
Lectin-Glycan Interaction Network-Based Identification of Host
Receptors of Microbial Pathogenic Adhesins

Francesco S. Ielasi,a* Mitchel Alioscha-Perez,b Dagmara Donohue,a Sandra Claes,c Hichem Sahli,b,d Dominique Schols,c

Ronnie G. Willaerta

Department of Bioengineering Sciences, Structural Biology Brussels, International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine (NANO), Vrije
Universiteit Brussel, Brussels, Belgiuma; Department of Electronics and Informatics (ETRO), AVSP Lab, International Joint Research Group VUB-EPFL BioNanotechnology
and NanoMedicine (NANO), Vrije Universiteit Brussel, Brussels, Belgiumb; Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven,
Leuven, Belgiumc; Interuniversity Microelectronics Centre (IMEC), Leuven, Belgiumd

* Present address: Francesco S. Ielasi, Department of Chemistry and Structural Biology, Group Molecular Mechanisms of Membrane Transport, Pasteur Institute, Paris, France.

M.A.-P., D.D., and S.C. contributed equally to this work.

ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is fre-
quently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose gly-
cans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy— based on the con-
struction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic
adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these ad-
hesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human recep-
tors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and
C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential
adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions.
New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to
predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was success-
ful in revealing that the FimH adhesin has anti-HIV activity.

IMPORTANCE Microbial pathogens may express a wide range of carbohydrate-specific adhesion proteins that mediate adher-
ence to host tissues. Pathogen attachment to host cells is achieved through the binding of these lectin-like adhesins to glycans on
human glycoproteins. In only a few cases have the human receptors of pathogenic adhesins been described. We developed a new
strategy to predict these interacting receptors. Therefore, we developed a novel LGI network that would allow the mapping of
potential adhesin binding receptors in the host with prioritization, based on the experimental binding data, of the most relevant
interactions. New potential targets for the selected adhesins (bacterial uroepithelial FimH from E. coli and fungal Epa and Als
adhesins from C. glabrata and C. albicans) were predicted and experimentally confirmed. This methodology was also used to
predict lectin interactions with human-pathogenic viruses and to discover whether FimH adhesin has anti-HIV activity.
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Adherence of pathogenic microbes to host tissues can occur at
different sites in the human body. In the case of epithelial and

endothelial tissues, one of the potential adhesion targets is repre-
sented by the glycocalyx, i.e., the extracellular mesh of
carbohydrate-rich molecules bound to the cell membranes or se-
creted by cells into the external medium (1). Microbial adhesion
to components of the glycocalyx, such as glycosylated host recep-
tors or other glycoproteins, is often mediated by adhesion proteins
endowed with lectin activity (2, 3). These lectin-like adhesins, ex-
pressed on the microbial surface, recognize the highest-affinity
specific glycan regions on the binding receptors, conventionally
referred to as the “glycan determinants.” The typical glycan deter-
minant includes two to six linearly arranged monosaccharides

plus their branching residues or modifications (phosphorylation,
sulfation, acetylation), which may be accommodated by the adhe-
sin binding pocket too (4). A qualitative and semiquantitative
analysis of the specificity of a lectin for glycan determinants can be
performed by glycan array screening (5).

Urinary tract infections (UTIs) caused by uropathogenic Esch-
erichia coli (UPEC) are some of the best-studied bacterial patho-
gen infections (6). Adherence to host cells is mediated by type 1
fimbriae, which are protein structures expressed on the bacterial
cell surface (7, 8). The amino-terminal lectin domain (LD) of the
fimbrial FimH subunit (FimH-LD) binds specifically to mannose
and mannose-containing oligosaccharides on host uroepithelial
cells (9–11). The N-glycan core structure Man-�-1,4-GlcNAc-�-
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1,4-GlcNAc-� is the preferential binding receptor for FimH-LD.
Fimbriated E. coli expressing FimH is able to bind uroplakins Ia
and Ib, which are two glycoproteins of the apical urothelial
plaques carrying high-mannose glycans (12) and the main urothe-
lial receptors for type 1 fimbriae (13).

Candidiasis is a fungal infection caused by the adhesion of
Candida yeast species to host cells. Candida albicans and
C. glabrata are commensal yeasts of the human gastrointestinal
tract, but they are also the major causes of opportunistic Candida
infections in susceptible hosts (14, 15). The Als (agglutinin-like
sequence) family is the best-characterized adhesin family of C. al-
bicans (16). The binding of Als proteins to human epithelial tis-
sues has been attributed to the N-terminal part of the protein,
which contains tandem immunoglobulin-like domains that are
able to adhere to host proteins (17, 18). Among the best-studied
Als proteins are Als1p and Als3p, both of which are responsible for
the mediation of cellular adhesion to a broad range of ligands,
such as fibronectin (FN), laminin, and collagen IV, as well as fi-
brinogen and gelatin (18–21). Recently, we showed that N-Als1p
has a lectin-like activity, since it interacts with fucose-containing
carbohydrates (22). Despite the vast amount of information avail-
able on Als-mediated adhesion, there is still little data available on
the Als molecular binding mechanisms mediated by host carbo-
hydrates. Another prominent yeast adhesin family is the Epa (ep-
ithelial adhesin) family, since it has been reported to be mainly
responsible for the adherence of C. glabrata to human cells (23–
25). The N-terminal domains of Epa proteins (N-Epa-p) do not
share sequence homology with the adhesins of the Als family,
which are not present in C. glabrata. Rather, N-Epa proteins are
classified as PA14-like lectins (26–28) because of their sequence
homology and structural similarity to the PA14 fragment of the
anthrax toxin protective antigen. They mediate adherence to hu-
man epithelial and endothelial cells by recognizing glycans con-
taining terminal galactose residues (25) and show the highest af-
finity for the Thomsen-Friedenreich (T or TF) antigen (Gal�-1,3-
GalNAc), which likely mediates N-Epa-p adherence to highly
glycosylated proteins such as mucins (28). Although we recently
demonstrated that wild-type N-Epa1p binds to FN from human
plasma (29), no experimental data on the potential host glycopro-
tein binding receptors of Epa1p or other C. glabrata adhesins are
available.

In viral host-pathogen interactions, lectin carbohydrate-
binding agents (CBAs) can bind to viral envelope glycans and
thereby inhibit the entry of, e.g., the human immunodeficiency
virus (HIV) into host cells (30–33). A strong feature of lectin CBAs
as potential antiviral drugs is their multifarious mechanism of
action. They can inhibit viral replication and cell-cell transmission
of viral particles and induce partial deletion of the envelope glycan
shield, with consequent exposure of immunogenic epitopes to
neutralizing antibodies. Moreover, these antiviral compounds do
not need to be internalized by host cells to be effective against the
virus (32). Various mannose-specific lectins endowed with potent
antiretroviral activity have been discovered. They have been iso-
lated from cyanobacteria, actinobacteria, algae, higher plants, and
worms (34–36). Antiviral activity of lectin CBAs against viruses
other than HIV with high-mannose glycosylated envelope pro-
teins, such as influenza virus, herpesvirus, hepatitis C virus, den-
gue virus, Marburg virus (MARV), severe acute respiratory syn-
drome (SARS) coronavirus, measles virus, and Ebola virus, has
been discovered (37–45).

In this report, we present a novel glycan array-based network
strategy aimed at identifying the potential biological binding re-
ceptors for adhesin lectins. First, the glycan determinants of the
lectins are determined from the experimentally evaluated glycan-
binding specificities of the lectins by glycan array analysis. Next,
the GlycoSuiteDB glycoproteomic database of the UniCarbKB
platform (46, 47) is searched for these determinants to obtain a set
of human glycoproteins expressing the glycan determinants that
are of interest and are considered potential targets for lectin rec-
ognition. By performing additional queries of the GlycoSuiteDB
database, these potential target glycoproteins can be further linked
to the cell types on which they are present, the tissues and body
systems, and the disease state (if applicable). Finally, the network
is analyzed in order to profile the potential adhesin binding recep-
tors in the host with prioritization, based on experimental binding
data, of the most relevant interactions. New potential targets for
the selected adhesins were predicted and experimentally con-
firmed. The constructed networks are referred to as lectin-glycan
interaction (LGI) networks. We explored this strategy and con-
structed LGI networks for two classes of pathogenic microbial
adhesins that are characterized by lectin-like properties, i.e., the
bacterial UPEC adhesin FimH-LD, as well as the yeast C. albicans
and C. glabrata adhesins (i.e., Als1p and Als3p and Epa1p, Epa6p,
and Epa7p, respectively). The LGI networks constructed were cor-
roborated by comparison with interaction data available in the
literature, and some links in the networks were experimentally
confirmed by quantitative lectin-glycan interaction analysis (by
surface plasmon resonance [SPR] and atomic force microscopy–
single-molecule force spectroscopy [AFM-SMFS]). This network-
ing strategy was also used to predict lectin interactions with enve-
lope glycoproteins of human-pathogenic viruses. It was successful
in anticipating the molecular recognition of the HIV gp120 enve-
lope protein by the bacterial adhesin FimH-LD, and it led to the
discovery of the anti-HIV activity of FimH.

RESULTS
Modeling and visualization of LGI networks. The proposed LGI
network has been modeled as a weighted, undirected graph com-
posed of a set of nodes (i.e., lectin, glycan, glycan determinant,
glycoprotein, disease, tissue, body system) and a set of edges con-
necting the pair of nodes (see Materials and Methods and the
supplemental material). An edge connecting the two nodes can
represent biochemical interactions, as well as biological and/or
hierarchical associations between the nodes. With each node, we
associate a node relevance, and with each edge, we associate an
edge relevance, which indicates the relevance of the interaction
between the connected nodes. The proposed representation al-
lows visualization of the network in multiple ways in order to (i)
highlight a set of glycoproteins as promising receptor candidates
that were obscured in the huge amount of data in the LGI network
and (ii) predict the potential binding receptors for several lectins.
In our specific case, the network involved a combination of both
experimental data and the data from the publicly available Glyco-
SuiteDB database. The binding specificity and strength of micro-
bial lectins (FimH-LD, N-Als, and N-Epa) were experimentally
determined by glycan array screening. The measured binding
strengths were exported into a spreadsheet, whereas those glycan
structures and determinants that are recognized by the adhesins
were queried in the GlycoSuiteDB database. The query provided a
list of hundreds of potential target proteins (cases of glycan deter-
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minants not attached to any protein were also taken into account),
and they were further linked to cell types, tissues, body systems,
and diseases (if available) through additional queries in the same
database. The resultant nodes and edges/links (associations) pro-
vided the LGI network definition in its initial state, where all of the
nodes and edges were considered equally relevant; a relevance
quantification stage followed.

The relevance quantification process was achieved in two steps.
We first associated each edge with a relevance depending on the
type of its connecting nodes (i.e., protein-glycan) according to the
proposed weights (see equations 1 to 3 in the supplemental mate-
rial) as a function of the lectin binding intensity measured via
glycan array screenings. In the second step, the node’s relevance
was estimated by using a network analysis centrality measure (48)
that involves both the number of edges (associations) connected
to the node and their weights (lectin binding intensity) (see the
supplemental material). The influence of the number of edges (or
associations) versus the binding intensity is regulated by the pa-
rameter � (see the supplemental material for a discussion of its
influence), and its value can be interactively adjusted during the
visualizations to better study the different associations (see Fig. 2
and 5). Determination of the relevance values allowed us to rank
or establish priorities among the potential targets, enabling a con-
venient visualization of the most important proteins (or disease,
glycan, etc.) as the bigger nodes and the most important associa-
tions (i.e., protein-disease, disease-glycan) as thicker edges/links.
In particular, three complementary visualization types were used,
namely, hierarchical, circular, and cluster views (11). This allowed
an interactive analysis of the resultant network in great detail,
highlighting the most relevant nodes in the overall network, as
well as within specific clusters, at the same time (see the supple-
mental material). The hierarchical view (see Fig. 1, 3, and 7) al-
lowed linking of the experimentally determined lectin specificities
(i.e., the glycan determinants) with the potential receptors (hu-
man or viral glycoproteins) and then linking of these glycopro-
teins to cell types/tissues and body systems. The circular view al-
lowed easy identification of all of the relevant nodes according to
their size, and the most important associations were made as the
thickest arrows (see Fig. 1 and 4). The cluster view revealed
cluster-like visualizations (49), thus allowing us to explore groups
of nodes belonging to the same local cluster (see Fig. 2 and 5).
Some glow and shading effects can be (optionally) applied in or-
der to distinguish between the groups of nodes according to their
types within the same cluster (see Fig. 2A and B and 5A and B).

The results of network analysis both exhibited known associa-
tions and predicted novel ones, proposing novel candidates (i.e.,
glycoproteins and glycan determinants) as promising targets for
later adhesin binding experiments. Notably, the same network
analysis can be performed to predict the binding receptors of any
carbohydrate-binding protein in other host organisms once the
experimental carbohydrate-binding characterization of the lectin
has provided the molecular binding strength and the association
data.

The LGI network of E. coli FimH-LD with predicted human
receptors. The FimH LGI network (Fig. 1) was generated by using
FimH-LD experimental glycan array data that are perfectly con-
sistent with the previously published microarray results (10) and
reflect the high specificity of FimH-LD for high-mannose glycans,
i.e., the oligomannose 3, oligomannose 5, mannotriose, and man-
nopentaose structures. A hierarchical view of the network shows

the predicted receptors (human glycoproteins) for the FimH ad-
hesin and their classification in terms of body tissues and systems
(Fig. 1A). A circular view of the same LGI network (Fig. 1B) fo-
cuses on the glycan determinants that are bound by FimH-LD, the
potential glycoprotein ligands, and also lists the diseases corre-
lated with the expression of the glycosylation determinants indi-
cated. Only a few of the predicted glycoprotein binding receptors
are associated with specific disease states (mainly malignancies),
which is the case for several immunoglobulins (such as, IgE, IgM,
and IgA), CG-a, CG-b, the epidermal growth factor receptor
(EGFR), and PSAP (see Table S2 in the supplemental material for
a list with abbreviated protein names). Among these, immuno-
globulin mu (IgM) and the EGFR are reported by the network to
be particularly relevant, while TF is highlighted in the group of
non-disease-associated glycoproteins. The latter are all linked to
the determinants containing either Man�-1,2-Man or Man�-1,3-
Man as terminal moieties. The network displays other human
glycoproteins, such as UMOD, CD49e/CD29, C3, t-PA, and PLG,
for which a link with FimH or type 1 fimbriae has already been
established (see Discussion) and for which any defined relation-
ship with the bacterial adhesin has not been found yet, for exam-
ple, BACE1, vWF, and gamma interferon.

The cluster view of the network shows the identification of the
host tissues that could be potentially targeted by the adhesin and
the disease states that could promote the binding of the adhesin to
the predicted glycoprotein receptors (Fig. 2). Two main clusters
can be identified in the cluster views of the network. Cluster 1
contains glycoproteins and diseases linked to the tissues of the
urogenital system, and cluster 2 is associated with the hemic sys-
tem. In cluster 1 are proteins such as UMOD, CD49e/CD29,
CG-a, and CG-b, which are found in several tissues of the urogen-
ital tract and constitute a relevant subcluster. The latter two gly-
coproteins (CG-a, CG-b) are particularly highlighted in the sec-
ond view of the network (Fig. 2B) and are associated with
choriocarcinoma, hydatidiform moles, and diabetes mellitus
(Fig. 2, cluster 1B). The same cluster also contains glycoproteins
that are present in a healthy uterus and ovary. Cluster 2 is mainly
characterized by the presence of links between immunoglobulins,
namely, IgA, IgM, IgE, and IgG1/2/3, and different forms of blood
cell cancer, such as myelomas and Waldenström’s disease (Fig. 2,
cluster 2B).

The LGI network of Candida N-Als-p and N-Epa-p with pre-
dicted human receptors. (i) Modeling and visualization of the
LGI network of N-Als and N-Epa lectins from Candida. The hi-
erarchical view of the overall Epa/Als network (Fig. 3) is extended,
since it is based on the glycan specificities of six adhesins. Mucins
(several proteins containing the abbreviation MUC) appear as the
most relevant human glycoproteins. In the circular view of the Epa
network (Fig. 4A), mucins are mainly connected to the glycan
determinants Gal�-1,3-GalNAc, Gal�-1,4-GlcNAc, and Gal�-
1,4-GlcNAc�-1,6[Gal�-1,3-]GalNAc. These three determinants,
together with the sialyl-T antigen, are prioritized on the basis of
the related lectin binding intensities, especially in the case of the
Gal�-1,3-containing moieties (large arrow width), and the num-
ber of connections, i.e., for Gal�-1,4-GlcNAc, the largest node size
in the network but unlabeled because of the low binding intensity
(the label was filtered out in the program for better visualization of
the more relevant nodes [see the supplemental material]). In the
Als network (Fig. 4B), mucins are mainly linked to the GlcNAc�-
1,3-Gal determinant, which is also the most relevant (high binding
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FIG 1 The FimH LGI network. (A) Hierarchical view of the FimH LGI network generated by using cytoscape with the cerebral app. The human proteins and
the related abbreviations are listed in Table S1 in the supplemental material. (B) Circular view of the network (generated with the LGI network algorithm). The
glycan determinants queried in the UniCarbKB database, the human glycoproteins bearing the glycan determinants, and the related diseases are depicted as blue,
green, and red nodes, respectively. Connections between nodes are depicted with blue arrows (to indicate the determinants expressed on each glycoprotein) or
green arrows (to indicate the diseases associated with the altered glycosylation of each glycoprotein). A closeup view of the network is shown on the left.
The size of each node (and the font size of the node label) in the circular view is proportional to the number of connections with other nodes and the
associated lectin binding intensity, which were experimentally determined by glycan array analysis; the arrow thickness is correlated to the lectin binding
intensity.
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intensity) in this network. Other interesting links with glycopro-
teins that have already been discussed in the literature (k-casein,
EGFR, CD144, LTF, TF, IgM) or need to be confirmed (tumor
necrosis factor alpha, PSGL-1, CD43, CD45, vWF, BACE1,
LAMP1/2, PLG) emerge from the two networks (Fig. 3) (see Dis-
cussion). Among the Als glycan determinants, the di-LacNAc de-
terminant (Gal�-1,4-GlcNAc�-1,3-Gal�-1,4-GlcNAc�-1,2-Man)
emerges and is based on experimental high binding intensity
(Fig. 4B), while the Fuc�-1,2-bearing structures, especially Fuc�-
1,2-Gal (largest unlabeled node), are relevant because of their
large number of connections. Several disease nodes are present in
both networks, such as cystic fibrosis, diverticulosis, and different
forms of cancer, while adenocarcinoma is highlighted in the Epa
network and is associated mainly with mucins (Fig. 4A).

Four main clusters are identified in the Epa/Als network
(Fig. 5). The most relevant links are found in cluster 1, and it
involves mucins; the diseases associated include lung and intesti-
nal adenocarcinomas (MUC, MUC1, MUC2, MUC4, MUC5AC/
B), diverticulosis (MUC1, MUC3, MUC4, MUC6), cystic fibrosis
(MUC, MUC7), chronic bronchitis, breast cancer (MUC1), and
Kartagener’s syndrome (bronchiectasis) (MUC). In cluster 2, the
glycoproteins associated with the urogenital system, such as cho-
riogonadotropin (CG), and some related malignant states, such as

choriocarcinoma and diabetes mellitus, are identified. In cluster 3,
glycoproteins CD43 and CD45 are strongly associated with
Wiskott-Aldrich syndrome (WAS) (CD43), together with differ-
ent forms of leukemia (CD43/CD45) affecting cells of the immune
system and also coexisting with HIV infections (CD45). Another
important link is established by glycan determinants, which are
not attached to any protein (mainly fucosyl-capped oligosaccha-
rides for Als adhesins and nonreducing terminal Gal-GlcNAc
moieties for Epa adhesins). They are connected to chronic kidney
failure, gangliosidosis, fucosidosis, and sialidosis. Additionally,
associations were found in cluster 4, mainly linking myelomas
with several immunoglobulins and other plasmatic glycoproteins
and glycoproteins of the secretion system.

(ii) Validation of Als/Epa predicted interactions: binding of
N-Als3p to FN and laminin and of N-Epa1p to mucin. Glycan
array screening was performed to determine the glycan specifici-
ties and affinities of N-Als3p (see Fig. S2A to D in the supplemen-
tal material). SPR experiments confirmed the binding of N-Als3p
to GlcNAc (Fig. 6A), as well as the binding of N-Als3p to FN and
laminin (Fig. 6A), two proteins of the extracellular matrix (ECM)
also recognized by N-Als1p (22). The N-Als3p dissociation con-
stant at the equilibrium state (KD) for the bovine serum albumin
(BSA)-GlcNAc glycoconjugate was estimated in the micromolar

FIG 2 Cluster view of the FimH LGI network. The cluster representation shown is focused on the human glycoproteins (green nodes), tissues (pink nodes),
systems (orange nodes), and diseases (red nodes) associated with glycan determinants (generated with the LGI network algorithm). The tissue clusters are
depicted with a pink glow (A), the system clusters are depicted with an orange glow (A), the protein clusters are depicted with a green glow (B), and the disease
clusters are depicted with a red glow (B). Two main clusters are present in the cluster view: cluster 1, containing glycoproteins and diseases linked to tissues of the
urogenital system, and cluster 2, which is mostly associated with the hemic system. Closeup views of these clusters (B) are shown to indicate the most relevant
nodes (lower panels). In panel A, the nodes related to the tissues are important, since they are the most connected ones (the larger the number of connections,
the larger the node and font size of the label). In panel B, the disease and protein nodes are most important, since the node (and font) sizes are proportional to
the lectin binding intensities, and they are the most connected ones. The thickness of the arrows is proportional to the associated lectin binding intensity.
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range (KD � 34 � 4 �M). The KD constants were 10 � 1 �M for
the N-Als3p–FN interaction and 410 � 40 �M for the N-Als3p–
laminin interaction. The affinity of N-Epa1p for mucin was also
determined by SPR (Fig. 6B), and the KD constant was 4.67 �
0.87 �M. In order to verify that the observed interactions were
specifically mediated by galactose-containing glycans attached to
FN and mucin, binding inhibition experiments were performed
(Fig. 6B). The binding of N-Epa1p to mucin could be blocked by
lactose in a concentration-dependent manner, but it was not af-
fected by the presence of glucose.

The LGI network of E. coli FimH-LD with viral envelope gly-
coproteins. (i) Modeling and visualization of the FimH-LD LGI
network with viral envelope glycoproteins. The FimH-viral net-
work displays the connections of FimH-LD and the glycans (rec-
ognized by the lectin on the glycan array) to several viral glycopro-
teins through glycan determinants (Fig. 7A). Connected viruses
include HIV, Sendai virus, Friend murine virus, MARV, and in-
fluenza A virus. The gp120 envelope glycoprotein of HIV is in-
cluded in the network, and this interaction was explored further
(see below). Interestingly, FimH-LD is also linked to influenza A
virus hemagglutinin (HA) (from insect cells and chicken isolates)
and to the MARV envelope glycoprotein (gp; from monkey iso-

lates). This may anticipate the possible interactions between the
LD of FimH and the envelope of these critical viral pathogens. The
circular view (Fig. 7B) predicts the most relevant adhesion
epitopes for FimH on viral glycoproteins, such as influenza A virus
HA and MARV gp, that are connected to several high-affinity
glycan epitopes (especially to Man�-1,3-[Man�-1,6-]Man).

(ii) Validation of E. coli FimH-LD predicted interactions
with viral envelope glycoproteins. The affinity of the LD of FimH
for gp120 from HIV-1(IIIB) and HIV-1(YU2) was kinetically
characterized by SPR (Fig. 8A). FimH-LD shows very low associ-
ation rate constants (kon values 2 to 4 M�1 · s�1), but also very low
dissociation rate constants (koff values �10�4 s�1). The difference
between the calculated KD parameters for the two interaction cou-
ples is related mainly to the 2-fold higher kon in their binding with
baculovirus-derived gp120. This discrepancy can be explained af-
ter considering that protein glycosylation processes are different
in baculovirus and CHO expression systems.

To confirm that the recognition of gp120 by FimH-LD is me-
diated by the glycan moieties on the viral protein, SPR inhibition
experiments were performed with Man�-1,2-Man and Man�-
1,3-Man, which mimicked different moieties of the viral protein
glycosylation sites. Fifty percent inhibitory concentrations (IC50s)

FIG 3 Hierarchical structure of the LGI network for the Als and Epa lectins. Hierarchical view from the lectin-like adhesins (bottom) toward the human body
system (top). The human proteins and the related abbreviations are listed in Table S1 in the supplemental material.
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were calculated by using the response values at equilibrium (Req)
at a constant FimH-LD concentration (Fig. 8A). The interaction
of FimH-LD with the viral envelope protein could be blocked in a
dose-dependent manner by both disaccharides that exhibited a
similar inhibitory concentration but a slightly higher specificity
for the �-1,3-linked mannobiose.

An additional confirmation of the interaction of FimH-LD
with gp120 was obtained by AFM-SMFS. Adhesion force histo-
grams resulting from FimH-LD– gp120 (YU2) unbinding events

showed a broad range of interactions occurring at forces that are
relatively high for a noncovalent bond (see Fig. S1 in the supple-
mental material). Unbinding force distributions with an average
peak force of 225 � 18 pN (see Fig. S1C) were obtained. This
interaction force value is comparable with that observed for fim-
brial tip adhesion to BSA-mannose (50). The FimH-LD– gp120
interactions could be blocked almost completely in the presence of
�-1,3-mannobiose (see Fig. S1B).

FimH-LD anti-HIV activity was assessed in different in vitro

FIG 4 Circular views of the Epa-only and Als-only LGI network. Glycan determinant data and their connections with human glycoproteins and related diseases
are depicted for C. glabrata N-Epa-p (A), and C. albicans N-Als-p (B). Closeup views of the networks are shown on the right. The nodes dimensions and arrow
thickness/label size depend on the number of connections, and the glycan-binding strength, respectively (see the legend to Fig. 1). Notably, the determinants
Gal(�1-4)GlcNAc (A) and Fuc(�1-2)Gal (B) are both characterized by a high number of connections (large node, i.e., several human glycoproteins are
characterized by the presence of these glycan determinant) but a low relevance. No label is shown; i.e., the Epa/Als intensities of binding to the glycans that
contains these determinants are lower than the other determinants. The program filters out the node labels on the basis of the lectin binding intensity and displays
only the labels of the most relevant glycan determinants (see the supplemental material).

Host-Pathogen Lectin-Glycan Interaction Network

July/August 2016 Volume 7 Issue 4 e00584-16 ® mbio.asm.org 7

mbio.asm.org


cell assays (Fig. 8B). The lectin activity (50% effective concentra-
tion [EC50]) against X4 HIV-1 NL4.3 was 54.5 �g/ml in the MT-4
cell line, as evaluated by the induction of a CPE and subsequently
by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS)–phenazine ethosulfate
(PES) method. In addition, when the protein was evaluated

against X4 HIV-1 NL4.3 and R5 HIV-1 BaL replication (measured
by P-24 HIV-1 antigen [Ag] enzyme-linked immunosorbent assay
[ELISA]) in peripheral blood mononuclear cells (PBMC; obtained
from healthy donors), the EC50s obtained were 34.3 � 6.1 (n � 8)
and 74.5 � 19.2 (n � 6) �g/ml, respectively. These anti-HIV-1
data show a consistent anti-HIV-1 activity profile, although the

FIG 5 Cluster views of the global Als/Epa LGI network. This representation is focused on the human glycoproteins, tissues, systems, and diseases associated with
the glycan determinants recognized by the Als/Epa adhesins. Tissue and disease clusters are highlighted in panels A and B, respectively. The tissue clusters are
represented with a pink glow (A), the protein clusters are shown with a green glow (B), and the disease clusters are shown with a red glow (B). The most relevant
elements of the four main network clusters are shown in detail as closeup views of panel B (four lower subpanels). In panel A, the nodes related to the tissues are
important, since they are the most connected ones (the larger the number of connections, the larger the node and font size). In panel B, the disease and protein
nodes are most important, since the node (and font) sizes are proportional to the lectin binding intensities, and they are the most connected ones. The thickness
of the arrows is proportional to the associated lectin binding intensity.
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peptide was somewhat less active (~2-fold) against R5 HIV-1 rep-
lication. The 50% cytotoxic concentration was �500 �g/ml, and
there was no cytotoxicity observed at all at 500 �g/ml in MT-4
cells and in PBMC, which provided a selectivity index of at least
�10 for X4 HIV-1. As a control, broadly neutralizing anti-gp120

carbohydrate monoclonal antibody (MAb) 2G12 was included in
these experiments. When evaluated in the same PBMC HIV rep-
lication assay in our experiments, it showed EC50s of 0.14 �g/ml
for HIV-1 NL4.3 and 3.71 �g/ml for HIV-1 BaL. So, the slight
decrease in anti-HIV activity of FimH-LD against R5 HIV-1 BaL is

FIG 6 Binding characterization of N-Als3p and N-Epa1p. (A) SPR sensorgrams of N-Als3p binding to BSA-GlcNAc (1.5 to 99 �M) (left), FN (0.16 to
40 �M) (center), and laminin (LAM) (2.6 to 170 �M) (right). (B) SPR sensorgrams of N-Epa1p binding to mucin (MUC) (100 �M to 39 nM) (left), and
binding inhibition experiments with increasing concentrations (0 and 6 �M to 1.5 mM) of lactose (Lac, center) and glucose (Glc, right). RU, relative
units.

FIG 7 The FimH-LD–viral LGI network. (A) Hierarchical view of the FimH-viral LGI network from the lectin (bottom) toward the viral species (top).
Abbreviations: MHV, murine hepatitis virus; SeV, Sendai virus; SFV, Semliki Forest virus; AcMNPV, Autographa californica multiple nucleopolyhedrovirus;
FMLV, Friend murine leukemia virus; FSFFV, Friend spleen focus-forming virus. (B) Circular view of the network including the glycan epitopes, the viral
glycoproteins, and the viral species data. The size of each node (and the font size of the node label) in the circular view is proportional to the number of
connections to other nodes and the associated lectin binding intensity; arrow thickness is correlated with lectin binding intensity.
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very often observed with other CBAs and other classes of com-
pounds. The antiviral activity of FimH-LD was also assessed with
the TZM-bl–HIV-1 luminescence assay. The infectivity of the
TZM-bl cell line with X4 HIV-1 NL4.3 was inhibited with an IC50

of 54.3 �g/ml, while the inhibition of R5 HIV-1 BaL infectivity
generated an EC50 of 162 �g/ml. Again, MAb 2G12 was used as the
control when EC50s of 1.9 �g/ml for X4 HIV-1 NL4.3 and
34.9 �g/ml for R5 HIV-1 BaL were obtained.

FIG 8 Characterization of FimH-LD and N-Epa1p interaction and FimH-LD anti-HIV activity. (A) SPR sensorgrams of FimH-LD binding to HIV-1(YU2)
gp120 and HIV-1(IIIB) gp120. The experimental data (rainbow-colored curves) were fitted with a one-binding-site model (black curves). The dissociation
constants, kinetic parameters, and inhibition constants of FimH-LD– gp120 interactions are shown at the bottom. RU, relative units. (B) Inhibition graphs and
related EC50s of FimH-LD and anti-gp120 MAb 2G12 (�g/ml) for the different antiviral assays.
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DISCUSSION
The LGI network of the E. coli FimH-LD adhesin. The FimH LGI
network strategy developed pointed out a limited number of hu-
man glycoproteins, mainly situated in the urogenital and hemic
systems of the human body, as the potential binding receptors for
the FimH adhesin. Only a few of the predicted links have been
experimentally confirmed in the literature, and these deliver the
first proof of the validity of our strategy for the prediction of lectin
binding receptors.

Type 1 fimbriated E. coli is able to recognize Tamm-Horsfall
glycoprotein, also known as uromodulin (UMOD) (51). The
binding to this protein was confirmed by the network strategy
(Fig. 1). UMOD is a urinary defense factor, since it can prevent the
interaction of bacterial fimbriae with the uroplakin receptors
through its single glycan chain. FimH is also involved in the inva-
sion of uroepithelial cells because of its direct binding to high-
mannose glycans of integrins �1 and �3 (52). Other integrin sub-
units could also be involved in the entry of FimH-expressing
bacteria into host cells (52). One of these subunits could be the �5
integrin, which was also predicted in the network, together with
the �1 integrin as a �5/�1 heterodimer (CD49e/CD29) (Fig. 1)
that was already reported to mediate host cell invasion through
the pathogenic bacterium Staphylococcus aureus (53). Type 1 fim-
briae also have a role in complement-dependent bacterial inter-
nalization (54). Synergy between the expression of FimH on bac-
terial fimbriae and binding of the C3 complement protein
increased E. coli internalization through epithelial cells of the uri-
nary tract. This effect was abrogated by mannose or in the absence
of the mannose-specific adhesin on the bacterial fimbriae. The
same synergistic effect could not be correlated with the expression
of P fimbriae, which would be carrying the PapG adhesin. These
data and the presence of C3 in the FimH LGI network suggest that
the glycosylated complement protein, scavenged by and directly
associated with the FimH LDs, could facilitate bacterial entry into
uroepithelial host cells. A genetically engineered Pseudomonas
aeruginosa strain that expresses type 1 fimbriae can specifically
adhere to breast cancer cells overexpressing the EGFR and block
the EGFR signaling pathway (55). The effect of fimbriae on recep-
tor signaling has been described as mannose sensitive. Indeed, the
LGI network suggests the recognition by FimH-LD of the EGFR
from carcinoma cells. We can thus hypothesize that FimH-LD
may also mediate bacterial adhesion and have the same effect on
growth factor receptor signaling. The FimH-LD LGI network dis-
plays several immunoglobulin families that are associated with
different malignant diseases, including IgA from myeloma cells
(Fig. 1). Immunoglobulin preparations containing secretory IgA
or IgA from myeloma cells can induce mannose-dependent agglu-
tination of type 1 fimbria-expressing E. coli (56). Weaker aggluti-
nation of these cells can also be achieved through certain IgM
isotypes and prevented by the presence of D-mannose. Other con-
nections are established in the network between the fimbrial ad-
hesin and disease states affecting protein glycosylation. For exam-
ple, a link with diabetes mellitus is corroborated by the
observation that female patients with this disease are more suscep-
tible to UTIs than are healthy patients because of the greater ad-
herence of type 1 fimbriated E. coli to bladder cells (57).

The LGI network of Candida Als and Epa adhesins N-Als1p
has been shown to interact with fucose-containing glycans that are
present in blood group antigens and preferentially with antigen H

type 2 (22). Therefore, we performed glycan array screening to
also determine the carbohydrate-binding specificity of N-Als3p
(see Fig. S2A to D in the supplemental material). Among the
strongest binders, we found long chains of repeated LacNAc
(Gal�-1,4-GlcNAc), and a micromolar affinity was determined
for the interaction of the adhesin with BSA-GlcNAc. GlcNAc con-
stitutes of a part of the type 1 LacNAc (Gal�-1,3-GlcNAc) and
type 2 LacNAc (Gal�-1,4-GlcNAc) structures that build the scaf-
fold for blood group H and Lewis-type units (58). Some human
pathogens use the GlcNAc residue as a binding receptor; e.g., the
fimbrial adhesin F17-G of enterotoxigenic E. coli binds to
N-acetylglucosamine-presenting receptors on the microvilli of the
intestinal epithelium of ruminants (59). Our N-Als3p glycan array
data, together with data related to N-Als1p and the Epa adhesins,
were used for the generation of LGI networks (Fig. 3 to 5). These
networks revealed that a large set of potential binding receptors
that may be recognized by these adhesins through their interac-
tion with carbohydrates are displayed on human cells or present in
body fluids. The most interesting ones are summarized in Ta-
ble S1 in the supplemental material. Several glycan determinants
are linked to mucins (Fig. 3 and 4). Mucins are the main constit-
uents of the extracellular secreted mucus and cell surface glycoca-
lyx, which is rich in the GalNAc-containing structures commonly
used by many pathogens for adhesion. C. albicans adhesion to
human cells has been previously linked to mucins (60, 61). The
binding of Epa adhesins to mucin-type O-glycans has also been
described, especially the ability of Epa1p, Epa6p, and Epa7p to
recognize the T antigen (25, 27, 28). This disaccharide constitutes
of the core 1 structure of mucin-type O-glycans, and it is mainly
exposed on the surface of colon cancer tissues in a truncated form.
The T and sialyl-T antigens are also found on breast cancer cells
(62). The three Epa proteins are linked in the network to the mu-
cins found in several tissues or fluids, such as saliva, lung tissue,
stomach tissue, mammary gland tissue, milk, colon tissue, and
uterine tissue. A consistent fraction of these mucins is associated
with diseased states, i.e., colon adenocarcinoma (MUC1, MUC2,
MUC4, MUC5A/B/C), breast and uterine cancers (MUC1), and
lung diseases, which may cause bronchiectasis (MUC) (Fig. 5).
These mucins carry the T antigen, the sialyl-T antigen, or both. A
link between Epa adhesins and the colon mucosa has been dem-
onstrated by showing adhesion of Saccharomyces cerevisiae cells
expressing Epa1p and Epa6p to human colorectal carcinoma
(Caco-2) cells (28). A connection between the Epa proteins and
CD43 (leukosialin)/CD45 (receptor-type tyrosine-protein phos-
phatase C) is also present in the LGI network (Fig. 4), and this is
justified by the presence of the T antigen that is linked to
leukemia- and HIV-associated CD45 and to WAS-associated
CD43, as well as other glycans related to a healthy condition.
CD43 and CD45 receptors are commonly expressed on leukocytes
(63). They are involved in lymphocyte activation and may present
altered glycosylation in HIV-infected cells (64–66) or in diseases
such as leukemia and WAS. Lysosome-associated membrane gly-
coproteins 1 and 2 (LAMP1, LAMP2), which are as well predicted,
are expressed in macrophages and are essential for the fusion of
phagosomes and lysosomes during phagocytosis (67). They may
also present altered glycosylation in leukemia cells. Epa1p is able
to mediate yeast adhesion to human leukemic macrophages and
healthy PBMCs, in order to trigger cytokine expression and in-
duce phagocytosis (68). The inhibitory effect of phagocytosed
C. glabrata on the fusion between phagosomes and lysosomes in
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macrophages is an efficient immune evasion strategy (69). Possi-
bly, Epa1p adhesion to human PBMCs is mediated by CD43/45.
This is consistent with CD43/45-mediated adherence of Actino-
myces naeslundii, expressing Gal�-1,3-Gal(NAc)-specific ad-
hesins, to polymorphonuclear leukocytes or promyelocytic leuke-
mia cells (70) and the involvement of CD45 in the induction of
cytokine production, as for the T-antigen-specific jacalin (plant
lectin) that recognizes CD45 on T lymphocytes and induces cyto-
kine secretion (71).

Epa proteins are linked to FN (Fig. 3); i.e., Epa1p and Epa7p are
linked to FN of fibroblasts by LacNAc-terminated N-glycan
branches, suggesting again the specificity of only these two Epa
adhesins for the ECM protein. The link of N-Epa1p with FN is
corroborated by our recent results (29), which show that the ad-
hesin domain is able to bind FN with submicromolar affinity in a
carbohydrate-sensitive manner. On the other hand, a connection
between Als proteins and FN was not found in the network, al-
though we demonstrated here and previously that N-Als1p and
N-Als3p both recognize FN (22).

The network shows that Als and Epa adhesins may bind to
ceruloplasmin (CP), (sero)transferrin (TF), and lactotransferrin
(or lactoferrin [LTF]) (Fig. 3 and 4). The first two are blood
plasma glycoproteins, while the latter is present in different exo-
crine secretions. All of them are involved in iron metabolism.
C. albicans is able to acquire iron from TF (72). Thus, C. albicans
iron acquisition from host TF may be Als mediated, as is iron
acquisition from human ferritin (73). Inhibitory effects of TF,
IgM, and another components of Cohn fraction IV (most proba-
bly ceruloplasmin) on the growth of C. glabrata have been dis-
cussed (74), as has the capacity of a special LTF formulation to
impair yeast adherence to vaginal epithelial cells (75). The EGFR
and cadherin-5 (CD144) are also indicated in the network as po-
tential ligands of both Als proteins (Fig. 4). For the first glycopro-
tein, there is agreement with a study describing the EGFR and
HER2 as interaction receptors for Als3p (76). The interaction of
Als3p with these receptors triggers their autophosphorylation,
which leads to endocytosis of C. albicans by host cells. It has also
been demonstrated previously that Als3p binds to N- and E- cad-
herins, which are present on endothelial and epithelial cells, re-
spectively (77). As shown in Table S1 in the supplemental mate-
rial, additional reported experimental results confirmed some Als
LGI network nodes, such as for chondroitin sulfate proteoglycan
4, �-casein, and CG-a/b.

FN, laminin, and mucin recognition by Candida adhesins.
Using SPR, we characterized the interaction of N-Epa1p with mu-
cin (Fig. 6B). A comparable KD value was found for the
N-Epa1p–FN interaction (29). The specific binding inhibition by
lactose corroborated the specificity of glycan recognition by
N-Epa1p. These data confirmed, for the first time, the ability of
N-Epa1p to bind mucins. As shown in the LGI network, adhesion
of Epa adhesins to mucins is extremely relevant in the context of
host adherence and is mediated by multiple O-glycan determi-
nants.

The binding of N-Als3p to ECM glycoproteins, such as FN and
laminin, was also characterized by SPR (Fig. 6A). Compared to
N-Als1p–FN binding (22) and the N-Epa1p–FN interaction (29),
the N-Als3p–FN interaction was �5- and 10-fold weaker, respec-
tively. Also, the N-Als3p–laminin dissociation constant was
higher than that previously determined for N-Als1p. The full-
length Als1 and Als3 adhesins showed significant binding to FN

and laminin (18). It seems that the interaction of Als proteins with
FN is determined mainly by the protein-protein interactions. In-
deed, fucose failed to inhibit N-Als1p binding to the glycoprotein,
while glucose and galactose only partially inhibited it (22). Addi-
tionally, we could not find a connection between Als adhesins and
FN in the LGI network. Recently, it was shown that NT-Als9-2p
recognizes the C-terminal sequence of the fibrinogen � peptide
(78). These results indicate that protein-protein interactions may
dominate the binding of N-Alsp to FN.

The LGI network of the E. coli FimH-LD adhesin with viral
envelope proteins and the anti-HIV activity of FimH-LD. Sev-
eral viral pathogens—such as HIV, influenza virus, SARS virus,
hepatitis C virus, MARV, and Ebola virus— contain high-
mannose glycans attached to the envelope proteins (40). To pre-
dict interactions of FimH-LD with viral envelope glycoproteins,
we generated a viral LGI network by employing FimH-LD glycan
array data and the viral glycoproteomic data available in the Gly-
cosuiteDB database. The network suggested the recognition of
different viruses, including three human-pathogenic viruses
(Fig. 7). One of these predictions, i.e., the link with HIV, was
experimentally and thoroughly validated by using biomolecular
and cellular assays.

The gp120 –FimH-LD SPR affinity and inhibition results are
compatible with a prevalent recognition of oligomannose 9 gly-
cans on CHO-derived gp120. The related KD (572 nM) is, indeed,
very similar to the affinity of the LD for the same carbohydrate
structure (~400 nM) (11). By interacting with this longer oligo-
saccharide, the lectin would recognize the terminal �-1,2-linked
mannose units rather than the Man-�-1,3-Man-�-1,4-GlcNAc,
which is only recognized in a terminal configuration. On the other
hand, we can explain the higher affinity for baculovirus-derived
gp120 by hypothesizing the binding to a mixture of “long” and
“short” glycans, including oligomannose 3/5. The IC50s reflect the
actual preference of FimH-LD for �-1,3-linked mannosides over
the �-1,2-linked oligosaccharides.

Envelope glycans are becoming increasingly promising targets
for lectins as viral entry inhibitor proteins (32, 33). The kinetic
analysis results of FimH-LD– gp120 interactions revealed associ-
ation constants 2 to 4 orders of magnitude lower than those for
other antiviral lectins, such as cyanovirin (CVN), actinohivin, and
griffithsin (GRFT), but also, the dissociation rates are slower than
those for the other antiviral lectins (79, 80). Accordingly, the re-
sulting equilibrium constants for the same interactions were
much higher than the KD of the best-characterized lectins CVN
and GRFT, but they are still in the nanomolar range. This affinity
of FimH-LD for the viral envelope protein justifies the moderate
in vitro antiviral activity of the lectin. Comparable anti-HIV activ-
ity values were obtained for FimH-LD, and this in cellular assays
using CD4� T lymphocytes, TZM-bl cells, and PBMCs against
CXCR4-using (X4) and CCR5-using (R5) HIV-1 strains (Fig. 8B).
Especially the PBMC data are very relevant, since these are the real
target CD4� T cells for HIV.

Envelope glycoproteins from MARV and influenza A virus are
also connected in the network as potential targets for FimH-LD
(Fig. 7A). The mannose-binding lectin, a protein belonging to the
innate immune system and specific for mannose-containing gly-
cans, is able to hamper both influenza A virus (81, 82) and MARV
(83) infectivity and spreading in vitro, which represents the body’s
first line of defense against infection. Moreover, CVN activity
against Ebola virus, MARV (39), and influenza A virus H1N1
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isolates (84) and antiviral properties of mannose-specific lectins
from algae against influenza A virus (43) have been demonstrated.
On this basis, it would be worth further exploring the antiviral
properties of FimH-LD not only against HIV but also against
other viral species, especially influenza A virus and MARV, in
order to evaluate the possibility of the development of a multiva-
lent drug that would be effective in the prophylaxis for different
pathogens.

Conclusions. We developed and successfully employed a novel
LGI network in which the carbohydrate-binding properties of the
E. coli adhesin FimH and Candida adhesins from the Epa and Als
adhesin families were explored. This LGI network strategy, based
on glycan array screening results and a glycoprotein database in-
quiry, allowed the profiling of potential glycoprotein binding tar-
gets for the selected adhesins. We confirmed some of these poten-
tial targets either experimentally or by reference to the literature.
Additionally, this strategy was adapted for the prediction of
adhesin-viral glycoprotein interactions, validated by the discovery
of anti-HIV activity of FimH. This study shows the potential of the
new strategy for the study of some microbial and viral interac-
tions.

The LGI networks presented were based on the glycan array
results coming from the database of the Consortium for Func-
tional Glycomics (CFG). Experimental data could also be ex-
tracted from other databases (such as the Glycosciences Labora-
tory Database, Imperial College London). Care should be taken to
check the quality of the extracted data. Although the Glycosuite
database of UniCarbKB used is a curated glycoproteomic data-
base, it has some limitations, since it is not exhaustive. We expect
future improvements in the content of this database and, conse-
quently, an enhancement of the LGI network’s prediction quality
and accuracy. The LGI network strategy could be connected to
additional bioinformatic resources that could support the valida-
tion of the LGI network generated, for example, the SugarBind
database (http://sugarbind.expasy.org), which provides informa-
tion on known carbohydrate sequences to which pathogenic or-
ganisms or substances (bacteria, toxins, and viruses) specifically
adhere to. The network strategy developed could also be easily
extended to other lectin-glycan interactions, where— besides hu-
man or viral interactions— other mammalian, plant, or proto-
zoan glycan interactions could be explored, and also used, for
example, for the discovery of new antimicrobial agents. Further-
more, the strategy could be used to predict the binding of viral
proteins to human glycoproteins or carbohydrate structures, with
the aim to facilitate the design of novel antiviral drug compounds,
especially in the case of emerging viral pathogens.

MATERIALS AND METHODS
Test compounds. Recombinant gp120 from HIV-1(IIIB), produced in
CHO cells, and HIV-1(YU2), produced in insect cells, were purchased
from Immunodiagnostics (Woburn, MA). �-1,2-Mannobiose and �-1,3-
mannobiose were purchased from Dextra (United Kingdom). Laminin,
from human placenta, and mucin, partially purified from porcine stom-
ach, were purchased from Sigma, while BSA-GlcNAc was purchased from
Dextra Laboratories (United Kingdom).

Viruses, cell lines, and cell cultures. HIV-1 R5 strain BaL and HIV-1
X4 strain NL4.3 were originally obtained through the AIDS Research and
Reference Reagent Program (Division of AIDS, NIAID, NIH). MT-4 cells
were a gift from L. Montagnier (during that time at the Pasteur Institute,
Paris, France) and cultured in RPMI 1640 medium supplemented with
10% fetal calf serum (FCS; HyClone, Perbio Science) and 2 mM

L-glutamine (Invitrogen) at 37°C in a 5% CO2 controlled atmosphere.
PBMCs from healthy donors were isolated from buffy coats obtained
from the Blood Transfusion Centre (UZ Leuven, Belgium). PBMCs were
cultured in RPMI 1640 containing 10% FCS, 2 mM L-glutamine, and
2 ng/ml interleukin-2 (IL-2; Roche Molecular Biochemicals). The cells
were activated with 2 �g/ml phytohemagglutinin (PHA; Sigma-Aldrich)
for 3 days before infection with HIV-1. TZM-bl cells were obtained from
the AIDS Research and Reference Reagent Program (Division of AIDS,
NIAID, NIH).

Expression and purification of FimH-LD, N-Als3p, N-Als1p, and
N-Epa1p. The sequence of FimH-LD from E. coli K-12 (strain K514) was
used for this work (residues 22 to 179; UniProt entry P08191). The clon-
ing, expression, and purification of FimH-LD have been previously de-
scribed (10). The N-terminal parts of the Als3, Als1, and Epa1p proteins
were expressed in and purified from S. cerevisiae and E. coli as previously
described (22, 27).

Glycan array screening. The N-terminal parts of Als3p and Als1p
were subjected to glycan array screening for binding to glycans printed on
a glass slide microarray (version 5.0) developed by the CFG (5). Screening
of Als3p was performed at concentrations of 20 and 200 �g/ml. The ad-
hesins were labeled with NT-647 dye via an amine-coupling method
(NanoTemper) (see the supplemental material).

SPR. SPR experiments were performed with a Biacore 3000 instru-
ment (GE Healthcare) at 25°C. The recombinant gp120 envelope pro-
teins, BSA-GlcNAc, FN, mucin, and laminin were covalently immobilized
on a CM5 sensor chip by amine-coupling chemistry. A reference flow cell
chemically treated in the same way as the ligand flow cell was used as a
control. For FimH-LD– gp120 kinetic analysis, fitting of experimental
curves and calculation of kinetic parameters were performed by using the
BIAEvaluation software version 4.1 (GE Healthcare) and a 1:1 (Lang-
muir) binding model. In all of the other cases, dissociation constants in
the equilibrium state (KD) were determined. The results were then ana-
lyzed with the BIAevaluation software and with Prism 6 software (Graph-
Pad) (see the supplemental material).

AFM-SMFS. AFM-SMFS experiments to determine the unbinding
force between HIV-1(YU2) gp120 and FimH-LD were performed as de-
scribed in the supplemental material.

LGI network construction. The results of the glycan array screenings
for FimH-LD (L. Wyns, 2011, CFG database, glycan array version 5.0)
N-Als1p (first screening, glycan array version 3.2 [22]; second screening,
CFG glycan array version 5.0 [this work]), N-Als3p, N-Epa1p (28),
N-Epa6p, and N-Epa7p (85) were retrieved from the CFG-Core H data-
base (http://www.functionalglycomics.org/) and used to generate the Als/
Epa-glycan interaction networks. The results were filtered by removing
the data of three times the standard error of the mean (SEM) and using a
signal-to-noise ratio cutoff value that was larger than the average number
of relative fluorescence units (RFU). The signal-to-noise ratio cutoff value
was visually selected on the glycan array screening graphs. The RFU values
were normalized by dividing the values by the maximal RFU value of the
screening. The mean RFU value was used when more than one value was
detected in different screenings for the same glycan interaction. Glycan-
binding protein binding sites may accommodate glycan determinants
made up of two to six linear monosaccharides together with their poten-
tial side chains containing other sugars and modifications (4). Therefore,
glycan determinant structures containing oligosaccharides composed
of 2, 3, 4, 5, and 6 carbohydrate residues present at the nonreducing
end were submitted to the GlycoSuiteDB database in the UniCarbKB
platform (46, 47).

In order to obtain the glycoproteomic data, we developed a set of three
Perl scripts that collaborated to extract the data from the GlycosuiteDB
website (see the supplemental material).

LGI network modeling and visualization. The interactions were
modeled as a weighted undirected graph G(V, E, W), where V is the set of
vertices, E is the set of edges connecting the pairs of vertices, and W is the
set of weights associated with each edge. The edges’ weights were calcu-
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lated according to the interaction type (see the supplemental material).
The Gephi open-source graph visualization and manipulation software
was used (86). Within Gephi, the force-directed visualization method of
Hu (49), which is known to be accurate when visualizing local clustering
and symmetry (87), was used. This approach allowed us to obtain rela-
tively well-defined spatial distributions and local clusters according to the
network structure (Fig. 2 and 5). The LGI networks were also visualized as
a hierarchical structure by using Cytoscape 2.8 (88) and the Cerebral app
(89) (see the supplemental material).

MTS-PES antiviral assays. The anti-HIV-1 activity of each com-
pound, both alone and in combination, in MT-4 cell cultures was deter-
mined by a tetrazolium-based colorimetric assay. Briefly, 3-fold dilutions
of the test compounds were added to a 96-well plate, and it was preincu-
bated for 20 min at 37°C with MT-4 cells. Five days postinfection, CPEs
were scored microscopically and antiviral activity was measured by the
MTS-PES method with a SpectraMax 96-well plate reader (Molecular
Devices) as described previously (90). PHA-stimulated PBMCs were re-
suspended in cell culture medium supplemented with 2 ng/ml IL-2 and
seeded into 48-well plates (Iwaki Glass) containing various concentra-
tions of test compounds. After 20 min of preincubation at 37°C, infection
with HIV-1 was performed. IL-2 was added at days 3 and 6 postinfection.
Supernatant was collected at day 10, and viral replication was measured
with an HIV-1 p24 Ag ELISA (PerkinElmer) according to the manufac-
turer’s guidelines.

TZM-bl–HIV-1 infectivity luminescence assay. Firefly luciferase-
and E. coli �-galactosidase-expressing CD4� CXCR4� CCR5� TZM-bl
cells were resuspended in cell culture medium (Dulbecco’s modified Ea-
gle’s medium with 10% FCS and 1% HEPES) supplemented with
15 �g/ml DEAE-dextran (Sigma-Aldrich, Diegem, Belgium) and prein-
cubated for 30 min at 37°C in cell culture medium-diluted test com-
pounds in 96-well plates. Next, a laboratory HIV-1 strain (X4 NL4.3 or R5
BaL) was added according to the 50% tissue culture infective dose of the
viral stock. Two days postinfection, CPEs were first scored microscopi-
cally, and afterward, viral replication was measured by luminescence.
Steadylite plus reagent (PerkinElmer) was mixed with lyophilized sub-
strate in accordance with the manufacturer’s guidelines. Supernatant was
removed, and the steadylite plus substrate solution was added to the
96-well plates. Next, the plates were incubated in the dark for 10 min in
a closed plate shaker. Finally, cell lysis was scored microscopically and
aliquots were transferred to white Lumitrac 96-well plates (Greiner Bio-
One) to measure the relative luminescence units with a SpectraMax L
microplate reader and SoftMax Pro Software (Molecular Devices), an
integration time of 0.6 s, and a dark adaptation time of 5 min.
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