and putative anaerobic conditions (T11–T28; in black). The

majority of these experiments were conducted near atmospheric pressure with the exception of Nauhaus et al. (2002), which reported a notable increase in the rate of

anaerobic methanotrophy with 1.1 MPa.
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published rates from marine sediments (Figure 8). The pressure
effects on aerobic methanotrophy has not been studied in detail;
however, the periodic addition of oxygen to the HP-incubation
system stimulated methanotrophic activity and an increase in
gammaproteobacterial methanotrophs.

CONCLUSION

We have presented microbiological and geochemical data
representing the first successful in situ deployment of a new
HP-Core sampler, enabling deep-sea sediment core collection
and long-termmaintenance of samples under high pressure. This
study highlights the functionality of the HP-Core incubation
system for stable isotope-labeling experiments, with in situ
sampling of a ∼1,000 m-deep methane hydrate-bearing
sedimentary outcrop and water from the Joetsu Knoll, Japan.
Future iterations of the HP-Core design will incorporate
improvements for sampling (e.g., multiple effluent outflow ports,
back-up accumulator), and in situ deployment of the HP-Core
will hopefully increase over time as multiple laboratory groups
gain access to the technology. The extent to which pressure
effects the physiology of deep-sea microorganisms and rates
of biogeochemical cycles continues to be an important area of
research, one hopefully made more accessible to researchers
through the emergence of new technologies like the HP-Core
designed for direct seafloor sampling and time resolved,
long-term incubation.
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