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Type 1 diabetes mellitus (T1DM) is a complex autoimmune disorder that mainly affects
children and adolescents. The elevated blood glucose level of patients with T1DM results
from absolute insulin deficiency and leads to hyperglycemia and the development of life-
threatening diabetic complications. Although great efforts have been made to elucidate
the pathogenesis of this disease, the precise underlying mechanisms are still obscure.
Emerging evidence indicates that small extracellular vesicles, namely, exosomes, take part
in intercellular communication and regulate interorgan crosstalk. More importantly, many
findings suggest that exosomes and their cargo are associated with the development of
T1DM. Therefore, a deeper understanding of exosomes is beneficial for further elucidating
the pathogenic process of T1DM. Exosomes are promising biomarkers for evaluating the
risk of developingty T1DM, monitoring the disease state and predicting related
complications because their number and composition can reflect the status of their
parent cells. Additionally, since exosomes are natural carriers of functional proteins, RNA
and DNA, they can be used as therapeutic tools to deliver these molecules and drugs. In
this review, we briefly introduce the current understanding of exosomes. Next, we focus
on the relationship between exosomes and T1DM from three perspectives, i.e., the
pathogenic role of exosomes in T1DM, exosomes as novel biomarkers of T1DM and
exosomes as therapeutic tools for T1DM.
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INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder characterized by beta-cell dysfunction
and death caused by autoreactive T cells, an absolute lack of insulin, and elevated blood glucose
levels (1–3). Persistent hyperglycemia leads to the development of life-threatening diabetes-
associated complications such as blindness, stroke, kidney diseases, and heart diseases, thus
decreasing the quality of life of patients and imposing a considerable economic burden on
society and individuals.

Currently, it is widely accepted that a combination of genetic and environmental factors
contribute to an increased risk of T1DM (4–6). Although substantial research efforts have been
made to elucidate the pathophysiology of T1DM, the exact underlying mechanisms are still largely
org November 2020 | Volume 11 | Article 5933481
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unknown. For example, the critical initial triggering events that
result in infiltration of T lymphocytes and pancreatic islet
autoimmunity, which are important in early identification of
T1DM and effective prevention of further islet deterioration,
have not been revealed. Because the pathogenic mechanisms are
obscure, most patients with T1DM rely on life-long exogenous
insulin administration, which only alleviates symptoms. Today,
the most commonly used biomarkers of T1DM are human
leukocyte antigen (HLA) genes and islet autoantibodies.
However, these biomarkers do not fully meet current needs.
The ideal biomarkers should be objective indicators of disease
condition that can be measured accurately and reproducibly,
should identify disease stage and progression and should assess
the outcome of therapies.

Exosomes, which are small vesicles carrying bioactive
molecules such as DNA, RNA, and proteins, have emerged as
important mediators of cellular and interorgan communication.
Evidence shows that exosomes may be involved in the loss of
tolerance towards islet cells and take part in islet autoimmunity
(7). Therefore, a better understanding of exosomes may provide
novel insight into the onset and development of T1DM. In
addition, studies have indicated that the number and
composition of exosomes can reflect the physical and
pathological status of their cells of origin, which means that
monitoring exosomes can be helpful for disease diagnosis.
Therapeutically, exosomes have the potential to be exploited as
novel treatment agents and drug delivery vectors. Therefore,
more comprehensive knowledge of exosomes may not only help
reveal the underlying pathogenic mechanisms of T1DM but also
provide valuable targets for use as disease biomarkers and
therapeutic tools.
EXTRACELLULAR VESICLES
AND EXOSOMES

In recent years, in addition to cytokines, chemokines and
hormones, a new group of modulators called extracellular
vesicles (EVs) that can regulate cell-to-cell communication
have emerged (8). EVs are a group of heterogeneous
lipid bilayer-enclosed structures that are secreted into the
extracellular milieu by multiple types of cells. These small
membrane-bound structures can be released by almost all cell
types in response to endogenous and exogenous stimulation (9).
According to their biogenesis, size, content and biological
function, EVs can be mainly classified as exosomes (EXOs),
apoptotic bodies and microvesicles (MVs) (10–12). However,
given the consensus has not been reached on specific markers of
EV subtypes and the fact that distinguishing the biogenesis
pathway of EVs remains extremely difficult, MISEV 2018
(Minimal information for studies of extracellular vesicles 2018)
recommended authors to use operational terms for EV subtypes
that refer to physical characteristics of EVs, biochemical
compositions, and description of conditions or cell of origin
(13). But in this review, we adopt the description used by
reference literature for the sake of convenience in the recital.
Frontiers in Immunology | www.frontiersin.org 2
Exosomes, which range from 30 to 200 nm in diameter, are
present in various kinds of biological fluids, such as serum,
cerebral spinal fluid, saliva, urine, pleural effusion or ascites, and
breast milk (14–16). They can mediate intercellular
communication via cargo molecules. The cargo delivered by
EXOs includes DNA, RNA (miRNA, tRNA, mRNA, rRNA),
proteins and lipids (8, 17). Because the cargo of EXOs can reflect
the status of their cells of origin, monitoring and repurposing
these nanovesicles can be useful for the diagnosis and therapy of
many diseases, including type 1 diabetes mellitus (T1DM). EXOs
are formed through endosomal networks, and they thus bear
specific markers such as tetraspanins (CD9, CD63, and CD81),
heat shock proteins (HSP70), and the Rab family proteins
Tsg101 and Alix (18, 19). The biogenesis of EXOs can be
divided into three stages: (1) the invagination of early
endosomes, which engulfs content from the cytoplasm; (2) the
formation of multivesicular bodies (MVBs) via inward budding
of the endosomal membrane; and (3) the fusion of MVBs with
the plasma membrane and secretion of exosomes (20). The
biogenesis of EXOs is strictly regulated by multiple factors,
such as the cell type (14), contact inhibition (21, 22), cell
culture (23), Ca2+ (24), and hypoxia (25). More importantly,
many pathological states, such as cancer (26, 27), diabetes (28),
and neuronal degradation (29, 30), affect the yield and content of
exosomes, making it theoretically feasible to apply exosomes for
the diagnosis and treatment of diseases. Upon release, these
exosomes can induce biological responses of recipient cells via a
range of processes, including protein-protein interactions on the
cell surface or entry into the cytosol of recipient cells through
endocytosis and fusion with the plasma membrane (28).
Compared with exosomes, the biogenesis of the MVs (50–
2,000 nm in size) is far less learned. In general, the formation
of MVs is resulted from dynamic interplay between phospholipid
redistribution and cytoskeletal protein contraction, which is
distinct from the biogenesis of exosomes (31). Also, the cargo
of MVs tends to be highly enriched for specific proteins which
are different from exosomes. For example, a study indicated that
the MVs secreted by melanoma cells are enriched for B1
intergrin receptors (32). On the other hand, transferrin
receptors, which are highly detected in exosomes, are missing
in MVs (33). Unlike exosomes and MVs are produced during
normal cellular process, the formation of apoptotic bodies (500–
4000 nm in size) is associated with programmed cell death. This
process is characterized by condensation of the nuclear
chromatin, membrane blebbing, and the cellular content
enclosed by apoptotic bodies (34). Most apoptotic bodies will
be eliminated by macrophages locally (35).

Given the emerging roles of exosomes in multiple
physiological and pathogenic processes, extensive effort has
been applied to further understand exosomes and improve
their isolation methods. A variety of technologies, including
ultracentrifugation, affinity-based capture technology, filtration,
chromatography, precipitation, and microfluidics, have been
developed to isolate EXOs. However, given that the size of
EXOs is extremely small, isolation is very challenging, and all
these techniques have their own limitations (14). Therefore, it is
November 2020 | Volume 11 | Article 593348
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imperative to develop or advance new or existing methods to
isolate exosomes.
THE PATHOGENESIS OF T1DM

The pathogenesis of T1DM is associated with a complex
interplay between genetic and environmental factors. However,
the early triggering events of T1DM are still largely unknown. It
is of particular importance to elucidate the factors that lead to
beta-cell-specific T cell intolerance; these factors may include
genetics, exogenous infection, endogenous superantigens,
physiological stress events, and noninfectious environmental
elements (36). In nonobese diabetic (NOD) mice, an excellent
animal model representing human T1DM, the breakdown of
tolerance to pancreatic islet self-antigens occurs spontaneously in
early life. Before lymphocyte infiltration, physiological
abnormalities of the islets, including vascular pathology,
increased endoplasmic reticulum (ER) stress, and enhanced
expression of inflammatory cytokines, are present in the
pancreas in NOD mice (37, 38). These events may lead to
beta-cell dysfunction and death, thus leading to the release of
autoantigens and the activation of specific autoreactive T cells.

In addition, some reports show that stromal cells, rather than
endocrine cells, might be critical factors inducing local
inflammatory responses and subsequent islet autoimmunity.
For example, peri-islet Schwann cells have been proposed as
early targets involved in the initial peri-insulitis, and a specific
Frontiers in Immunology | www.frontiersin.org 3
population of T cells targeting Schwann cell antigens has been
identified (39, 40). However, given that these cells do not express
candidate antigens of T1DM and some lymphocyte-infiltrated
islets do not undergo the peri-insulitis stage, it can be speculated
that Schwann cells are not the only contributor. Additionally,
islet endothelial cells (IECs) are associated with early triggering
events of T1DM because they may facilitate the infiltration of
autoreactive T cells into islets (41). Moreover, it has been
reported that lymphatic vessel endothelial cells are also
involved in islet inflammatory responses (42). It is more likely
that both beta-cells and stromal cells contribute to early
triggering events. Interestingly, some findings have indicated
that exosomes can mediate communication between different cell
types within the islets and have immunostimulatory as well as
immunomodulatory properties, suggesting that they might serve
as early agents inducing the initial events of T1DM (43).
THE POTENTIAL ROLE OF EXOSOMES
IN T1DM

Emerging evidence has indicated that exosomes, which possess
immunoregulatory functions, may participate in the initiation
and development of autoimmune diabetes (Figure 1) (28, 44).
On the one hand, islet-derived exosomes can activate the
immune system and lead to autoimmune responses (Table 1)
(53). At present, the exact mechanisms by which intracellular
autoantigens are initially detected by the immune system and
FIGURE 1 | Exosomes participate in the pathological process of T1DM. Beta cell-derived exosomes that contain islet autoantigens and specific miRNAs can
activate the immune system. In return, immune cell-derived exosomes can induce beta-cell dysfunction and apoptosis, eventually leading to T1DM. In addition,
exosomes can deliver biological information between beta-cells, and horizontal message transfer can coordinate beta-cell activity. Additionally, some studies have
shown that exosomes may serve as mediators between insulin-producing beta cells and stromal cells and are associated with the revascularization process after
islet transplantation.
November 2020 | Volume 11 | Article 593348
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presented to autoimmune T cells have not been fully elucidated
in the pathogenesis of T1DM. Intriguingly, a recent finding
indicates that rat and human pancreatic islets can release
exosomes containing beta-cell autoantigens that belong to
intracellular membrane proteins, including glutamic acid
decarboxylase 65 (GAD65), islet-associated protein 2 (IA-2)
and proinsulin, and released exosomes can be taken up by
dendritic cells and lead to cell activation (45). Moreover, the
anchoring of GAD65 to exosome-mimetic liposomes, whose size
and lipid composition is similar to islet exosomes, can enhance
antigen presentation and T cell activation in individuals
susceptible to T1DM (45). In addition, a previous study
indicated that mouse MIN6 insulinoma cells can release
exosomes that express GAD65 (50). These studies indicated
that exosomes might be important agents in the development
of T1DM. However, there are some problems remained to be
clarified. For example, because the findings are drawn based on
in vitro experiments, in vivo studies are necessary. In addition,
apoptotic beta-cells can also release autoantigens which can be
taken by APCs in pancreatic lymph nodes and activate
autoimmune responses. So whether exosomes are primary
drivers in the initiation of autoimmune responses against
pancreatic beta cells or rather are secondary contributors in
the development of T1DM needs further investigation. But given
the secretion of exosomes is a positive process and can occur
before beta-cell destruction, they are seemed to play more critical
role in the initiation of autoimmune responses.

Moreover, exosomes are closely associated with physiological
islet abnormalities prior to lymphocytic infiltration, including
increased ER stress in beta-cells and enhanced expression of
proinflammatory cytokines. In vitro research indicates cytokine-
induced ER stress can lead to increased exosome secretion by islet
cells and subsequently increased exosomal proteins such as the
chaperones calreticulin, ORP150 and Gp96, which can induce
immune responses via enhanced phagocytosis and adjuvant
capacity (45, 54, 55). The increased secretion of exosomes
during ER stress may be explained by two theories. First, given
their role in intercellular communication, the upregulation of
exosomes may deliver ER stress conditions to neighboring cells.
Second, exosomes may serve as vehicles for the disposal of
unneeded cell material in response to ER stress to regain
homeostasis. Another in vitro study indicated that exosomes
Frontiers in Immunology | www.frontiersin.org 4
containing miR-29b released from beta-cells can stimulate the
secretion of IFN-a, IL-10, and IL-6 by splenocytes from NOD
mice (48). Also, in vitro study indicates that the mouse
insulinoma-derived microparticles also exert a strong adjuvant
effect to induce the secretion of inflammatory cytokines,
including IL-6 and TNF-a, via a MyD88-dependent pathway.
In vivo experiments indicate that immunization with insulinoma-
derived exosomes can cause insulitis in nonobese diabetes-
resistant mouse models and that EXO-reactive Th1 cells and
marginal zone-like B cells are detected in prediabetic NOD female
mice (50, 51). Additionally, islet-derived mesenchymal stem cells
(MSCs) can release highly immunostimulatory exosomes that can
cause T cell-mediated destruction of the pancreatic islets in NOD
mice (7). All these findings suggest that abnormal release of
exosomes may trigger early inflammation and autoimmunity in
the islets. However, whether these phenomena exist in human
body and play a role in physiological process await
further investigation.

On the other hand, exosomes derived from the immune
system may lead to dysfunction and death of beta-cells (Table
1). A recent study indicated that exosomes containing specific
miRNAs, including miR-142-3p/5p and miR-155, released by T
cells can trigger apoptosis and chemokine gene expression in islet
beta-cells of NOD mice (52). These chemokines, including Ccl2,
Ccl7, and Cxcl10, are involved in the recruitment of immune
cells and the promotion of beta-cell death in response to
autoimmune attack. But because human T1DM has some
distinct features compared to NOD mice, future studies need
to clarify the adoptability in human body. Moreover, another
study indicated that plasma-derived exosomes from patients
with T1DM exhibit deregulated miRNAs and that these
miRNAs are involved in the progression of T1DM (56).
Subsequent functional analysis demonstrated that human islets
coincubated with exosomes from T1DM patients showed
decreased insulin output in the second phase in response to
glucose stimulation. This finding suggests that exosomes and
their content may serve as a new communication mediator
between the immune system and insulin-producing beta-cells.

In addition, exosomes can deliver biological information
between pancreatic beta-cells. One study indicated that the
miRNA content of exosomes originating from beta-cells is
regulated by inflammatory mediators, and incubation with
November 2020 | Volume 11 | Article 593348
TABLE 1 | Summary of findings on exosomes and T1DM.

Experimental subjects Findings References

Rats and humans Exosomes released from the pancreatic islets contain beta-cell autoantigens and can activate adaptive immune responses (45)
MIN6B1 cells Exosomal miRNA transfer regulates the activity of beta-cells and transduces apoptotic signals (46)
NOD mice Exosomes released from islet-derived MSCs can trigger autoimmune responses in NOD mice (7)
INS-1 cells NCDase-containing exosomes released by INS-1 cells inhibit beta-cell apoptosis induced by high levels of inflammatory

cytokines
(47)

MIN6 and NOD mice Exosomes containing miR-29b released from beta-cells modulate innate and adaptive immune responses (48)
NHI6F Tu28 Pancreatic beta-cells shed membrane-derived microvesicles (49)
MIN6 and NOD mice Insulinoma-released exosomes can activate autoreactive T cells in NOD mice (50)
MIN6 and NOD mice Insulinoma-released exosomes can activate autoreactive marginal zone-like B cells in prediabetic NOD mice (51)
Human islets and NOD
mice

Exosomal miRNAs derived from T lymphocytes promote pancreatic beta-cell death (52)
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these cytokine-induced exosomes leads to naïve beta-cell
apoptosis (46). This finding provides a novel potential
communication mode to coordinate the activity of beta-cells in
addition to direct cell-to-cell contact and the release of signaling
molecules with autocrine and paracrine functions (57, 58).
Moreover, another study indicated that low-dose cytokines can
stimulate the secretion of exosomes carrying neutral ceramidase
(NCDase) from INS cells and that these NCDase-containing
exosomes can inhibit apoptosis induced by proinflammatory
cytokines at a high concentration. Similarly, NCDase packaged
in exosomes secreted from beta-cells can ameliorate palmitate-
induced apoptosis in INS-1 cells (59). Although this discovery is
more strongly associated with T2DM, it also suggests that
horizontal message transfer between beta-cells via exosomes
does exist and may play an important role in the pathological
process of the pancreatic islets. However, all these findings are
drawn based on cell experiments, in vivo studies are required to
elucidate whether this mechanism also exists in physiological
conditions and evaluate the relative contribution in mediating
lateral communication between beta cells.

Notably, given that almost all cell types can secrete exosomes,
there must be other pathogenic mechanisms apart from the
communication mode mentioned above in the development of
T1DM. For example, studies have shown that compared with
those from healthy controls, breast milk-derived exosomes from
mothers with T1DM contain different levels of miRNAs, and
pathway analysis indicates that these miRNAs are involved in the
modulation of the infant immune system (60). However,
whether this increases the risk of T1DM in infants is unknown.

In conclusion, based on current knowledge, exosomes may
play a critical role in the onset and development of T1DM by
delivering biological information, at least between beta-cells as
well as between the pancreatic islets and the immune system.
Previous studies have demonstrated that a complex network
formed by exosomes may collectively contribute to the onset of
T1DM, but how much of a role exosomes can play remains
further research.

Besides T1DM, exosomes also play a role in other
autoimmune diseases, including rheumatoid arthritis, systemic
lupus erythematosus, and Sjogren’s syndrome (61). It is not
surprising because exosomes can be secreted by almost all cell
types and has multiple biological functions, such as intercellular
as well as interorgan communication and modulation of immune
responses. In fact, exosomes may have broader effects on
regulating physiological and pathological processes due to their
universality and versatility.
EXOSOMES AS NOVEL BIOMARKERS
OF T1DM

Before the manifestation of clinical symptoms, the underlying
autoimmune changes of T1DM occur, and this symptomless
period offers a great opportunity to predict and prevent disease
progression (62). However, suitable biomarkers to identify and
stratify the high-risk population and to evaluate the efficacy of
Frontiers in Immunology | www.frontiersin.org 5
intervention measures have not been developed, as the existing
biomarkers often mark the late stage of T1DM when almost 90%
of beta-cells have been lost. Currently, the combination of
susceptible genes and islet autoantibodies is the most useful
biomarker to predict T1DM risk (63). Previous studies have
identified more than 50 candidate loci; a minority of genes
(HLA) have large effects, but a majority of these genes have
small effects (2). HLA genes confer the greatest risk for the
development of T1DM, and the HLA-DR (DR3/4) and HLA-DQ
(DQ8) genotypes are mostly used to predict the risk of
developing islet autoimmunity (64, 65). Furthermore,
combined evaluations of other risk genes with smaller effect
sizes than HLA do remarkably improve sensitivity and specificity
for the identification of high-risk individuals. However, a study
indicated that 90% of individuals identified through genetic
markers never displayed autoimmunity, and less than 50% of
cases were identified by a combination of genetic markers (66).

The appearance of autoantibodies usually precedes the
clinical manifestation of T1DM by months to years (67). The
major circulating autoantibodies against beta-cell peptides and
proteins include GAD65, IA-2, insulin, and zinc transporter 8
(ZnT8) (68–71). Although there is no evidence that these
autoantibodies contribute to the pathogenesis of T1DM
directly, it has been accepted that they are hallmarks of
T1DM (65). At present, autoantibodies are used as biomarkers
of T1DM in the clinic, and positivity for multiple autoantibodies
is associated with a higher risk of T1DM regardless of family
history (63). In fact, children positive for two or more
autoantibodies almost inevitably develop diabetes. However,
there are some limitations regarding the clinical application of
these markers (67). For example, given that the time from
seroconversion to diagnosis can span from weeks to decades,
other biomarkers are needed before and after seroconversion. In
addition, some patients never display these autoantibodies at
diagnosis, and a subset of autoantibody-positive individuals will
not develop clinical diabetes (72).

Currently, exosomes are viewed as potential biomarkers for
diagnosing disorders such as tumors because the molecular cargo
of exosomes can reflect the cell type and status of their releasing
cells (15, 73). Furthermore, exosomes have additional advantages
compared with traditional diagnostic methods, including (1)
secretion in easily accessible biological fluids, such as urine and
blood; (2) the ability to be preserved for a relatively long time at
−80°C due to their stability; and (3) enhanced molecular stability
in protease- and nuclease-controlled environments (43).

In the context of T1DM, previous studies have indicated that
pathophysiological conditions in the pancreatic islets affect the
composition of exosomes originating from beta-cells (Table 2)
(46, 49). Profiling of exosomal RNAs derived from human islets
with T1DM has demonstrated that RNAs are differentially
expressed in cells subjected to treatment with proinflammatory
cytokines compared to those without cytokine treatment, and
these differentially expressed RNAs are associated with insulin
secretion, necrosis, apoptosis, and calcium signalling (74). This
study applying ex vivo stress model not only provides a
comprehensive map of exosomal RNA from human pancreatic
November 2020 | Volume 11 | Article 593348
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islets, but also can pin down the source of these circulating
molecules. Among all the components, exosomal miRNAs are
particularly attractive for developing novel biomarkers of T1DM
(84). Global profiling analysis applying beta-cell lines and
pancreatic islets has revealed that a subset of miRNAs is
preferentially secreted in exosomes, while others are prone to
be retained in cells (46, 85). Moreover, an in vitro study indicated
that the miR-21-5p cargo inside EVs is increased in response to
inflammatory cytokines and has promise as a future biomarker
of T1DM (86). Subsequent research indicates that miR-21-5p
from serum is increased in children with new-onset T1DM
compared with healthy children, and interestingly, the total
serum miR-21-5p is decreased among diabetic individuals,
which proves the cargo within EVs is packed selectively (86).
Future study should focus on identifying EV specific proteins
that facilitate enrichment for EVs originated from beta-cell. With
more practical significance, another study performed plasma-
derived exosome characterization and reported a distinct
miRNA signature in patients with long-duration T1DM, with
seven differentially expressed miRNAs compared with healthy
controls (56). However, the mean duration of diabetic
participants in this study is 25.3 years, which weakens the
potential diagnostic value of identified exosomal RNA. In the
context of T1DM, exosomes have also been identified as
biomarkers of diabetic complications, including nephropathy
(78, 80, 82, 83) and retinopathy (87), and may be used for
noninvasive monitoring of islet transplantation outcome (76).
EXOSOMES AS THERAPEUTIC TOOLS
FOR T1DM

Nowadays, most patients with T1DM rely on life-long insulin
administration, which can only relieve symptoms. According to
existing knowledge about T1DM, the curable strategies lie in re-
establishing immune tolerance, annihilate islet-reactive
lymphocytes, and supplement the depleted beta-cells. Seeing that
exosomes not only play a role in immune stimulation, but also in
immune tolerance, they are emerging as an alternative tool to
induce and rebuild auto-tolerance. Also, some stem cell-derived
Frontiers in Immunology | www.frontiersin.org 6
exosomes have been reported to protect beta-cell from autoimmune
attack, slow disease progression, and improve the survival of
transplanted islets.

The Advantages of Exosomes as
Therapeutic Tool
Given that exosomes can exert biological effects on target cells,
they are viewed as potential therapeutic agents (Table 3). Both in
vitro and in vivo studies indicate that exosomes can transfer
bioactive molecules between cells (101, 102). As a therapeutic
delivery route for functional molecules, including RNA, DNA,
and proteins, or synthetic drugs, exosomes can prevent cargo
decomposition. For example, the clinical application of nucleic
acids as drugs has been impeded because they are easily
degraded. However, this problem can be solved by packaging
RNAs and their mimics inside exosomes. A study indicated that
two miRNAs, miR-106b-5p, and miR-222-3p, contribute to bone
morrow transplantation (BMT)-induced beta-cell regeneration
in mouse models of insulin-deficient diabetes, which may lead to
the development of new therapeutic tools for diabetes (90). In
addition to protecting the cargo from enzymatic degradation, the
use of exosomes as therapeutic vectors has some other
advantages, including (1) the ability to be isolated from
patients themselves to avoid an immune rejection response; (2)
a widespread distribution due to their liposolubility and ability to
cross the intact blood-brain barrier; (3) the ability to be modified
to target specific cell types by carrying special surface proteins or
receptors; and (4) a relatively long half-life in the body (44,
103–105).

Stem Cell-Derived Exosomes and T1DM
Mesenchymal stem cells (MSCs), which can be also defined as
multipotent stromal cells, possess self-renewal ability and can
differentiate into other tissues. MSCs are capable to remodel the
injured and inflammatory tissues and maintain homeostasis of
microenvironment by directly differentiating into required cell
types or secreting bioactive and soluble factors. In addition, some
evidences indicate MSCs can suppress excessive immune
response, such as activation of T cells and B cells, via their
paracrine ability (106, 107). These immune regulatory
TABLE 2 | Summary of findings on exosomes as biomarkers of T1DM.

Experimental
subjects

Findings References

Humans Exosomal miRNAs may serve as potential circulating biomarkers of T1DM (74)
Humans Analysis of plasma-derived exosome miRNAs as novel diagnostic tools for T1DM (56)
Humans Circulating transplant islet-specific exosomes may be a novel diagnostic tool for recurrent autoimmune T1DM after islet transplantation (75)
Humans and
mice

Transplanted islet-derived exosomal miRNAs as biomarkers for monitoring immune rejection (76)

Humans Urinary excretion of AQP2 and AQP5 via exosomes as biomarkers for T1DM nephropathy (77)
Humans Urinary podocyte EVs may serve as early biomarkers of glomerular injury in T1DM (78)
Humans High levels of exosomal cytokines and angiogenic factors in plasma may serve as biomarkers of diabetic ocular complications (79)
Humans Increased cystatin B and altered protease profiles in urinary EVs may serve as biomarkers of kidney damage in T1DM (80)
Rats Decreased urinary exosomal regucalcin may serve as a biomarker of diabetic kidney disease (81)
Humans Urinary exosomal miR-145 may serve as a biomarker of T1DM with diabetic nephropathy (82)
Humans The WT1 protein in urinary exosomes may be an early noninvasive marker of diabetic nephropathy in T1DM (83)
November 2020 | Volume 11 | A
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characteristic of MSCs has been studied for the treatment of
autoimmune disorders, such as T1DM, multiple sclerosis
and inflammatory bowel disease (108). Though MSC therapy
has great therapeutic potential for multiple diseases, it still has
several critical limitations, such as high cost, low reproducibility,
and safety issues. Inspiringly, EVs, including exosomes, seem to
mirror biophysical characteristics of parent cells and convey the
cell functions. Some studies have indicated that the protective
paracrine effects of MSCs are at least partially mediated by EVs,
that is, EVs have homologous anti-inflammatory and
regenerative effects as MSCs (109).

To date, accumulated research suggests that stem cell-derived
exosomes possess congenital therapeutic potential and might
protect pancreatic beta-cells from autoimmune assault, thus
ameliorating disease progression (105, 110). It has been
reported that exosomes isolated from menstrual blood-derived
MSCs enhance beta-cell regeneration and insulin secretion
through the pancreatic and duodenal homeobox 1 pathway in
rat models of T1DM (91). However, there is no significant
impact on non-fasting blood glucose observed, indicating the
increased insulin might still be below the normal level. Therefore,
further investigation focused on identifying administration dose
and duration of therapy of exosomes may be necessary.
Additionally, a recent study indicated that streptozotocin
(STZ)-induced diabetic rats treated with exosomes derived
from MSCs display lower blood glucose levels and higher
plasma insulin levels, indicating the regeneration of insulin-
producing beta-cells (92). Histopathological examination also
proved that there is an increase in the size and number of beta-
cells with decreasing fibrosis and inflammation of the islets.
Moreover, in comparison with their parent cells, MSC-derived
exosomes showed superior therapeutic and regenerative results
(92). In fact, some researchers have stated that exosomes can be
used as an alternative to whole stem cell therapies because they
are safer, faster, and easier to inject, with more efficient outcomes
Frontiers in Immunology | www.frontiersin.org 7
and longer storage times than stem cells (92, 111). However,
more research may be needed to elucidate the reason why
exosomes encompass greater regenerative ability than MSCs
themselves, and which substances inside exosomes actually
function. In addition to enhancing beta-cell regeneration and
function, MSC-derived exosomes also have immunomodulatory
effects (112–114). In vitro studies demonstrate that EVs derived
from bone marrow MSCs induce regulatory dendritic cells and
inhibit the proinflammatory responses of T cells against the
GAD antigen in patients with T1DM (88, 115). In vivo
experiments indicated that exosomes derived from adipose
tissue-derived MSCs exert protective effects on STZ-induced
T1DM mice by increasing the population of regulatory T cells
and their products without increasing the proliferation index of
lymphocytes (89). All these findings suggest that EVs can mimic
the immunoregulatory properties of MSCs and better
understanding of involved mechanisms will benefit cell-free
therapeutic application.

Stem Cell-Derived Exosomes and T1DM
Complications
Moreover, some animal experiments have indicated that
exosomes can also ameliorate diabetic complications (99, 116).
Rat bone marrow MSC-derived exosomes can improve cognitive
impairment in STZ-induced diabetic mice by repairing damaged
neurons and astrocytes, thus reversing dysfunction (98).
Although this study shows the exosomes released from MSCs
boost impaired neuronal functions, the involved specific proteins
or RNA are not identified. Another study showed that exosomal
miR-let7c derived from MSCs attenuated kidney injury by
preventing renal fibrosis in C57BL/6J mice, which are
susceptible to diet-induced obesity and T2DM, with unilateral
ureteral obstruction (100). An in vivo study indicated that
exosomes released by human urine-derived stem cells can
prevent podocyte apoptosis and promote cell survival as well
TABLE 3 | Summary of findings on exosomes as a potential therapeutic strategy for T1DM.

Experimental subjects Findings References

Human MSCs and PBMCs MSC-derived MVs inhibit inflammatory T cell responses in the islets via induction of regulatory dendritic cells in T1DM (88)
STZ-induced mouse model of
T1DM

Exosomes released by adipose tissue-derived MSCs exert immunomodulatory effects upon T cells and ameliorate
clinical symptoms of T1DM

(89)

Human pancreatic islets Islet-derived EVs are involved in beta cell-endothelium cross-talk and the neoangiogenesis process and may benefit
engraftment of transplanted islets

(85)

Mouse model of insulin-deficient
diabetes

Exosomal miR-106b and miR-222 derived from transplanted bone morrow promote beta-cell proliferation and
ameliorate hyperglycemia

(90)

STZ-induced rat model of T1DM Stem cell-derived exosomes may regenerate beta-cells through the Pdx-1 pathway (91)
STZ-induced rat model of T1DM Exosomes derived from MSCs exert therapeutic and regenerative effects upon the pancreatic islets (92)
Rat model of diabetic
nephropathy

Exosomes released by human urine-derived stem cells prevent kidney injury in rats with T1DM (93)

STZ-induced rat model of T1DM Adipose tissue-derived MSC exosomes improve erectile function in diabetic rats (94)
Rat model of T1DM Exosomal miR-145 released by bone morrow stromal cells exerts neurorestorative effects in diabetic rats with stroke (95)
STZ-induced diabetic rat model Exosomes released by human endothelial progenitor cells promote cutaneous wound healing in diabetes (96)
NOD scid gamma mouse model MSC-derived exosomes improve islet transplantation by enhancing islet function and inhibiting immune rejection (97)
STZ-induced diabetic mouse
model

Exosomes released by bone morrow MSCs improve diabetes-induced cognitive impairment (98)

Transgenic mouse model Hsp20-engineered exosomes may be a potential therapeutic agent for diabetic cardiomyopathy (99)
C57BL/6J mouse model Exosomal miRNA let7c derived from MSCs attenuates renal fibrosis in diabetes (100)
Rat model of T1DM Exosomes derived from human urine-derived stem cells prevent T1DM kidney complications (93)
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as vascular regeneration in rats with T1DM (93). Future studies
to clarify the underlying mechanisms and pathways of exosomes
on preventing diabetic kidney impairment are necessary.
Additionally, exosomes isolated from human endothelial
progenitor cells can facilitate cutaneous wound healing by
promoting angiogenic activity and vascular endothelial
function in diabetic rats and mice (96, 117). Similarly, future
research should focus on determining the exact components
within exosomes contributing to wound healing of diabetic
patients before clinical use. In addition to biomolecule delivery,
exosomes can also be applied to deliver synthetic drugs, such as
curcumin, that can ameliorate neurovascular dysfunction after
stroke in T1DM (43). In conclusion, the animal studies
mentioned above indicate that stem cell-derived exosomes
have great potential to treat T1DM and diabetic complications
and further investigation should elucidate their clinical value in
patients with T1DM. However, it should be considered that
exosomes could still allow existing tumors to invade the immune
system because they can promote cell survival, stimulate
angiogenesis, and modulate immunity, although they exhibit a
greatly decreased risk of carcinogenesis and maldifferentiation
compared with MSCs (118, 119).

Exosomes and Islets Transplantation
Encouragingly, some research suggests that exosomes might
promote the survival of transplanted pancreatic islets and enhance
the efficiency of this treatment (120). The cross-talk between
endothelial cells and beta-cells is critical for islet transplantation
because it is associated with the revascularization process. In vitro
experiments indicate that human islet-derived exosomes carrying
angio-miRNAs can be captured by intraislet endothelial cells and
favor angiogenesis and engraftment (85). Further studies
should focus on evaluating whether they can be applied in
inhibiting ischemia-reperfusion injury in solid organ and cell
transplantation. It has also been reported that MVs released from
endothelial progenitor cells can activate an angiogenic program
and sustain vascularization in SCID (severe combined
immunodeficient) mice, which lack both T and B lymphocytes
(121). Furthermore, islet-derived exosomes have been observed to
induce the expression of proangiogenic and antiapoptotic factors and
inhibit antiangiogenic and proapoptotic molecules in islet
endothelial cells (85). In addition to promoting revascularization,
exosomes can improve islet transplantation through
immunomodulatory effects. A study indicated that MSC-derived
exosomes can improve islet transplantation by enhancing regulatory
T cell function and inhibiting peripheral blood mononuclear cell
(PBMC) proliferation (97). For safety concerns, the dose of factors
inside exosomes needs to be accurately investigated. In summary, in
the context of islet transplantation, exosomes may represent an
exciting new therapy not only for the improvement of
revascularization but also for the induction of transplant tolerance.

There are several practical problems that should be taken into
consideration before any clinical use. First, the cell origin of
exosomes affects their distribution, suggesting organotropic
characteristics (104, 122). Therefore, modification of the
exosome membrane may increase binding to specially targeted
cells. Moreover, the route of administration, including
Frontiers in Immunology | www.frontiersin.org 8
intraperitoneal or intramuscular administration, can decrease
the accumulation of exosomes in the liver, potentially leading to
a higher concentration in target organs, such as the pancreas
(122). Finally, the timing and clearance pattern of exosomes
should be investigated. Studies show that macrophage-depleted
mice display slower disappearance of injected exosomes,
suggesting that macrophages may be associated with exosome
clearance (123).
CHALLENGES AND PROSPECTS

In the past few decades, exosomes have shown great potential in
development of autoimmune diseases, including T1DM.
However, their basic and applied research is still in the early
stage, and many challenges must be overcome. First, in all studies
associated with exosomes, the isolation, purification and
identification process is the first and the most important step.
Nowadays, the most effective technique to get exosomes is
differential ultracentrifugation, which cannot obtain exosomes
with 100% purity. Exosomes in most T1DM studies actually
represent mixed EV populations, mainly including exosomes and
MVs. Therefore, the further research should focus on developing
the specific markers to distinguish different subtypes of EVs. In
addition, one issue in the application of exosomes for diagnostic
markers is process portability, so unified methodologies for the
isolation, purification, and characterization of exosomes should
be generated before translation to clinical practice. Moreover,
exosomes isolated from biofluids such as blood derive from
multiple different tissues and organs. However, no clear surface
markers have been identified for exosomes from different cell
types. In the context of T1DM, the abnormality of both
pancreatic islets and immune system contributes to its
pathological process and many kinds of cells take part in its
onset and development. Thus, developing approaches to
determined origination of exosomes will be beneficial to clarify
their functions in T1DM and reveal the underlying mechanisms
of this disease. Finally, exosomes have shown “double-edged
sword” characteristic, not only promoting, but also suppressing
diseases progression, such as tumors (124). Therefore,
identifying exosomes subgroups on the basis of their functions
is equally critical.
CONCLUSION

Currently, the treatment of T1DM and its related complications
is associated with an enormous economic burden for both
society and individuals. Early identification of high-risk
individuals do not catch T1DM is critical to implement timely
preventive measures and avoid or delay disease exacerbation.
Additionally, more comprehensive knowledge of the
pathophysiological process will help us treat the root cause of
diabetes rather than relieving its symptoms only. For the past few
years, EVs, especially exosomes, have emerged as important
agents mediating intercellular communication. Exosomes take
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part in not only physiological processes in the body but also
pathological conditions. Accumulated evidence has shown that
they are involved in the onset and development of diabetes and
that disease conditions alter the number and cargo of exosomes.
Therefore, a better understanding of exosomes will help us reveal
the underlying pathogenic mechanisms of T1DM, provide novel
biomarkers for diagnosis, and lead to the development of new
therapeutic strategies.
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