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Abstract. Elimination of an infectious disease requires subcritical transmission, or a reproductive number less than
one, and can be assessed with cross-sectional surveys conducted by neglected tropical disease programs. Here, we
assess thedistribution of onchocerciasis prevalence taken fromsurveys across sub-SaharanAfrica before the initiation of
ivermectin in mass drug administrations. Pre-intervention nodular palpation cross-sectional surveys were available from
15 countries in the Expanded Special Project for Elimination of Neglected Tropical Diseases (ESPEN) database. We
determined whether the distribution of the prevalence over communities in an area was consistent with a geometric
distribution, which previous studies have suggested indicates a subcritical disease. If not, we fitted a negative binominal
distribution (hypothetically supercritical) or a mixture of two distributions: geometric (hypothetically subcritical) and
Poisson (hypothetically supercritical). The overall distribution of community-level onchocerciasis prevalence estimates
from the ESPEN dataset from 2005 to 2014 was not consistent with a geometric distribution. By contrast, data from
several countries and parts of countries were consistent with the geometric distribution, for example, some areas within
Nigeria and Angola. Even if the geometric distribution suggested pre-intervention subcriticality in more localized geo-
graphical areas, our model using pooled survey data of all geographic areas suggests that the entire pre-intervention
prevalence does not fit a geometric distribution. Further work will be required to confirm the significance of a geometric
distribution for onchocerciasis.

INTRODUCTION

Neglected tropical disease programs typically use themean
incidence or prevalence over a geographical region to assess
whether an intervention is required and whether control tar-
gets have been achieved. Thresholds allowprograms to easily
classify populations into those that have met the criterion.
Those populations above the threshold may represent high,
sustained transmission areas of endemic disease or the in-
evitable laggards in what will be a successful elimination pro-
gram. A different criterion could be achievement of subcritical
transmission, where the replacement number for infectious
cases (R) is less than unity. If subcritical, infection would be
expected to eventually be eliminated even without additional
programmatic efforts. Identification of the prevalence threshold
for subcriticality is a goal for programs, as this implies they are
moving toward elimination. Although assessment could be
performed with longitudinal surveys, subcriticality can also be
assessed in cross-sectional surveys.1–3

Mathematical models have suggested that a geometric
distribution might be expected when an infectious disease is
subcritical.4–6 Cross-sectional surveys of diseases such as
trachoma and leprosy are consistent with a geometric distri-
bution across some areas that were expected to be headed
toward elimination. Onchocerciasis is different from these two
bacterial diseases for many reasons, including dependence
onageographically restricted vector. In response to these and
other complexities, a range of mathematical models have
been developed for onchocerciasis, including EPIONCHO
and ONCHOSIM.7,8 The existing modeling literature does not
address the question of inferring subcriticality from the dis-
tribution of cross-sectional data.

In May 2016, the WHO Regional Office for Africa launched
the Expanded Special Project for Elimination of Neglected
Tropical Diseases (ESPEN) to promote an integrated ap-
proach to disease elimination of onchocerciasis, lymphatic
filariasis, trachoma, schistosomiasis, and soil-transmitted
helminthiases.9 In 2018, as part of this program, the WHO
created the ESPEN portal, an electronic platform designed to
enable health ministries and stakeholders to share data re-
lated to disease surveillance (mapping community-level sur-
veys) and geographic coverage of mass drug administration
(MDA).10 The publicly available database contains thousands
of onchocerciasis community surveys from a majority of the
currently endemic sub-Saharancountries.Most of the surveys
were conducted before the initiation of ivermectin in MDA.
Using the recently available ESPENdatabase, we assessed

whether onchocerciasis among 15 African countries was
subcritical before intervention. Specifically, we assessed
whether cross-sectional surveys were consistent with a geo-
metric distribution, which would be consistent with a re-
production number less than 1.4,5 If surveys were not
consistentwithageometric distribution,weassessedwhether
the data could represent a mixture of subcritical and a portion
of supercritical communities, reflecting hotspots in the region.

METHODS

Data. The ESPEN database was accessed and included
datasets from 15 African countries. These African countries
represented those involved in the African Program for On-
chocerciasis Control program. Periodic assessments of on-
chocerciasis programswere conducted as surveys according
to the rapid epidemiological mapping of onchocerciasis
(REMO) protocol. Communities were selected based on the
location in relation to potential vector breeding sites, as de-
termined on maps. Depending on the size of the selected
community, the sample or subsample was considered to be
those adults most at risk for onchocerciasis. If subsampling
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of larger communities was not feasible, then the community
was replaced by a smaller one, where more representative
sampling could occur. Cross-sectional surveys were con-
ducted before intervention (MDA). During these rapid epide-
miological assessment surveys, a sample of 30 to 50 adult
men who were older than 20 years and had resided in the
village formore than 10 years were examined for the presence
of at least one fibrous nodule in the subcutaneous tissue,
which was defined as a case of onchocerciasis. Then, the
percentage of men with palpable nodules was calculated for
each village, where a GPS coordinate was obtained from a
central location in the village.11 Surveys were performed from
1989 to 2014, with thosewithout an associated date known to
have been performed well before 2001.
Note that some countries had multiple pre-intervention

surveys conducted in more than one year; however, there
were no longitudinal data collectedduring thepre-intervention
period, meaning that surveys conducted in subsequent years
were of previously unsampled communities.
We excluded surveys that were conducted after the in-

tervention. We restricted our analysis to surveys that used
nodular palpation as the diagnostic measure, instead of skin
biopsy or Ov16 antigen testing, which were data collected
during MDA. As the project used only de-identified publicly
available data, the University of California, San Francisco,
CHR-IRB considered this exempt from human subjects re-
search protection.

Parameterization of distributions. The discrete distribu-
tions were parameterized such that the proportion infected
would not, on average, be affected by the size of the survey.
The scale parameter that was optimized was the mean pro-
portional prevalence (μ). The two-parameter negative binomial
was parameterized such that the shape parameter would

FIGURE 1. Map of the prevalence surveys. This figure appears in color at www.ajtmh.org.

FIGURE 2. Histogram of the prevalence surveys from all available
countries in sub-Saharan Africa over survey years, 1985–2014. The
mixture of geometric and Poisson distributions had the lowest
Bayesian information criterion. This figure appears in color at
www.ajtmh.org.
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equal one when the distribution represented the special case
of a geometric distribution. With Yj denoting the number of
infected individuals in the jth survey, we computed P (Yj = i),
the probability mass functions, as follows:
Geometric distribution with mean njμ (and thus P = 1/(1+ njμ)):
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where j indicates the survey,μ is theproportion infected, andnj is
the number of individuals in the jth survey. Zero inflation was
incorporated by having proportion c surveys necessarily zero.
For the geometric–Poisson mixture, c1 was the proportion nec-
essarily zeroandc2was theoddsofbeinggeometric asopposed
to Poisson. Unless otherwise stated, calculations were per-
formed inMathematica10.2 (WolframResearch,Champaign, IL).
Geometric. To assess whether the distribution of the

prevalence over communities in a countrywas consistent with
a geometric distribution, we fitted a three-parameter, zero-
inflated negative binomial model. More details about the use
of geometric distributions and implications for subcriticality
can be found elsewhere.3,12 Uncertainty was expressed using
bootstrap percentile CIs. Because the geometric distribution

TABLE 1
Country-specific model comparisons

Country Years Surveys (#)
% Subcriticality for mixture

distribution (95% CI) Bayesian information criterion (distributions)

All countries not applicable 9,204 0.95 (0.94–0.97) Geometric 56,496
Mixture 56,164
Negative binomial 56,551.8

Angola 2002 and 2011 762 0.89 (0.80–0.93) Geometric 3,475.1
Mixture 3,470.1
Negative binomial 3,480.2

Burundi 2001 and 2013 186 0.96 (0.67–1.0) Geometric 884.1
Mixture 893.2
Negative binomial 880.5

Cameroon 1993 and 2013 454 0.89 (0.78–0.96) Geometric 2,718
Mixture 2,723
Negative binomial 2,714.6

Central African Republic 1999 and 2001 180 0.79 (0.72–0.88) Geometric 891
Mixture 877.2
Negative binomial 896.2

Chad 2013 16 1.0 (1.0–1.0) Geometric 21.7
Mixture 27.3
Negative binomial 23.9

Republic of the Congo 2003 93 0.84 (0.69–0.94) Geometric 344.1
Mixture 335.8
Negative binomial 344.8

Democratic Republic of the Congo 2000 and 2014 3,727 0.85 (0.83–0.88) Geometric 25,231.9
Mixture 25,080.9
Negative binomial 25,070

Cote d’Ivoire 2014 37 1.0 (1.0–1.0) Geometric 88.3
Mixture 95.5
Negative binomial 91.2

Equatorial Guinea 1999 and 2013 247 0.71 (0.61–0.79) Geometric 1,462.3
Mixture 1,402.1
Negative binomial 1,461.5

Ethiopia 2001 and 2012 644 0.70 (0.62–0.76) Geometric 3,907.7
Mixture 3,829.7
Negative binomial 3,854.2

Gabon 1999 and 2014 78 0.23 (0-0.67) Geometric 190.1
Mixture 194.1
Negative binomial 189.6

Malawi 1998 291 0.85 (0.74–0.89) Geometric 755.6
Mixture 741.3
Negative binomial 745.3

Mozambique 2001 and 2007 291 0.72 (0.20–1.0) Geometric 429.3
Mixture 438.8
Negative binomial 434.3

Nigeria 1989 and 2011 2,147 0.91 (0.88–0.97) Geometric 12,511.6
Mixture 12,510
Negative binomial 12,516

Uganda 2008 51 0.84 (0.66–0.94) Geometric 278
Mixture 281.3
Negative binomial 276.7

Bold font indicates the distribution with the lowest Bayesian information criterion.
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is a negative binomial with a shape parameter of 1, we de-
terminedwhether the 95%CIs for the negative binomial shape
parameter included 1 by pairing the nearest neighbor vil-
lages (geographical distance) for bootstrap resampling.
Based on the assumption that the distribution of infection
approximates the quasi-stationary distribution in the sub-
critical circumstance,6 we approximate R0 by estimating
μ/(1+μ), where μ is the parameter P of the fitted geometric
distribution. We calculated the CI ofR0 by bootstrapping the
sample.
Heterogeneity. If the data were unlikely to have come from

a zero-inflated geometric distribution, we fitted a 4-parameter
mixture distribution, allowing for a proportion of subcritical
communities (taken from a zero-inflated geometric distribu-
tion) and supercritical communities (taken from a Poisson
distribution, representing random incidence of disease). The
three models (zero-inflated geometric, zero-inflated negative
binomial, and zero-inflatedmixture of geometric and Poisson)
were compared using theBayesian information criterion (BIC).
More details about the parameters for each distribution can be
found in the Supplemental Materials.
Subnational analysis. To explore the distribution centered

over a geographical region within a country and at each
timepoint, we chose a grid of 27 evenly spaced internal points
within the country’s minimum and maximum latitude and
longitude. For each internal point, we randomly resampled
surveys with inclusion probability based on the distance from
the specific point (Gaussian kernel with a SD of 2� unless
otherwise stated). All calculations were performed in Mathe-
matica 11.1 (Wolfram Research).
Time for prevalence to be reduced by 50%.We estimate

this time by the number of generations, T, of subcritical
transmission needed for the disease to decline to half its
current level, times the expected generation time. Here, T = ln
(1/2)/ln R0. This assumes that there will be no intervention in
these communities and an average duration of infection with
the adult worm of 10 years.

RESULTS

The ESPEN database was accessed on May 10, 2018, and
included 15,235 community-level prevalence survey results
from 17 countries from 1989 to 2014. We excluded 1,876
surveys because they did not use nodular palpation as the
diagnosticmeasure. The remaining 13,358 surveyswere used
in the overall analyses (Figure 1). We excluded an additional
4,154 surveys because there was no associated survey date
available. The remaining 9,204 surveys were used in the
country-level analyses.
As observed in Figure 2, available surveys were unlikely to

havecome fromageometric distribution (P<0.001, zero-inflated
geometric distribution goodness of fit testing). Although the
shape parameter for the best-fit zero-inflated negative binomial
distribution included 1 (Supplemental S1 Table), themixture dis-
tribution had a far superior BIC (Table 1). This best-fit mixture
distribution was a linear combination of 12% zero inflation (non-
endemic), 83% geometric (hypothetically subcritical), and 5%
Poisson distribution (hypothetically supercritical). As a result,
83% of communities are hypothetically subcritical. The average
R0 of these communities was 0.91 (95% CI: 0.87, 0.95), which
corresponds to a half-life of infection (time for prevalence to be
reduced by 50%) of 70 years (95% CI: 68–72 years).

Bynationandsubnation.Countries hadvaryingdegreesof
subcriticality (Table 1). Based on surveys conducted within a
country, areas could be identified that were consistent with
complete or near-complete subcriticality (Angola, Figure 3A).
Some countries had data that were clearly not consistent with
a geometric distribution (Uganda, Figure 3B). Others were
consistent with a mixed geometric and Poisson (Equatorial
Guinea, Figure 3C). Results describing the fit of each distri-
bution can be found in the Supplementary Materials
(Supplemental S1 and S2 tables).
It was not difficult to find areas within a country with varying

degrees of subcriticality (Table 2, Figures 4A–E). Areas within

FIGURE 3. (A) Histogram of the prevalence surveys in Angola
(2002–2011). The mixture of geometric and Poisson distributions had
the lowest Bayesian information criterion (BIC). (B) Histogram of the
prevalence surveys in Uganda (2008). The negative binomial distri-
bution had the lowest BIC. (C) Histogram of the prevalence surveys in
EquatorialGuinea (1999–2013). Themixture of geometric andPoisson
distributions had the lowest BIC. This figure appears in color at
www.ajtmh.org.
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Equatorial Guinea in 2003 (Figure 4A), the DRC in 2009
(Figure 4B), and Ethiopia in 2009 (Figure 4C) were not con-
sistent with a geometric distribution, whereas areas within the
DRC in 2000 (different areas from that in 2009; Figure 4D) and
Nigeria in 1997 (Figure 4E) were consistent.

DISCUSSION

Onchocerciasis nodular palpation pre-intervention surveys
from the overall ESPEN database were unlikely to have come
from a geometric distribution, which mathematical models
have suggested might be expected when an infectious
disease is subcritical.4–6 Given that mass distribution of iver-
mectin had yet to begin in these places, we expected pre-
intervention surveys to be inconsistent with the geometric
distribution. However, we found some pre-intervention sur-
veys were consistent with the geometric distribution. These
areas are potentially subcritical. If so, elimination would
eventually be achieved without further intervention.
A geometric distribution of community-level prevalence can

be obtained by assuming subcriticality and infectiousness
in a simple susceptible-infectious-susceptible transmission
model. Particular assumptions about transmissionmay not be
necessary. Any stochastic process where disease is being
eliminated and future cases are proportional to current cases
may result in a geometric distribution.3,13 Also, previous
studies have shown that this distribution may be seen over
larger geographical areas and with some heterogeneity. For
trachoma and leprosy, a remarkable consistency with a geo-
metric distribution has been observed, over a time period
when the diseases were in the process of being eliminated.1–3

As a vector-borne disease, onchocerciasis exhibits more
complex transmission dynamics than trachoma or leprosy,
and published onchocerciasis models have accounted for the
vector, age, treatment, vulnerabilities, infection intensity, and
other factors.7,14–17 These transmission dynamic differences
maybeone reason thatmanyof our findingswere inconsistent
with a geometric distribution.
Another explanation may have to do with survey sampling

techniques. Rapid epidemiological mapping of onchocercia-
sis samples high-risk villages first and then secondary villages

nearby. Inside each selected village, REMO assesses a tar-
geted sample of 30–50menolder than 20 yearswho engage in
rural work and havebeen living in the community for at least 10
years. Distributions based on this biased population of com-
munities and individuals might not be expected to conform
to a geometric, even if a population-based survey would.
Trachoma and leprosy indicators are population based.
In simple models, the prevalence of communities where in-
fection persists approaches a geometric distribution as in-
fection disappears4,5,18,19; however, this is a quasi-stationary
distribution—an equilibrium contingent on a community hav-
ing at least one infectious case. Trachoma and leprosy dy-
namicsmay be slow enough that distributions are close to this
equilibrium.1–3 That may not be true of other diseases such as
onchocerciasis.
The modeling approach in this analysis was simple. How-

ever, it should be noted that the hypothesis that the preva-
lence of a disappearing infectious disease would approach a
particular distribution should hold more than a wide variety of
assumptions. Making inferences from a distribution may be
more difficult in practice than simply assessing whether a
community has reached a prevalence threshold. Here, we
have assumed that the distribution found in surveys near in
time and place to our point of interest can be used to ap-
proximate the probability space (ensemble average) at that
point—a form of spatiotemporal ergodicity. But too much
heterogeneity of communities over space and timemaymake
this assumption unrealistic.
We have allowed for the possibility of heterogeneity be-

tween communities in a number of ways. The geometric dis-
tribution reveals the amount of heterogeneity expected from a
stochastic subcritical infectious process, even if all commu-
nities had identical transmission. The relatively heavy tail of the
geometric (compared with that of, e.g., the Poisson or bi-
nomial distributions) implies that a proportion of higher prev-
alence communities would be expected even in a successful
treatment program. Heterogeneity between communities was
also included in the negative binomial model. A shape pa-
rameter of less than one allows more dispersion than seen in
the geometric distribution, and a shape parameter more than
one allows less. A beta-geometric distribution would allow for

TABLE 2
Comparison of models for regions within specific countries

Country Year Surveys (#)

Central point
(GPS: latitude,
longitude)

% Subcritical for mixture
distribution (95% CI) Bayesian information criterion (distributions)

Equatoria Guinea 2003 246 9.9, 3.1 0.02 (0.0, 0.06) Geometric 2,128.5
Mixture 1,425.5
Negative binomial 1,418.6

Democratic Republic of the Congo 2009 3,726 26.4, 0.5 0.64 (0.61, 0.67) Geometric 27,944.4
Mixture 26,619.3
Negative binomial 25,161

Ethiopia 2009 926 37.8, 6.0 0.64 (0.60, 0.69) Geometric 5,448.2
Mixture 5,276.4
Negative binomial 5,294.5

Democratic Republic of the Congo 2000 4,398 17.0, −9.7 0.93 (0.92, 0.94) Geometric 26,631.4
Mixture 26,339
Negative binomial 26,729.4

Nigeria 1997 2,146 11.6, 6.9 0.88 (0.83, 0.99) Geometric 12,613
Mixture 12,618.4
Negative binomial 12,624.8

Bold font indicates thedistributionwith the lowestBayesian information criterion (BIC).Note: There are twodifferent areaswhere surveyswere conducted in theDemocraticRepublic of theCongo
(one in 2000 and the other in 2009).
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a varying rate of elimination in different areas, although that
was not performed in this analysis as the limited database
might not have supported thenecessary additional parameter.
Note that a beta-geometric would also be monotonically de-
creasing but allow for a tail heavier than the geometric. Fitting
a mixture of a geometric and a Poisson distribution modeled
heterogeneity by allowing for two distinct subsets of com-
munities, providing an estimation of the proportion sub-
critical and critical, respectively. Clearly, distributions more

complicated than the one-parameter Poisson used here could
be considered for modeling supercritical areas. Although our
approach is simple, a large classofmodelswouldbeexpected
to approach this behavior as the infection is disappearing.
The approach taken in this report suffers from a number of

additional limitations. With onchocerciasis, subcriticality may
not be the only explanation for observing a geometric distri-
bution of prevalence across communities. Unlike trachoma
and leprosy, vector heterogeneity plays an important role in

FIGURE 4. (A) Histogram of the prevalence surveys in Equatorial Guinea (2003). The negative binomial distribution had the lowest Bayesian
information criterion (BIC). (B) Histogram of the prevalence surveys in the DRC (2009). The negative binomial distribution had the lowest BIC. (C)
Histogram of the prevalence surveys in Ethiopia (2009). The negative binomial distribution had the lowest BIC. (D) Histogram of the prevalence
surveys in Congo (Kinshasa) (2000). The geometric distribution had the lowest BIC. (E) Histogram of the prevalence surveys in Nigeria (1997). The
geometric distribution had the lowest BIC. This figure appears in color at www.ajtmh.org.
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onchocerciasis. Communities closer to blackfly breeding sites
are far more vulnerable. If the probability of infection were to
decrease with the distance along a river from breeding sites
or decrease away from infested rivers, then a J-shaped dis-
tribution similar to the geometric could be possible, even with
stable disease. Further geographic and longitudinal studies
could assess which of these two competing mechanisms is
producing distributions close to the geometric.
Assessing distributions requires a great deal of data.

However, the data were sufficient to exclude the geometric
over the entire area. At the country level (Figure 3), we included
all available data even when the associated dates were not
available, yet the number of surveys provided less power to
distinguish between different distributions. Maximum likeli-
hood estimations for the dispersion parameter of the negative
binomial distribution can be biased with smaller sample sizes.
Here, most of the estimations had 100s or even 1000s of
samples, minimizing any such bias. For examples of distri-
butions seen over more focused areas within a country
(Figure 4), we did not correct for the multiple comparisons—
note that to do so would be anti-conservative, as it would ex-
pand the CIs and make it easier to not reject the geometric.
Thus, these examples should just be taken as case studies.
Even with enough data, the approach allows categorization of
areas but not individual communities. The use of palpable
nodules was considered a sufficient proxy for the prevalence of
onchocerciasis infection and was the primary way of deter-
mining the prevalence during the pre-intervention period of
REMO. Nodules, however, are poorly sensitive and specific for
onchocerciasis,20 which are further dependent on regional and
other variations.21 Not enough publicly available data currently
exist for testing diagnostic techniques, such as skin biopsy or
Ov16 antigen, to do this analysis, although hopefully these can
be analyzed in the future.
Typically, control has been defined by a prevalence or

incidence threshold, such as less than 5% active trachoma
in children at the district level, or less than 1:10,000 newly
prevalent cases for leprosy. However, in onchocerciasis,
targeted sampling strategies such as REMO are used to
assess control. These criteria are relatively easy to imple-
ment and can be applied from individual surveys. However,
assessing for control would in theory require examining
every available cluster. The alternative definition of sub-
criticality offers complementary information. A reproduction
number greater than unity (criticality) would imply a lack of
control with current interventions, or a potential hotspot. The
knowledge that an area has become subcritical can help
inform programs in other ways. For example, when a district
has reached a threshold, we expect that approximately 37%
(1/e) will remain greater than that threshold. But these may
not represent increased transmission potential, just strag-
glers in a controlled area.
Subcriticality not only implies a measure of control but also

suggests that a program is on the path toward elimination. If
seen over a region, it could suggest that elimination is a rea-
sonable program goal. If seen over the most affected conti-
nent, for example, trachoma in Africa or leprosy in South Asia,
it could suggest the path toward eradication. Subcriticality
does not however imply that elimination or eradication would
occur quickly. Without effective agents against macrofilaria,
even subcritical onchocerciasis areas may take decades to
control. Whereas here we used surveys of nodular palpation,

in the future, surveys using more specific tools such as OV16
antigen or PCR tests could easily be used. Although sub-
criticality should be a goal of control programs, the expected
timescale of decline must also be considered.
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onchocerciasis: correlation with worm burden. Trop Med Par-
asitol 40: 47–50.

21. Coffeng LE et al., 2013. Onchocerciasis: the pre-control associ-
ation between prevalence of palpable nodules and skin
microfilariae. PLoS Negl Trop Dis 7: e2168.

294 KELLY AND OTHERS


