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The biofloc system has recently attracted great attention as a cost-effective, sustainable,
and environmentally friendly technology and expected to contribute toward human
food security (Zero Hunger SDG 2). It is also expected that this endeavor can be
adopted widely because of its characteristics of zero water exchange and reduced
artificial feeding features. In the biofloc system, the flocs which are generally formed
by aggregation of heterotrophic microorganisms, serve as natural bioremediation
candidates. These microbes effectively maintain water quality by utilizing the nutrient
wastes, mostly originated from digested, unconsumed, and metabolic processes of
feed. Additionally, the flocs are important sources of nutrients, mainly a protein source,
and when these are consumed by aquaculture animals they improve the growth
performance, immunity, and disease tolerance of host against pathogenic microbial
infection. Here in this review, we focus on recent advances that could provide a
mechanistic insight on how the microbial community developed in the biofloc system
helps in the bioremediation process and enhances the overall health of the host. We
have also tried to address the possible role of these microbial communities against
growth and virulence of pathogenic microbes.

Keywords: bioremediation, pathogenic microbes, heterotrophic microbes, biofloc system, host immunity

INTRODUCTION

Aquaculture, the farming of aquatic animals and plants, continues to dominate the food producing
sector in the world (FAO, 2019). The global aquaculture production increased to 4.9% as compared
to 2016 and reached to 111.9 million tons in 2017. The aquaculture share in total global aquatic
animal production including both capture and aquaculture has risen sharply from 25.7% in 2000
to 46.4% in 2017, with an average annual growth rate of 4.8% during 2011–2017 (Kumar, 2020;
Roy, 2020; Tacon, 2020). The 10 top aquaculture producing countries including China, India,
Indonesia, Vietnam, Bangladesh, Egypt, Norway, Chile, Myanmar, and Thailand, contribute over
88% by quantity of global aquaculture production in 2017. Interestingly, the aquaculture industry
is playing a major role in economic development and together with capture fisheries it supports the
livelihood of more than 10% of the world population (Kumar et al., 2021b). Moreover, as the global
human population continues to expand at a high rate and is expected to reach over 9 billion by 2030,
the aquaculture industry could be crucial for food and nutritional security with high-quality animal
protein in both inland and coastal regions, and providing livelihood and income source generation
to millions of people (Roy et al., 2019, 2020; Ngasotter et al., 2020). However, due to the global
demand increase, the pressure for intensification and further expansion of culture systems has
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created many problems including scarcity of natural resources,
increased environmental pollution and losses due to disease
outbreak. Disease outbreaks caused by bacterial infections,
considered as the primary cause of production loss in fish
farming, have moved to the forefront in recent years and
brought socio-economic and environmental unsustainability to
the aquaculture industry (Costa-Pierce et al., 2010; Verdegem,
2013; Kumar V. et al., 2018, Kumar et al., 2020a). The economic
losses in the aquaculture sector from disease outbreak has
been calculated by FAO to be over US$9 billion per year, that
is approximately 15% of world aquaculture fish and shellfish
production, by value (Kumar et al., 2019a,b; Tran et al., 2020).
Additionally, the fish feed, the prices vary from a few hundred
dollars a ton to more than US $1000 a ton depending on the
species being fed, is the major operational cost for most fish
farms accounting for 50–70% of the variable cost (FAO, 2019).
In addition, in developing countries like Indonesia, Vietnam,
or Bangladesh, the commercial feed is simply beyond the reach
of most marginal and landless farmers, limiting their ability to
intensify aquaculture production. In this context, development
of culture protocol/technology that can reduce the input cost and
enhance the immunity and disease tolerance of cultured animals
seems to be a preferable alternative for aquaculture systems.

In recent years, growing aquaculture species in the biofloc
system is becoming more popular and has shown promising
results in improving water quality, fish health, and production.
This technology could become essential not only to cover
the growing demand for dietary animal proteins but also for
the water scarcity, environmental issues, and animal health
and disease. The biofloc system’s basic principle is to recycle
and transform waste and excessive nutrients, in particular
inorganic nitrogen (NH3-N and NO2-N), generated from feces
and uneaten feed into microbial biomass. These biomasses are
generally high in protein content and utilized by cultured animals
in situ or if harvested they could be processed and used as
a nutrient source for feeds. This is achieved by steering the
carbon and nitrogen ratio (C/N ratio) through modification
of feed carbohydrate content or carbon source addition in
water (Avnimelech, 1999; Kuhn et al., 2009; Crab et al., 2012;
Ekasari et al., 2014; Fatimah et al., 2019; Hostins et al.,
2019). For instance, Schneider et al. (2005) reported that if
the C:N ratio is maintained between 10 and 15:1, the organic
nitrogenous ammonium waste are converted into bacterial
biomass (Schneider et al., 2005). In another study, Crab et al.
(2007) noted that the use of biofloc system in intensive tilapia
culture significantly improved the nitrogen recovery from 23 to
43% and non-toxic levels of ammonia/ammonium concentration
could be maintained, without water exchange (Crab et al.,
2007). There are also few reports that suggest that biofloc
contains microbe-associated molecular pattern (MAMP) and
microbially bioactive components such as carotenoids, vitamins,
glutathione, antioxidants, and minerals, which nutritionally
modulate the fish health and immune response and resulted
in better growth performance and increased resistance against
microbial pathogens (Xu and Pan, 2013; Hostins et al., 2019;
Kumar et al., 2020b) (Figure 1). Since the biofloc system has
several beneficial effects that contribute to the maintenance of

optimum water quality in the culture system and improvement
of feed utilization and nutrition of the cultured animals, the
technology has a wide range of acceptability across several
aquaculture producing countries. However, still refinements of
the biofloc culture protocol in terms of growth and nutrition
requirements of aquaculture species is required. In addition,
more importantly, information on biofloc derived microbes
and how these microbial origins affect the external aquatic
pathogens and beneficially improve the aquatic environment and
host survival is needed for better understanding and scientific
application of the biofloc system. Hence, in this review at first
an overview of the current knowledge on the effect of the biofloc
system microbial community on aquatic environment and host is
given. Later, the possible role of these microbes on the activity
and virulence of pathogenic microorganisms with respect to
aquaculture are summarized.

DEVELOPMENT OF STANDARD
BIOFLOC SYSTEM: CONSIDERATIONS
FOR OPTIMAL MICROBIAL CONSORTIA
THROUGHOUT THE CULTURE CYCLE

The biofloc system is a relatively new aquaculture technology that
allows high-density culture at a limited or zero water exchange
facility. Interestingly, once the C/N ratio reaches between 10
and 15:1, by addition of exogenous carbon source, the available
microbe in the system utilizes the accumulated nitrogenous
wastes originated from unconsumed feed and animal excretion,
including fecal materials and metabolic products and accelerates
the growth of microbial communities that conglomerate together
and produce flocs (Ju et al., 2008; de Jesús Becerra-Dorame
et al., 2014). The potential of this system in increasing the
resource utilization efficiency has raised the attention for
both research and application during the past decade. As a
consequence, more beneficial effects of the biofloc system have
been discovered including the nutritional properties, exogenous
digestive enzymes contribution, potential control of pathogens,
and immunostimulatory effects (Betanzo-Torres et al., 2020;
Vyas, 2020; El-Sayed, 2021). Few reports have also suggested
that the biofloc formation is mediated by one of the microbial
phenotypes, which are involved in the production of small
membrane diffusible metabolites (Chong et al., 2012; Hawver
et al., 2016). Therefore, it becomes very intriguing to investigate
and characterize the biofloc microbiome stem from their ability
to maintain water quality and confer immunostimulatory effect
on the cultured animals.

To develop a biofloc, at first the tanks (might be circular or
rectangular, however, circular tanks are preferred) were filled with
water, and nitrogenous material (fish feed and urea fertilizer) and
a carbon source (molasses, wheat flour, or starch, about 0.7%
of feed) were added to the water (Table 1). In some cases, soil
clay particles, after mixing thoroughly and filtering with a sieve,
were also added to the tanks, it helps in biofloc formation and
further mass continuity. Afterward, the primary inoculum of
the microbial biomass and necessary elements, including proper
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FIGURE 1 | Potential role of biofloc system in host, pathogen, and environment in a culture facility.

aeration, were added to the system, it improves the microbial flocs
formation in the new culture system (Zemor et al., 2019). As a
standard, 20 g of clay, 10 mg of ammonium sulfate, and 200 mg
of carbonaceous organic matter such as molasses can stimulate
biofloc formation in 1 L of water. The presence of carbonated
organic matter enables heterotrophic bacteria to become more
active than other bacteria, and they remove nitrogen and carbon
from water by an absorption process and produce microbial
biomass/flocs. These biomasses were subsequently combined/fed
by other organisms (viz., algae, detritus, ciliates, or yeast)
and collectively form biofloc in the culture system (Khanjani
et al., 2017). During the biofloc formation, algae were first
developed and form foam, and eventually microbial biomass.
The development of a brown state in culture tanks indicates
the presence and activity of heterotrophic bacteria. Moreover,
once the experimental animals were added to the biofloc
system, the physicochemical parameters (temperature, oxygen,
pH, alkalinity, total nitrogen, ammonium, nitrite, and nitrate)
should be measured weekly. In the case of any deviation from
standard water quality parameters, subsequently appropriate
responses including water exchange, stopped artificial feeding,
etc. should be adopted quickly (Avnimelech, 1999; Khanjani and
Sharifinia, 2020). For instance, if the ammonia levels were high,
then input carbon source might be increased while decreasing
the feed content. Similarly, if the nitrite level is high, then
increase the carbon input and check oxygenation and sludge
collection. Moreover, if microbial biomass is low, add carbon
source and if the volume of the biofloc is too high, then do a
partial water exchange.

From the studies mentioned in the above paragraphs,
it is clear that the bacterial population, i.e., heterotrophic

bacteria, are the predominant group of biofloc microbiota;
however, fungi, algae (dinoflagellates and diatoms), flagellates,
rotifers, ciliates, and detritus also constitute the microbial
components (Ju et al., 2008; Kim et al., 2014; Kasan et al.,
2017; Tepaamorndech et al., 2020). For instance, Cardona et al.
(2016) analyzed the biofloc system water samples used for
culture of Litopenaeus stylirostris using 16S rRNA amplicon
sequencing. The results showed that bacteria taxa belonging to
Proteobacteria, Bacteroidetes, and Cyanobacteria groups have
the highest relative abundance (Cardona et al., 2016). Later,
Tepaamorndech et al. (2020) performed 16S rRNA amplicon
sequencing and shotgun metagenomic analysis to characterize
the complex of bacterial communities in the biofloc system
culturing Litopenaeus vannamei. The analysis revealed that
90% biofloc microbial population comprised of Vibrio sp.,
while Bacillus, Lactobacillus, Pseudoalteromonas, Clostridium,
Shewanella, Acinetobacter, Photobacterium, Alteromonas,
Marinifilum, and Pseudomonas were also identified. In another
study, Wei et al. (2020) investigated the microbial communities
in the biofloc ecosystem with high-throughput sequencing and
quantified the 16S rRNA gene. Findings suggest that bacterial
groups belonging to Flavobacteriaceae (e.g., Marivita, Ruegeria,
and Maribacter) and Rhodobacteraceae were the key bacterial
taxa in the biofloc system (Wei et al., 2020). Recently, Islam
et al. (2021) evaluated the microbial community structure in
biofloc culturing Macrobrachium rosenbergii. It was observed
that biofloc systems maintained in 15–20:1 C:N ratio have a
higher count of Lactobacillus spp. followed by Enterococcus spp.
(Islam et al., 2021). In another study, Meenakshisundaram et al.
(2021) characterize the microbial composition of grown-out
biofloc used for culture of genetically improved farmed tilapia
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TABLE 1 | The use of different carbon sources and C/N ratio for development of
stable biofloc culture system.

Species Carbon sources C/N ratio References

Macrobrachium
rosenbergii

Glucose, glycerol and
acetate

10 Crab et al.,
2010

Litopenaeus
vannamei

Dextrose First 3 days –
20; 4–30th
days- 6

Suita et al.,
2015

60% molasses + 20%
corn flour + 20%
wheat bran

16 Wang et al.,
2016

Molasses + dextrose
+ rice flour

First 5 days –
15; 6–70th
days- 6

Serra et al.,
2015

Glucose 15 Kumar et al.,
2020b

Molasses + wheat
flour + starch

15 Khanjani et al.,
2017

Molasses + palm sap 20 Abbaszadeh
et al., 2019a,b

Maida flour, wheat flour,
gram flour, millet flour,
rice flour, corn flour,
molasses and
multigrain flour

10–20 Panigrahi et al.,
2019b

Molasses 15 Panigrahi et al.,
2019a

Molasses, tapioca,
tapioca by-product,
and rice bran

15 Ekasari et al.,
2014

Molasses 12, 15, 18 Xu et al., 2018

Penaeus monodon Tapioca powder 12 Arnold et al.,
2009

Litopenaeus
vannamei and
Penaeus monodon

Molasses – Burford et al.,
2004

Litopenaeus
vannamei and
Macrobrachium
rosenbergii

Starch 10, 15, and 20 Asaduzzaman
et al., 2008

Farfantepenaeus
brasiliensis, and
Farfantepenaeus
duorarum

Wheat flour + molasses 20 Emerenciano
et al., 2012

Farfantepenaeus
paulensis

Wheat
bran + molasses

20 Emerenciano
et al., 2011

Farfantepenaeus
brasiliensis

Wheat
bran + molasses

20 Emerenciano
et al., 2012

Oreochromis
niloticus

Wheat flour 8–11 Azim and Little,
2008

Wheat flour and
molasses

15 Mirzakhani
et al., 2019

Tilapia Cellulose 11–16 Avnimelech,
2009

(GIFT). The metagenomic profile analyzed through Illumina
Nextseq500 platform shotgun sequencing showed that microbial
composition in biofloc includes 70.80% bacteria, 5.08% eukarya,
0.62% archaea, 0.16% virus and 23.35% are unclassified. Further
classification reveals that abundant genus in biofloc microbiome

are Proteobacteria and Caldilinea aerophila (Meenakshisundaram
et al., 2021). Taking together, these studies highlight that
dominant microbiota in biofloc system, i.e., Lactobacillus,
Bacillus, and Vibrio along with other bacterial groups, e.g.,
Halomonas, Providencia, Nitratireductor, Pseudoalteromonas,
etc. might be responsible for inducing beneficial effect on host,
environment, and pathogenic microbes, respectively.

Moreover, it is important to realize that quorum sensing
(QS), a bacterial intercommunication system that controls the
expression of numerous genes, regulates the activities of a large
group of bacterial cells (Fuqua et al., 1994; Bassler et al., 1997;
Xu et al., 2006). A QS system uses small signal molecules
called autoinducers (AIs) to control directly or indirectly
bacterial bioluminescence, virulence factor expression, biofilm
formation, motility, entry into stationary phase, sporulation,
and mating (Miller and Bassler, 2001; Schauder and Bassler,
2001). Additionally, the QS mediated formation of extracellular
polymeric substances (EPS) matrix leads to transformation of
planktonic bacterial cells into sessile mode of growth and
form microbial clusters or aggregates (Kumar et al., 2020a,
2021a). In clusters or biofilm mode of life, bacteria play
a vital role in removing or converting harmful compounds
and is considered as an excellent biosorbent material for the
remediation of toxic substances. Additionally, these aggerates are
excellent microbial protein sources and help to improve growth,
immunity, and survival of consuming host animal against both
biotic and abiotic stressors. Interestingly, one recent study has
demonstrated that microbial quorum sensing plays important
roles in biofloc characteristics and functionality from aquaculture
perspective. The QS regulated the biofloc formation, protein
contents, total ammonium nitrogen (TAN) removal capacity
and growth of cultured African catfish, Clarias gariepinus
(Fatimah et al., 2019). However, further characterization on
dominant microbial species involved in QS-regulated microbial
gene expressions will be helpful to find the possibility to modulate
QS activity in the biofloc microcommunity. In addition, it
will be also useful in identification of microbial phenotypes
that are beneficial in aquaculture perspective, such as the
excretion of various digestive enzymes that may contribute
to the increased food digestibility of fish and production
of essential nutrients that could improve the nutritional
value of bioflocs.

POTENTIAL ROLE OF BIOFLOC
SYSTEM-INDUCED MICROBIAL
COMMUNITY

The functions of biofloc are strongly related to the interaction
of the microbial community in the spatial cohabitation involved
in the acquisition of nutrients and the biochemical processes
(Ekasari et al., 2014; Bossier and Ekasari, 2017). These
communities play an essential role as natural bioremediation
candidates in maintenance of water quality and conversion
of nitrogenous waste materials. Additionally, they also play a
significant part in development of nutrient rich flocs that serve as
food sources and contribute in nutrition to support high density
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growth of aquaculture animals (Figures 1, 2) (Zhao et al., 2014;
Zhang et al., 2016).

Bioremediation Process
Bioremediation is a process of contaminated water or waste
treatment into less toxic form using beneficial microorganisms
(Das et al., 2019, 2020; Behera et al., 2020a,b). It is achieved
by inducing the biological process that leads to reduction,
removal, and conversion of the contaminated compounds
(Table 2) (Divya et al., 2015; Jasmin et al., 2020). Moreover, the
treatment method relies on content and toxicity of contaminants,
hydrogeological conditions, ecology of microbial communities,
and other temporal and spatial factors (Sarkar et al., 2021). The
microbial bioremediation process is among the most preferred
ways to remove contamination from a system, as it is cost effective
and able to immobilize or destroy the contaminants efficiency
(Gadd, 2000). Interestingly, these microbial communities utilize
the contaminants as their energy source, e.g., phosphorus and
nitrogen forms in contaminants are utilized by microbes as
their nutrient source (Jones et al., 2018). It is noteworthy to
mention that, it is not always necessary to utilize the existing
natural microbial population for bioremediation process, the
exogenous microbes or genetically engineered population can
also be used for the process (Brim et al., 2003). Based on
the carbon source utilization, microorganisms involved in the
bioremediation process are mainly classified in two groups,
autotrophs and heterotrophs. The autotrophic microbes are
able to utilize the inorganic substances and synthesize their
own food, which makes the autotrophs a good bioremediator
(Musyoka, 2016). The commonly known nitrite-oxidizing and
ammonia-oxidizing bacteria are classified under autotrophic
microbes (Merchant and Helmann, 2012). The second group
under bioremediation microbes are heterotrophic bacteria, that
immobilize or destroy the non-living organic material and
generate carbon sources to build their own cells. These microbes
act as electron donors in catalyzing reactions, during the
oxidation of harmful contaminants. Moreover, unlike autotrophs,
the heterotrophic bacteria contribute comparatively less in
the process of nitrification and denitrification, however, they
breakdown the organic waste including feces, uneaten feed,
and dead materials and transfer the nitrogenous ammonia into
non-harmful products known as microbial aggregates or mass
(Ebeling et al., 2006).

Interestingly, a biofloc system promotes the growth of both
autotrophic and heterotrophic microbes (Manan et al., 2017;
Pacheco-Vega et al., 2018). However, bioflocs contain a high
number of heterotrophic beneficial microbial communities,
including Bacillus, Acinetobacter, Sphingomonas, Pseudomonas,
Rhodopseudomonas, Micrococcus, Nitrosomonas, Nitrospira,
Nitrobacter, Cellulomonas, and yeast. These microorganisms act
as potential bioremediation agents in biofloc culture systems,
leading to improving water quality, growth performance,
and health of cultured aquatic animals (Thomas et al., 1992;
Monroy-Dosta et al., 2013; Das and Dash, 2014; Adel et al.,
2017) (Table 2 and Figure 2). The build-up of particulate and
dissolved organic matter is a common phenomenon observed in
biofloc systems, however, high levels of heterotrophic microbes

efficiently minimize the organic nitrogen and carbon levels
in the system. These heterotrophic microbes, as potential
bioremediators, produce diverse metabolic enzymes which assist
in safe removal of contaminants either by converting to safer or
less toxic substances or direct destruction (Dash and Das, 2012).
For instance, Manan et al. (2017) carried out an experiment to
determine the role of aggregating biofloc in the bioremediation
process including degradation and decomposition of organic
matter. The results showed that heterotrophic bacteria identified
from Aeromonas (Aeromonas salmonicida and Aeromonas
hydrophila) and Pseudomonas family (Pseudomonas aeruginosa)
consumed the bottom organic matter of shrimp (L. vannamei)
culture biofloc tanks. In addition, after converting these
bottom wastes through chemical processes, they help in the
production of high protein flocs that are utilized by the cultured
shrimp (Manan et al., 2017). It is important to mention that
Aeromonas and Pseudomonas sp. could be pathogenic to shrimp
species (Ramalingam and Ramarani, 2007; Zhou et al., 2019);
hence, it becomes important to validate the pathogenicity
of these bacterial strains before concluding it as beneficial
microbes. In another study, Hostins et al. (2019) designed an
experiment to investigate the effect of autotrophic (with or
without probiotics) and heterotrophic biofloc (with or without
probiotics) cultured with L. vannamei against AHPND bacterial
strain. The results showed that heterotrophic biofloc (with and
without probiotics) and autotrophic biofloc (with probiotics) can
decrease the impact of AHPND-causing Vibrio parahaemolyticus.
However, in heterotrophic biofloc, there was significant
improvement in water quality and L. vannamei showed the
highest survival with and without probiotic supplementation,
when challenged in the presence of their respective biofloc
suspensions (Hostins et al., 2019). There were also few reports
that suggest that association of bacteria (Pseudomonas stutzeri
LZX301/Nitrobacter/Bacillus subtilis) with yeast (Candida
tropicalis HH8) or microalgae (Schizochytrium sp.) is effective
in maintaining optimum water quality by decreasing the
total ammonium nitrogen, nitrite, and nitrate concentration
(Mohamad et al., 2017; Pacheco-Vega et al., 2018; Gao et al.,
2019). Recently, Kurniawan et al. (2020) investigated the diversity
and abundance of biofloc forming bacteria in the river waters
using 16S rDNA sequencing method. The analysis revealed that
seven bacterial phyla including Proteobacteria, Cyanobacteria,
Verrucomicrobia, Actinobacteria, Bacteriodetes, Chloroflex,
and Planctomycetes and 14 bacterial genera Streptococcus,
Staphylococcus, Bacillus, Neisseria sp., Bacillus sp., Lactococcus,
Rhodococcus, Kocuria, Pseudomonas, Nitrospira, Rhodobacter,
Sphingomonas, Burkholderia, and Acinetobacter have potential
biofloc forming abilities (Kurniawan et al., 2020).

Growth and Immunity
The beneficial effects of bioflocs on growth and immunity
of farmed animals have been widely documented. Bioflocs
can enhance innate/non-specific immune systems of cultured
species through providing a wide range of immunostimulatory
effects against microbial infections. The heterotrophic microbial
cell walls could contain either lipopolysaccharides, glucans, or
peptidoglycans. These microbe-associated molecular patterns
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FIGURE 2 | Schematic overview on the possible role of the biofloc microbiome. (A) Development of a biofloc system; (B) potential role of the biofloc system in the
bioremediation process.

(MAMPs) can activate the non-specific immune mechanisms,
leading to significant enhanced immune response in farmed
species (Aguilera-Rivera et al., 2019; Panigrahi et al., 2019a,
2020). For example, the heterotrophic biofloc reared L. vannamei
showed enhanced immune response and increased level of
total hemocyte count (THC) and prophenoloxidase (ProPO)
activity as compared to control animals (Panigrahi et al.,
2019b). Bioflocs are also capable of accumulating bacterial
compound, namely, poly-β-hydroxybutyrate (PHB), which has
been reported to improve growth performance, food digestibility,
and development of resistance against bacterial infections in
farmed aquatic animals (Kuhn et al., 2009; Khanjani and
Sharifinia, 2020). These beneficial microbes can positively
modulate the gut microbiota resulting in enhanced growth
performance and immune response of the host (Balcázar et al.,
2006; Pérez et al., 2010). In addition, the biofloc microbial
species contain several nutritional factors and digestive enzymes,
e.g., amylase and proteases, which could contribute in the
natural digestive process and improve the food digestion and
absorption, resulting in efficient utilization of feed and enhanced
growth performance of the host (Wang, 2007; Liu et al., 2009).
For instance, Bacillus sp. has been reported to contribute in
host nutrition, especially by supplying vitamins and fatty acids
and improve the growth and survival of aquaculture animals
(e.g., Penaeus monodon postlarvae) in zero water exchange
facility (Devaraja et al., 2013; NavinChandran et al., 2014;
Kumar et al., 2016). In another study, Zokaeifar et al. (2012,
2014) demonstrated that Bacillus sp. significantly enhances the
activity of digestive enzyme, growth performance, immunity, and
resistance of shrimp toward bacterial infection. These results
highlight that beneficial microbe in the system, namely, Bacillus
sp., could significantly improve the amylase and protease activity
and subsequently increase the final weight and weight gain of
shrimp juveniles. Interestingly, in a few other studies, Bacillus
sp. have been demonstrated to stimulate the immune response
of L. vannamei juveniles, resulting in enhanced disease resistance

and survival of shrimp against Vibrio harveyi challenge (Zokaeifar
et al., 2012, 2014). Later, Nimrat et al. (2012) and Sadat Hoseini
Madani et al. (2018) evaluated the role of commercial Bacillus
sp. application on feed efficiency, growth performance, bacterial
number, body composition, water quality, and immune response
in L. vannamei. The results highlight that administration of
Bacillus sp. to the experiential units significantly enhances
the weight gain %, length gain %, specific growth rate %,
average daily gain, and FCR of L. vannamei as compared to
the control group. The beneficial bacteria also improves the
water quality parameters, feed utilization, immune response, and
survival of L. vannamei postlarvae (Nimrat et al., 2012; Sadat
Hoseini Madani et al., 2018). In another study, Bachruddin
et al. (2018) demonstrated that white leg shrimp (L. vannamei)
culture water supplemented with beneficial bacterial species, i.e.,
Bacillus sp., significantly increase the feed utilization and improve
the total length, weight gain, FCR, and survival of shrimp
species (Bachruddin et al., 2018). Kongnum and Hongpattarakere
(2012) and Chai et al. (2016) performed an experiment using
indigenous Bacillus sp., isolated from wild and healthy shrimp
intestine, and investigated its effect on shrimp health. The finding
suggests that Bacillus sp. significantly improves the growth
performance, immune system, and resistance of L. vannamei
against microbial pathogens (Kongnum and Hongpattarakere,
2012; Chai et al., 2016).

The bacterial biomass developed as aggregates in the biofloc
system can also serve as a nutrient for aquatic animals especially
as a protein source and thus improve the growth and overall
health of farmed aquatic animals (Table 2 and Figure 3)
(Cohen et al., 2005; Azim and Little, 2008; Cardona et al.,
2015; Lee et al., 2017). Additionally, these microbes were
also demonstrated to produce transduction signaling molecules
that have the ability to alert the immune system and protect
the host from pathogenic microbial infection (Rendón and
Balcazar, 2003; Cerezuela et al., 2013). Hence, administration
of these health-benefitting microbes in feed or any sort of
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incorporation can boost the cellular and humoral component of
the innate immune response in both fish and shellfish species
(Kuhn et al., 2009; Ahmad et al., 2016; Anand et al., 2017;
Kamilya et al., 2017; Kheti et al., 2017; Lee et al., 2017; Fauji
et al., 2018; Kumar V.S. et al., 2018). Xu and Pan (2013)
reported that shrimp cultured in the biofloc system had higher
total hemocyte count and phagocytic activity. Additionally,
significantly upregulated total antioxidant and superoxide
dismutase capacity and reduced/oxidized glutathione ratio were
observed in biofloc cultured shrimp (Xu and Pan, 2013). A study
from Kim et al. (2014) suggested that biofloc water contains an
abundant number of bacteria biomass and the bacterial cell wall
consists of various components such as bacterial peptidoglycan
lipopolysaccharide and β-1, 3-glucans, which are potential
immunostimulatory agents, stimulating the non-specific immune
activity of shrimp. In the experiment, it was demonstrated that
the biofloc system significantly enhances shrimp survival, final
body weights, and prophenoloxidase (proPO) cascade, which is
one of the major innate immune responses in crustaceans, by
upregulating prophenoloxidase activation enzyme, masquerade-
like proteinase, prophenoloxidase1, prophenoloxidase2, serine
proteinase1, and ras-related nuclear protein expression (Kim
et al., 2014). Similar findings were also observed in Labeo rohita
(Ahmad et al., 2016; Kamilya et al., 2017), Oreochromis niloticus
(Mansour and Esteban, 2017; Mirzakhani et al., 2019; Hwihy
et al., 2021; Shourbela et al., 2021), Cyprinus carpio (Bakhshi
et al., 2018; Aalimahmoudi and Mohammadiazarm, 2019),
and Apostichopus japonicus (Chen et al., 2018), where animals
reared in biofloc water display higher growth performance
including improved feed efficiency ratio (FER), specific growth
rate (SGR), and feed conversion ratio (FCR). Additionally, the
cultured animals have enhanced non-specific immune response,
highlighted by significantly increased serum protein, serum
albumin, total immunoglobulin, lysozyme, respiratory burst, and
myeloperoxidase activity. Taken together, it can be concluded that
availability of beneficial microbes in the system can positively
improve the growth, immune response, and disease tolerance of
cultured animals.

Disease Resistance
The maintenance of intestinal immunity and metabolic
homeostasis is regulated by interaction between host mucosa
and the intestinal microbiota. The beneficial microbes were
reported to establish a balanced and healthy microbiome within
the gastrointestinal tract and minimize harmful bacteria (Kiron,
2012; Gupta et al., 2019). The microbial communities were
reported to contain microbe-associated molecular patterns
(MAMPs), for instance, bacterial cell wall components like
peptidoglycan, lipopolysaccharide, and lipoteichoic acid, which
are involved in the modulation of receptor signaling cascades
and plays a crucial role in the activation of host immune
response and protection from a host from infectious diseases
(Cerenius and Soderhall, 2013; Wang and Wang, 2013; Song
and Li, 2014; Im et al., 2016). Moreover, there is some evidence
that highlights that improved growth performance and non-
specific immunity results in development of resistance in
cultured animals (Table 2). For example, studies in O. niloticus

(Elayaraja et al., 2020), C. gariepinus (Dauda et al., 2017, 2018;
Fauji et al., 2018), L. rohita (Kheti et al., 2017), C. carpio (Dash
et al., 2018), L. vannamei (Liu et al., 2017), Fenneropenaeus
indicus (Megahed et al., 2018), and M. rosenbergii (Miao et al.,
2017) demonstrated that aquatic animals cultured in biofloc
water have significantly enhanced growth and immune response
that leads to increased protection against pathogenic microbial
infection. Overall, it can be concluded that microbes, mainly
heterotrophic bacteria, developed within the biofloc system
contribute as bioremediation agents by ensuring optimum water
quality and in the process help in the generation of new biomass
which are further consumed by cultured animals resulting in
improved growth, health and disease tolerance in cultured
animals (Liu et al., 2017; Miao et al., 2017; Dash et al., 2018;
Megahed et al., 2018; Elayaraja et al., 2020).

INTERACTION OF BIOFLOC DERIVED
MICROBIAL COMMUNITY WITH
PATHOGENIC MICROORGANISMS

Several researchers have pointed out that biofloc grown aquatic
animals have enhanced resistance to pathogenic microbial
infections (Figure 3) (Azim and Little, 2008; Crab et al., 2012;
Pérez-Rostro et al., 2014; Luis-villaseñor et al., 2016; Anand
et al., 2017; Bossier and Ekasari, 2017; Lee et al., 2017; Kasan
et al., 2018; Pacheco-Vega et al., 2018; Fatimah et al., 2019;
Kumar et al., 2020b). One of the possible scenarios that might be
involved behind this induced resistance is improved immunity
and health of cultured animals in biofloc as also suggested in
an earlier paragraph. It is noted that shrimp in the biofloc
system consumes up to 29% flocculating particles of their
daily feed intake (Burford et al., 2003), hence the consumed
biofloc might nutritionally modulate the health status of shrimp
resulting in increased protection of host against microbial
diseases. However, another possible mechanism that could also
possibly be involved in the protective effect of the biofloc
system is intermicrobial interaction that leads to direct growth
inhibition or modulation of pathogenic microbe virulence by
biofloc derived microbial communities.

The microbes, including both beneficial and pathogenic
for cultured species, are ubiquitously present in aquatic
environments. The presence of one group in the ecosystem
might interact (synergistically or antagonistically) and
substantially affects the behavior and abundance of the
second group of the microbial community (Matsui et al., 2000;
Das et al., 2006, 2014). Bacterial interaction is a common
phenomenon that occurs naturally in an aquatic environment.
Interestingly, these microbial interactions play a major role
in keeping the equilibrium between potentially pathogenic
and competing beneficial microorganisms. Nonetheless,
the microbial communities composition can be altered by
environmental conditions and husbandry practices that stimulate
the multiplication of selected bacterial species (Kumar et al.,
2016). It is well established that aquatic animals gastrointestinal
microbiota can be altered and modified by ingestion of other
microorganisms; hence, the microbial manipulation constitutes
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TABLE 2 | The list of microorganisms reported to be involved in the natural bioremediation process, growth, immunity, and disease tolerance of aquaculture animals.

Microbial species Target system Bioremediation process Growth performance Immune response Disease
resistance/antimicrobial
activity

References

Bacteria

Bacillus pumilus and
Lactobacillus delbrueckii

Biofloc water Total ammonia nitrogen (TAN)
concentration (−) after 7th
week in common carp culture
system

Weight gained per day
(WGD), specific growth rate
(SGR) (+), and Feed
conversion rate (FCR) (−)

Lysozyme, respiratory burst
and myeloperoxidase
activity (+)

Survival against Aeromonas
hydrophila challenge (+)

Dash et al., 2018

Aeromonas salmonicida,
Aeromonas hydrophila and
Pseudomonas aeruginosa

Biofloc water Ammonium 96%, nitrite 37.5%
and nitrate 62% (−) in 105 days
culture period

– – – Manan et al., 2017

Bacillus licheniformis Biofloc water – – Hemocytes count and total
protein content (+)

In vitro inhibitory activity (+)
and in vivo count of Vibrio
alginolyticus (−)

Ferreira et al., 2015

Bacillus sp. Pond wastewater Ammonium, nitrite and nitrate
(−) in 4 days period

– – – Naderi Samani et al.,
2016

Bacillus vietnamensis and
Gordonia bronchialis

Pond wastewater Total ammonia nitrogen (TAN)
and nitrite concentration (−) in
5 days

– – – Muthukrishnan et al.,
2015

Marichromatium gracile YL28 Pond wastewater Nitrite removal 99.96% and
ammonium assimilation 95.6%
from aquaculture pond
wastewater in 7 days

– – – Zhu et al., 2019

Bacillus sp. mixture Shrimp culture water Total ammonia nitrogen, nitrite
and nitrate level (−) in 8 weeks
Litopenaeus vannamei culture

Final weight, weight gain,
specific growth rate (SGR)
(+) and food conversion
ratio (FCR) (−) of cultured
animals

Expression of
prophenoloxidase (proPO),
peroxinectin (PE),
lipopolysaccharide- and
β-1,3-glucan- binding
protein (LGBP) and serine
protein (SP) (+)

Survival (80%) (+) as
compared to control (40%)
against Vibrio harveyi
infection

Zokaeifar et al., 2014

Bacillus sp. Prawn culture water Ammonium and nitrite levels (−)
in Macrobrachium rosenbergii
culture after 60 days

Specific growth rate (SGR)
(+) and food conversion
ratio (FCR) (−) of cultured
animals

Total haemocyte count
(THC), phenoloxidase (PO)
and respiratory burst
activity (+)

– Mujeeb Rahiman et al.,
2010

Bacillus amyloliquefaciens Sewage water Total ammonia nitrogen (TAN)
93% (−) within 24 h

– – – Yu et al., 2012
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TABLE 2 | (Continued)

Microbial species Target system Bioremediation process Growth performance Immune response Disease
resistance/antimicrobial
activity

References

Streptococcus,
Staphylococcus, Bacillus,
Neisseria sp.

Sewage water Develops biofloc that might
help in improved growth
performance.

Kurniawan et al., 2020

Bacillus sp., Lactococcus,
Rhodococcus, Kocuria,
Pseudomonas.

Enhanced growth
performance

Immune response (+)

Nitrospira, Rhodobacter. Actively involved in nitrification
and denitrification process

Sphingomonas, Burkholderia,
and Acinetobacter.

Maintain optimum water quality
by degradation of organic
matters

Bacillus subtilis, Bacillus
mycoides, and Bacillus
licheniformis

Recirculatory system
water

Ammonium, nitrite, nitrate and
phosphate levels (−) in
recirculation tanks

– – In vitro antimicrobial activity
against Aeromonas
hydrophila (+)

Lalloo et al., 2007

Bacillus subtilis and Bacillus
megaterium

Recirculatory system
water

Total ammonia nitrogen and
chemical oxygen demand
(COD) (−) in red parrot fish
recirculation tanks

Weight gain (WG) (+) in
treatment as compared to
control

– – Chen and Chen, 2001

Bacteria + yeast combination

Pseudomonas stutzeri LZX301
and Candida tropicalis HH8

Biofloc water Nitrite removal 59.33% and
ammonium assimilation
44.87% from culture water in
initial 11 days

– – – Gao et al., 2019

Nitrobacter, yeast and Bacillus
subtilis

Pond wastewater Total ammonium nitrogen
99.74% and 62.78% total
phosphorus (−) in brackish
aquaculture wastewater

– – – Mohamad et al., 2017

Bacteria + microalgae combination

Lactiplantibacillus plantarum
and Schizochytrium sp.

Biofloc water Ammonium and nitrite
concentration (−), while
stabilizing nitrate value in
44 days culture period

– – – Pacheco-Vega et al.,
2018

(+) increased; (−) decreased.
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FIGURE 3 | Schematic overview on the possible role of the biofloc microbiome. (A) Development of a biofloc system; (B) potential role of the biofloc system against
pathogenic microbes and in a host.

a promising tool to eliminate or reduce the incidence of
opportunistic microbial pathogens (Balcázar et al., 2006). The
direct effect, for example, inhibiting the growth and proliferation
of other microorganisms, could be the main mode of action
of beneficial bacteria that can be observed in cultured systems
(Kesarcodi-Watson et al., 2008; Giri et al., 2013; Jiang et al.,
2013), and studies have demonstrated that autochthonous
microorganisms have significantly high potential because
these microbes can easily adapt to the same ecological niche
and competitively exclude the pathogenic microbes from the
system (Lalloo et al., 2010). Apart from direct inhibition,
competition for binding site and nutrition inside the host by
adhesion and colonization on the mucosal surfaces are other
indirect possible protective mechanisms of beneficial bacteria
against pathogenic microbes (Pickard et al., 2017). For instance,
study on rainbow trout (Oncorhynchus mykiss) illustrated that
lactobacilli administration significantly decrease the adhesion
and colonization of pathogenic Carnobacterium piscicola,
Yersinia ruckeri, and A. salmonicida in intestinal mucus of the
host (Balcázar et al., 2007). The beneficial bacteria produce
a variety of wide-spectrum chemical compounds including
siderophores, bacteriocins, hydrogen peroxides, proteases, and
lysozymes in the intestine of the host, thus constituting a barrier
against the proliferation of opportunistic pathogenic microbes.
Additionally, they produce organic acids that leads to alteration
of the intestinal pH due and inhibition of microbial pathogens
(Oppegård et al., 2007; Zai et al., 2009; Korkea-aho et al., 2011,
2012; Ström-Bestor and Wiklund, 2011).

Interestingly, there are several studies that have used
pathogenic Listeria monocytogenes as a model organism, a
Gram-positive pathogenic bacterium reported to cause severe
problems in the food industry, to study the possible interaction
mechanism on growth and virulence of another bacterial
community (Zilelidou and Skandamis, 2018). The microbial
species, e.g., Carnobacterium piscicola (produces bacteriocins)

(Buchanan and Bagi, 1997; Nilsson et al., 1999, 2004, 2005;
Yamazaki et al., 2003); lactic acid bacteria (LAB)/mainly
Lactobacillus (pH reduction, lactic acid production) (Callon
et al., 2011); Lactobacillus plantarum (produces bacteriocins, pH
reduction) (Nielsen et al., 2010; Aguilar et al., 2011); Lactococcus
lactis (produces bacteriocins, pH reduction) (Breidt and Fleming,
1998; Rodríguez et al., 2005; Coelho et al., 2014); Lactobacillus
sakei (produces bacteriocins) (Vermeiren et al., 2006; Gao et al.,
2015; Martinez et al., 2015; Quinto et al., 2016), and Lactococcus
piscium (Saraoui et al., 2016) are reported to inhibit/reduce the
growth of L. monocytogenes. There are also few studies that
highlight that microbial community groups can antagonistically
interact with L. monocytogenes and modulate the virulence
of pathogens. The microbial species, e.g., L. lactis (inhibits
biofilm formation) (García-Almendárez et al., 2008; Habimana
et al., 2011); Lactobacillus paracasei, Listeria innocua (inhibits
adherence and biofilm formation) (Bendali et al., 2014; Koo
et al., 2014); Staphylococcus sciuri (production of siderophores
and extracellular polysaccharide) (Leriche et al., 2000), and
Lactobacillus acidophilus (produce antimicrobial compounds)
(Woo and Ahn, 2013) were demonstrated to act antagonistically,
while synergistic interaction was observed in Staphylococcus
aureus and Flavobacterium spp. (higher biofilm formation)
(Bremer et al., 2001; Rieu et al., 2008). Apart from studies on
L. monocytogenes, there are also few reports, which indicates the
antagonistic properties of bacterial species against pathogenic
microbes. For instance, Lalloo et al. (2007) demonstrated that
B. subtilis, Bacillus mycoides, and Bacillus licheniformis act
antagonistically and significantly inhibit the growth and virulence
of A. hydrophila.

Moreover, there is not much work done on the effect of
biofloc derived microbial communities on the growth and
virulence of pathogenic microorganisms. However, few studies
like Ferreira et al. (2015) demonstrated that bioflocs are a rich
source of beneficial microbial communities, more specifically
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microbes with probiotics activity. The study showed that Gram-
positive bacteria B. licheniformis, isolated from biofloc water,
have antagonistically inhibited the growth of pathogenic Vibrio
alginolyticus. Additionally, the B. licheniformis modulates growth
and immunity and reduces in vivo V. alginolyticus count in
L. vannamei (Ferreira et al., 2015). Recently, Kumar et al.
(2020a,b) demonstrated that acute hepatopancreatic necrosis
disease (AHPND) causing V. parahaemolyticus shift phenotype
from virulent state to non-virulent phenotype in a biofloc
environment. The results showed that biofloc environment
induces adaptive changes in pathogenic V. parahaemolyticus
strain, observed by downregulation of growth, motility, and
virulence related genes. Additionally, the bacterial strain
loses the ability to kill the host and when the pathogenic
V. parahaemolyticus strain added to cultured water it fails
to induce significantly high mortality in shrimp species
(Kumar et al., 2020a,b, 2021a). Although there was no direct
correlation on the possible involvement of biofloc derived
microbial communities and observed effect on pathogenic
V. parahaemolyticus, the results indicate the pathogenic microbe
becomes non-virulent in the biofloc system. Taken together, the
studies highlight that biofloc associated microbial communities
influence the growth and virulence of pathogenic microbes and
are involved, at least partially, in providing protection to cultured
animals; however, the mechanism by which this phenomenon
occurs needs further investigation.

COMMERCIAL APPLICATION AND
ECONOMIC CONSIDERATION

The adverse climatic condition, namely, droughts, scarcity, and
expensive water for the development of aquaculture and the
adverse effects of aquaculture effluents on the environment,
pollutions, and the spread of infectious diseases have drawn
the attention for farm biosecurity and development of alternate
technology to reduce the amount of water exchange in the
farms (Khanjani and Sharifinia, 2020). The biofloc technology
(BFT) is based on the principle of flocculation or co-culture of
heterotrophic bacteria and algae within the system (Crab et al.,
2007; Ahmad et al., 2017). Interestingly, production in biofloc
in the large-scale aquaculture can have environmental benefits
in marine and coastal ecosystems. For instance, it can help in
minimizing the potential negative effect of artificial commercial
feed containing soybean or fish meal on aquaculture wastewater
and environmental by serving as a nutrient source in both in situ
and ex situ systems.

The successful demonstration of BFT for several aquaculture
species has made this technology a promising endeavor for future
fish production. In general, a commercial biofloc system varies
in size, between 0.1 and 2 ha and the essential components
including aspirators and paddle wheels are installed to aerate
and mix the culture water to keep floc particles in suspension.
Currently, commercial, large-scale, and small-scale BFT-based
fish farms are expanding in a number of countries, especially in
Asia (e.g., Indonesia, Malaysia, Thailand, South Korea, China,
and India) and the Americas (e.g., United States and Brazil)

(Emerenciano et al., 2013). For instance, in Indonesia about
20–25% of shrimp farms have employed the biofloc system,
resulting in an average production of more than 20 mt ha−1

per cycle in 0.5-ha lined ponds (Crab et al., 2012). Interestingly
the lining in ponds, partially or completely lined with high
density polyethylene (HDPE) sheets, may affect the overall fish
production in the biofloc system. For example, in Malaysia, lower
production was achieved (12 mt ha−1 per crop) when only pond
dikes were lined, while fully lined ponds produced 16.2–22.5 mt
ha−1 (Bossier and Ekasari, 2017). However, despite the high
potential of biofloc technology in aquaculture, the system has
some major associated drawbacks. The most important economic
problem is the excessive use of energy for continuously high
aeration and water mixing. This system also requires regular
monitoring, alarms, and emergency power supply. This means
that the biofloc systems could increase the operating costs, due
to the cost of the aeration system and the carbon source added
to the system (Pérez-Rostro et al., 2014). Additionally, after
some period the flocs particles tend to become old and increase
in size, which might be not acceptable to the cultured fish.
Hence, continuous monitoring of flocs volume and particle size is
necessary to harness the maximum beneficial effect of the biofloc
system. Therefore, it is necessary that economic analyses must be
performed before adopting the BFT on commercial scales. In this
regard, a species-specific study must be carried out to determine
the effectiveness of BFT in aquaculture system.

Although the biofloc system has several attributes that have
increased wide adoption for commercial intensive and super-
intensive fish culture, data and information on the economy of
these systems in Indian major cultured species are almost lacking,
or not accessible to the public. Additionally, experience and
information generated by private BFT enterprises are generally
not open to the public. These companies tend to keep information
and their own know how proprietary. Even when the data
are available, proper dissemination channels are almost lacking.
Hence, studies must be carried out in the future to demonstrate
the application of this technology for commercial fish species of
India, in order to persuade the farmers to set it up to justify the
BFT technology rather than conventional culture methods.

CONCLUSION AND FUTURE
PERSPECTIVES

Biofloc technology allows high-density culture and offers
the possibility to maintain good water quality with no or
minimal water exchange by recycling of nutrient, in particular,
nitrogenous waste into microbial biomass that can be utilized
in situ by the cultured animals. The addition of a carbon
source, e.g., molasses or tapioca in C:N ratio of 12–15:1,
promotes aggregation of microbial mass, i.e., biofloc, that helps
in natural bioremediation process by converting toxic nutrient
from the system and these flocs are subsequently consumed
and utilized as a nutrient source for growth, immunity, and
developing tolerance against disease by cultured animal. In fact,
these microbial masses, which mainly consist of heterotrophic
microorganisms, hold enormous potential to promote biofloc
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development and improve water quality, host immunity and
resistance to microbial pathogens. However, still not much work
or information is available on the microbial species or diversity
responsible for developing flocs and maintaining optimum
water quality and health of cultured animals. Hence, isolation
of biofloc derived microbial community, mainly heterotrophic
microbes, and further characterizing their possible interaction
mechanism with environment, host, and pathogenic microbes
will open new avenues and will be a promising aquaculture
technology for future aquatic environments and pathogen
management and possibly result in an overall increase in the
aquaculture production with high-density and minimal or no
water exchange culture.

Apart from serving as a potential tool to maintain good
water quality and the health of the host, the biofloc system
derived microbial community can also be useful to manage
wastewater by serving as natural bioremediation agents.
Wastewater from industry and daily household discharge,
which mainly contains nitrogenous compounds, phosphorous,
and other dissolved organic carbons, has created havoc in
aquatic environments and even destroyed many ecosystems.
Interestingly, there is a growing interest in using the microbial

community as potential bioremediators to treat the culture
water discharge and wastewater. This suggests that identification
of a microbial species or consortia from the biofloc system
that regulates natural bioremediation processes would be a
promising strategy for wastewater treatment. In conclusion,
we can say that maintaining a beneficial microbial diversity
could be a promising approach to manage wastewater and
aquaculture systems.
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