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Mitochondrial dysfunction, iron accumulation, and oxidative damage are conditions often found in damaged brain areas of
Parkinson’s disease. We propose that a causal link exists between these three events. Mitochondrial dysfunction results not only
in increased reactive oxygen species production but also in decreased iron-sulfur cluster synthesis and unorthodox activation of
Iron Regulatory Protein 1 (IRP1), a key regulator of cell iron homeostasis. In turn, IRP1 activation results in iron accumulation
and hydroxyl radical-mediated damage. These three occurrences—mitochondrial dysfunction, iron accumulation, and oxidative
damage—generate a positive feedback loop of increased iron accumulation and oxidative stress. Here, we review the evidence that
points to a link between mitochondrial dysfunction and iron accumulation as early events in the development of sporadic and
genetic cases of Parkinson’s disease. Finally, an attempt is done to contextualize the possible relationship between mitochondria
dysfunction and iron dyshomeostasis. Based on published evidence, we propose that iron chelation—by decreasing iron-associated
oxidative damage and by inducing cell survival and cell-rescue pathways—is a viable therapy for retarding this cycle.

1. Introduction

Parkinson’s disease (PD) is the most frequent neurode-
generative movement disorder worldwide. Despite substan-
tial amount of research, its founding causes remain elu-
sive. Hence, while the initial causes of PD are not clearly
determined, factors like aging, mitochondrial dysfunction,
oxidative stress, and inflammation, are thought to have a
pathogenic role in the disease [1–8]. PD is characterized by
degeneration of dopaminergic neurons of the substantia nigra
pars compacta (SNpc) and the presence of proteinaceous
cytoplasmic inclusions, called Lewy bodies [9, 10]. Loss of
dopaminergic neurons in the SNpc produces a decrease in
dopamine levels in the corpus striatum generating a deregula-
tion of basal ganglia circuitries that leads to the appearance of
motor symptoms including resting tremor, rigidity, bradyki-
nesia, and postural instability. In addition, nonmotor symp-
toms such as depression, cognitive deficits, gastrointestinal
problems, sleep disturbances, and smell loss have been
identified. Sporadic cases represent more than 90% of total
PD patients, but there are several inherited forms caused by
mutations in single genes. Although sporadic and familial PD

cases have similar outcomes, inherited forms of the disease
usually begin at earlier ages and are associated with atypical
clinical features [11].

Mitochondrial dysfunction is a plausible cause of PDneu-
rodegeneration. Endogenous and exogenous mitochondrial
toxins like nitric oxide, 4-hydroxynonenal, aminochrome,
paraquat, rotenone, and others have been linked to spo-
radic forms of the disease [7, 12–16], and mitochondrial
defects have been described in SNpc mitochondria of PD
patients [17, 18]. Additionally, as discussed below, several PD-
associated proteins, including 𝛼-synuclein (𝛼-syn), Parkin,
PTEN-induced putative kinase 1 (PINK1), protein deglycase
DJ-1, leucine-rich repeat kinase 2 (LRRK2), and P-type
ATPase A2 (ATP13A2), point to a role for mitochondria in
the development of the disease.

In another aspect of PD neurodegeneration, a large body
of literature strongly indicates that excess redox-active iron
is involved in the pathogenesis of PD [19–34]. Iron, in its
ferrous (Fe2+) and ferric (Fe3+) states, is present in Lewy
bodies as well as in many other amyloid structures [35–37].
Iron content in the SNpc is higher than in other areas of the
brain [38] and is even higher in PD patients [39]. Here, we
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review the evidence that points tomitochondrial dysfunction
and the subsequent iron accumulation as early events in the
development of PD.

2. Cell Iron

Iron has been described as an important cofactor in many
proteins involved in crucial biological processes, including
cellular respiration, nitrogen fixation, photosynthesis, DNA
synthesis and repair, oxygen transport, metabolism of xeno-
biotics, and neurotransmitter synthesis [40–49]. In most
proteins iron is present in iron-sulfur clusters (ISCs), either as
[2Fe-2S], [4Fe-4S], or [3Fe-4S] clusters [50, 51].Themain fea-
ture of iron as prosthetic group resides in its high redox flex-
ibility. Thus, iron has the capacity to exchange one electron,
either by oxidation (Fe2+ → Fe3+) or by reduction (Fe3+ →
Fe2+).This flexibility is very important in biological processes
such as cellular respiration, where the transport of electrons
depends on 12 ISCs present in complex I to complex III andon
5 heme-containing proteins transporting electrons through
complexes III and I [52].

Increases in redox-active iron directly associate with
increased reactive oxygen species (ROS) generation and
with changes in the intracellular reduction potential due to
glutathione oxidation [53, 54]. Within the cell, most iron is
associated with proteins, as either iron oxy-hydroxy crystals
in ferritin or forming part of ISCs and heme prostetic groups.
Around 1% of cell iron is in a redox-active form called the
labile iron pool or labile cell iron [55–58]. The predominant
component of this pool is Fe2+-glutathione, but iron is also
bound weakly to phosphate, citrate, carboxylates, carbohy-
drates, nucleotides, polypeptides, and other molecules [59,
60]. Through the Fenton reaction, reactive iron catalyzes
the production of hydroxyl radical (∙OH) in the presence
of H
2
O
2
, in a self-renewed cycle caused by the presence of

oxygen as an electron acceptor and intracellular reductants
such as glutathione (GSH) and ascorbate as electron donors
[28]. These characteristics of the intracellular environment
demand a tight regulation of the reactive iron pool to decrease
hydroxyl radical production.

Redox-active ironmediatesGSH consumption [54]. After
exposure to increasing concentrations of iron, SH-SY5Y
dopaminergic cells undergo sustained iron accumulation
and produce a biphasic change in intracellular GSH levels,
increasingGSH levels at low iron concentrations and decreas-
ing them thereafter. Indeed, cell exposure to high iron con-
centrations markedly decreases the GSH/GSSG molar ratio
and theGSHhalf-cell reduction potential, with the associated
loss in cell viability [54].

Iron levels in the SNpc increase significantly with age, and
PD patients present an even greater increase that correlates
with clinical PD status [64–69]. Experimental evidence shows
that iron is crucial to the degeneration of SNpc dopaminergic
neurons in the model of PD caused by 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).Mice fed for 6weekswith
a low iron diet before the administration of MPTP present
neuronal protection, normal striatal dopamine levels, and
no changes in motor behavior when compared with control
animals fed a normal iron content diet [70]. Furthermore,

increased iron levels in the brain aggravate dopaminergic cell
death and motor impairment after MPTP treatment and this
condition is attenuated by treatment with the iron chelator
desferrioxamine (DFO) [71].

Clinical studies have not provided an evident correlation
between dietary iron intake and risk of Parkinson’s disease
in humans [72–75]. Nevertheless, some reports point to
a higher incidence of PD in hereditary hemochromatosis
patients [76–79] although other reports found no correlation
between these two diseases [80–82]. It is possible that under
normal conditions the iron homeostasis system protects the
brain from iron accumulation due to dietary variations. This
homeostasis is most likely lost in iron-overload disease states
yet.

Overall, these antecedents suggest that increased redox-
active iron in the SNpc is part of the neurodegenerative
process in PD, possibly due to increased oxidative stress and
oxidative damage.

3. Iron Homeostasis in Mitochondria

Mitochondria consume about 90% of cellular oxygen and
transform 1–5% of this oxygen into superoxide anion (O

2

∙−),
due to the leaking of electrons that takes place in their passage
through complexes III and I [83–86]. During aging, the activ-
ity of these complexes decreases, leading to higher oxidant
production of O

2

∙− and H
2
O
2
[86, 87]. The superoxide anion

generated in this process dismutates into hydrogen peroxide,
either spontaneously or following catalysis by superoxide
dismutase (SOD) [88, 89]. Proteins containing ISCs in
mitochondria are significantly vulnerable to oxidative stress,
participating in redox sensing and signaling reactions [90,
91].

The mitochondrion has an active exchange of iron with
the cytoplasm, as required for the mitochondrial synthesis
of heme and ISCs (Figure 1(a)) [92–94]. Kinetic experiments
show that extracellular iron is readily incorporated into
mitochondria. Indeed, iron incorporation into mitochondria
apparently has a kinetic preference over incorporation into
the cytoplasm (Figure 1(b)) (also see [94, 95]). Possiblemech-
anisms for this preferential delivery include siderophore-
mediated iron transport from the plasma membrane to the
mitochondrion [96, 97], the entrance of iron into the cell by
fluid-phase endocytosis with subsequent delivery to mito-
chondria without passing through the cytoplasmic labile iron
pool (cLIP) [98], and iron delivery to mitochondrion by
direct interaction with transferrin-containing endosomes
[99].

Mitoferrin-2, a protein located in the innermitochondrial
membrane, represents the main pathway of mitochondrial
iron uptake, whereas the ABCB7 andABCB8 transporters are
involved in ISC export [100–103] (Figure 1). Inward transport
of iron by mitoferrin-2 apparently is regulated. Studies with
the mitoferrin Mrs3p and Mrs4p yeast homologs revealed
that inner mitochondrial membrane vesicles show rapid
uptake of Fe2+ in response to iron starvation [104].There is no
reported evidence as to how cell or mitochondrial iron levels
could regulate mitoferrin-2 levels. Additionally, mitoferrin
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Figure 1: (a) Mitochondrial iron traffic. Iron enters mitochondria from the cLIP in a process mediated by the inner mitochondrial iron
transporter Mtfn2 and probably by DMT1 located in the outer membrane. Upon entering, iron incorporates into the mLIP from where it
distributes for heme and ISC synthesis or for storage in mFt. Heme leaves the mitochondrion through ABCB10 and the mitochondrial heme
exporter FLVCR1b, located in the inner and outer mitochondrial membranes, respectively. ISCs are transported out of the mitochondrion
by the ABCB7 transporter and probably by the ABCB8 transporter as well. In the cytoplasm, ISCs bind to the corresponding apoproteins.
IRP1 binds a 4Fe-4S cluster; the holoprotein is inactive to induce the transcriptional regulation of cell iron-import proteins like DMT1 and
TfR1. In contrast, apo-IRP1, normally abundant under low cell iron conditions, upregulates the expression of iron-import proteins like DMT1
and TfR1. ABC: ATP-binding cassette transporter; cLIP: cytoplasmic labile iron pool; DMT1: divalent metal transporter 1; FLVCR1b: feline
leukemia virus subgroup C receptor 1B transporter; ISC: iron-sulfur cluster; mFt: mitochondrial ferritin; mLIP: mitochondrial iron pool;
Mtfn2: mitoferrin-2; TfR1: transferrin receptor 1. (b) Kinetic determination of iron entrance into the cLIP andmLIP. SH-SY5Y cells preloaded
with the mitochondrial iron sensor rhodamine B-[(1,10-phenanthroline-5-yl)aminocarbonyl]benzyl ester (RPA) and the cytoplasmic iron
sensor calcein were challenged with 40 𝜇M ferrous ammonium sulfate (Fe) and changes in RPA and calcein fluorescence were followed in a
multiplate fluorescence reader [61, 62]. Iron binding quenches RPA and calcein fluorescence; thus, a decrease in RPA or calcein fluorescence
is directly proportional to iron entrance into the mLIP or cLIP, respectively. Note that the initial rate of iron entrance into the mLIP (𝐾 =
0.0536 ± 0.0021Δ(𝐹/𝐹

0
)/sec) is larger than the rate of iron entrance into the cytoplasmic LIP (𝐾 = 0.0206 ± 0.0070Δ(𝐹/𝐹

0
)/sec). Values

represent mean ± SD of quadruplicates; 𝑃 = 0.004.
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Figure 2: The iron Chelator M30 protect SH-SY5Y cells from rotenone-induce lipid peroxidation. (a) Mitochondrial lipid peroxidation was
evaluated by green/red fluorescence changes of C11-BODIPY581/591 (ThermoFisher Scientific-Molecular Probes) as described [63]. Oxidation
of C11-BODIPY581/591 results in a shift of the fluorescence emission peak from 590 nm (red, nonoxidized) to 510 nm (green, oxidized). SH-
SY5Y cells were preincubated or not for 24 hours with 500 nM of M30 in DMEM-10% FCS medium and then loaded for 15 minutes at 37∘C
with 1 𝜇M C11-BODIPY581/591. Confocal images were obtained 15 minutes both before (Control, M30) and after (Rotenone, M30/Rotenone)
applying 80𝜇M rotenone to the cells. Representative images are shown, where the ratio of green over (green + red) fluorescence was
converted into a pseudothermal scale using the ImageJ program. (b) Changes in C11-BODIPY581/591 oxidation quantified by the thermal
scale. Values represent the mean ± SD of 40–52 individual cell measures per experimental condition. Significance between mean differences
was determined by one-way ANOVA and Tukey post hoc test. ∗∗∗𝑃 < 0.001.

dysregulation under pathological conditions promotes mito-
chondrial iron accumulation [100, 104].

A recent report described a role for mitoferrin-2 in the
development of Friedreich’s ataxia, by showing that mito-
ferrin-2 downregulation improved many of the conditions
of frataxin deficiency whereas its overexpression exacer-
bated them [105]. Similarly, loss-of-function mutations in
ABCB7 produce a sideroblastic anemia condition called X-
chromosome-linked sideroblastic anemia, in which patients
show iron accumulation in mitochondria [101, 102].

A fraction of the intramitochondrial iron is redox-active.
Petrat et al. demonstrated presence of a chelatable iron
pool, which renders mitochondria sensitive to iron-mediated
oxidative damage [106]. Evidence from our laboratory shows
that complex I inhibition generates mitochondrial lipid
peroxidation as determined by C11-BODIPY581/591 oxidation
[63], which is probably caused by redox-active iron since

it is inhibited by coincubation with the iron chelator M30
(Figure 2).

4. Mitochondrial Dysfunction in PD

Mitochondrial dysfunction and oxidative stress have long
been implied as pathophysiological mechanisms underlying
PD [17, 107]. Mitochondria not only have a key role in
electron transport and oxidative phosphorylation but also are
the main cellular source of ROS and they are involved in
calcium homeostasis and in the regulation and initiation of
cell death pathways [1]. Mitochondria isolated from human
brain tissues and peripheral cells of sporadic PD patients
exhibit reduced mitochondrial complex I activity [108] and
postmortemSNpc tissues from idiopathic PDpatients display
decreased number of complex I subunits [107, 109, 110].
Mitochondrial complex I activity is reduced in the SNpc [111]
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and the frontal cortex [112] in patients with PD. However,
total protein and mitochondrial mass from SNpc of patients
with PD are similar to controls [111]. The main consequences
of mitochondrial complex I inhibition in humans and exper-
imental models are decreased ATP levels [113, 114], decreased
glutathione levels, and increased oxidative damage [115–118].
Other reported effects are reduction in the concentrations of
DA accompanied with decreased density of DA receptors and
diminished activity of TH (reviewed in [119]), increased total
SNpc iron content [120], increased redox-active iron [121,
122], decreased Fe-S cluster synthesis [61, 123], and calcium
dysregulation [124–126]. Any one of these events may result
in cell death once the homeostaticmechanisms are surpassed.

The first evidence of mitochondrial dysfunction as a
causal source of PD was obtained in the 1980s when four
students developed marked Parkinsonism after intravenous
injection of an illicit drug contaminated with MPTP. Because
of the striking Parkinson-like features and additional patho-
logical data, it was proposed that MPTP selectively damaged
dopaminergic neurons in the SNpc causing the Parkinson
syndromes [127]. Later studies showed that MPTP causes
an irreversible destruction of the dopaminergic nigrostriatal
pathway that results in symptoms of Parkinsonism in pri-
mates and mice [128–130].

In animalmodels of PD, inhibition of complex I byMPTP
or 6-hydroxydopamine (6-OHDA) results in iron accumula-
tion in the SNpc [131, 132]. Importantly, iron chelators effec-
tively abrogate this neurodegenerative process (see below).
Thus, with all probability redox-active iron mediates the
degenerative process of SNpc neurons induced by inhibition
of complex I.

5. IRP1: The Link between Mitochondrial
Dysfunction and Iron Dyshomeostasis

Iron Regulatory Proteins 1 and 2 (IRP1 and IRP2) are largely
responsible for maintaining cytoplasmic iron levels through
the translational regulation of iron homeostasis proteins.
IRPs bind to RNA stem loops called iron responsive elements
(IREs), which are found in untranslated regions of target
mRNAs that encode proteins involved in iron metabolism.
Binding of IRPs to IREs in the 5-untranslated region inhibits
the translation of mRNA, as is the case for the iron-storage
protein ferritin. Binding of IRPs to IREs present in the
3-untranslated region increases the stability of mRNAs,
thus increasing the translation of DMT1 and the transferrin
receptor [133, 134].

Importantly, IRP1 activity depends on the protein having
or not a 4Fe-4S cluster. Binding of the 4Fe-4S cluster to IRP1
renders the protein inactive to bind to mRNA [135]. Low cell
iron induces the dissociation of this 4Fe-4S cluster activating
IRP1 and inducing the expression of iron uptake proteins like
the transferrin receptor 1 (TfR1) and dimetal iron transporter
1 (DMT1) [136]. Furthermore, IRP1 is sensitive to several
oxidative stress stimulus: hydrogen peroxide, nitric oxide,
and peroxynitrite all activate IRP1 by induction of ISC disas-
sembly [137, 138], while superoxide inhibits aconitase activity
[139].

IRP1 is deregulated in PD tissue, since postmortem brain
tissue from PD patients displays increased IRP1 activity when
compared to tissue from control individuals. Increased IRP1
activity was found also in the ipsilateral ventral mesen-
cephalon of 6-OHDA-treated rats [140]. Studies performed
in our laboratory showed that in SH-SY5Y cells inhibition of
complex I by rotenone results in decreased Fe-S cluster syn-
thesis and increased IRP1 mRNA binding activity, accompa-
nied by increased cLIP [61].Therefore, inhibition of complex I
and the subsequent activation of IRP1 lead to increasedDMT1
and TfR1 expression, increased iron uptake, and increased
ROS generation.

6. Environmental Toxicants, Mitochondrial
Dysfunction, and Iron Dyshomeostasis

A considerable body of evidence epidemiologically links
exposure to environmental toxicants like paraquat and
rotenone to the generation of PD in rural workers [141–
144]. The herbicide paraquat is a free radical generator that
inhibits mitochondrial electron-transport activity [145–147]
and causes dopaminergic neuron loss, 𝛼-synuclein aggrega-
tion, and motor deficits in rodents, with a dramatic increase
in free radical formation [148–150]. Moreover, systemic
application of paraquat reduces motor activity and induces
dose-dependent loss of striatal tyrosine hydroxylase positive
(TH+) fibers and SNpc neurons in mice [151–154]. Paraquat
has been proposed to cause Parkinsonism in humans. How-
ever, the clinical and epidemiological evidence in this regard
is still inconclusive [1, 144, 155, 156]. In fact, paraquat
remains one of themost widely used herbicides in developing
countries [157, 158].

Although its associationwith PD is not firmly established,
emerging evidence links paraquat exposure to brain iron
accumulation. Patients from acute paraquat poisoning dis-
played excessive brain iron deposition [159]. Similarly, incu-
bation of rat primary mesencephalic cultures with paraquat
resulted in increased production of H

2
O
2
and Fe2+ at times

preceding cell death [160]. Mechanistic studies identified
m-aconitase from astrocytes as the main mediator in ROS
production, although neurons were identified as the primary
dying cell type, and death was attenuated by addition of cata-
lase and/or a cell permeable iron chelator [160]. We propose
that these results are consistent with a mechanism whereby
paraquat affects mitochondrial activity resulting in increased
ROS production and increased iron content, a combination
that induces neuronal death by hydroxyl radical-mediated
damage.

Rotenone is a classic complex I inhibitor [161, 162]. Both
rotenone and MPP+ inhibit complex I NADH dehydro-
genase, shutting off mitochondrial respiration and causing
selective injury of SNpcneurons [128, 163–166]. Rotenone and
MPP+ also produce superoxide anion in submitochondrial
particles [167–169]. Chronic rotenone administration tomice
reproduces Parkinson-like syndromes that include death of
SNpc neurons, complex I inhibition, and Lewy bodies-like
fibrillar cytoplasmic inclusions containing ubiquitin and 𝛼-
synuclein [141, 170].
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Treatment with rotenone induces iron accumulation in
animal and cell models [61, 171]. Rats treated with rotenone
evidence iron accumulation in the SNpc, the striatum, the
globus pallidus, and other brain areas and treatmentwith iron
chelating agents significantly reduces iron deposition and the
loss of dopaminergic neurons in these areas [171]. Similarly,
treatment of SH-SY5Y dopaminergic neuroblastoma cells
whit rotenone results in mitochondrial iron accumulation
and oxidative damage [172]. The mitochondria-tagged iron
chelator Q1 abolishes both effects [94]. Overall, these data are
consistent with the notion that inhibition of complex I results
in the dysregulation of iron homeostasis in dopaminergic
cells.

In summary, although the epidemiological evidence that
links paraquat or rotenone exposure with PD still needs con-
solidation, increasing evidence shows that inhibition ofmito-
chondrial activity by these compounds results in iron accu-
mulation. The mechanisms causing this accumulation are
unknown. Considering the previous in vitro evidences dis-
cussed above, iron accumulation may be mediated by activa-
tion of IRP1 due to decreased ISC synthesis.

7. PD Genes Associated with Mitochondrial
Dysfunction and Iron Accumulation

As detailed below, a wealth of reports indicate that the
product of a number of PD-associated genes, including𝛼-syn,
Parkin, PINK1, DJ-1, LRRK2, and ATP13A2, disrupts mito-
chondrial function. Moreover, this disruption is generally
associated with increased iron load. Here we will review
the evidence that links mitochondrial dysfunction and iron
accumulation in familial cases of PD.

7.1. 𝛼-Syn. The function of wild type 𝛼-syn is still an open
issue [173, 174]. There is consensus, however, that misfolding
and aggregation of 𝛼-syn underlie its toxicity in both PD
and Lewy body-associated dementia [173]. Accumulation of
cytosolic 𝛼-syn can render toxic endogenous dopamine [175]
and acts as a seed promoting the formation of cytosolic
inclusions [176]. If degradation pathways do not clear these
aggregates promptly, neurodegeneration can ensue.

There is a reciprocal relationship between 𝛼-syn activity
and mitochondrial function; thus, 𝛼-syn overexpression in
dopaminergic cell lines results in mitochondrial alterations
accompanied by increased levels of ROS [177–180]. The N-
terminal sequence of 𝛼-syn contains a cryptic mitochondrial
targeting signal, and 𝛼-syn has been localized intomitochon-
dria after acidification of the cytosol or 𝛼-syn overexpression
[181, 182]. Mitochondrial 𝛼-syn decreases the activity of com-
plex I, increases ROS production [183], causes cytochrome
c release, increases mitochondrial calcium and nitric oxide
levels, and induces oxidative modification of mitochondrial
components [184]. Moreover, mice that overexpress 𝛼-syn
A53T exhibit dysmorphic mitochondria with evidence of
DNA damage [185], while administration of MPTP to mice
that overexpress 𝛼-syn leads to swollen and morphologically
abnormal mitochondria [186]. An open issue is whether
𝛼-syn aggregation promotes mitochondrial dysfunction or
vice versa. Probably both phenomena are interrelated: 𝛼-syn

induces mitochondrial dysfunction and mitochondrial dys-
function induces 𝛼-syn aggregation [187].

Recent evidence suggests that 𝛼-syn aggregation induces
iron accumulation. In PD patient brains, neurons containing
𝛼-syn deposits also display increased iron concentrations
and upregulated levels of Nedd4 Family Interacting Protein
1 (Ndfip1), an adaptor for the neuronal precursor cell-
expressed developmentally downregulated 4 (Nedd4) family
of E3 ligases [188]. Similarly, rat midbrain neurons and PC12
cells overexpressing human 𝛼-syn accumulate increased lev-
els of iron and show iron redistribution from the cytoplasm
to the perinuclear region within 𝛼-synuclein-rich inclusions
[189].

Interactions between iron and 𝛼-syn most probably con-
tribute to the process of neurodegeneration [190]. Further
work indicated that divalent metals, including Fe2+, Mn2+,
Co2+, and Ni2+, bind to the C-terminal of 𝛼-syn, and the N-
terminus residues 119–124 were recognized as the main bind-
ing site of divalent metal ions [191]. Incubation of wild type
andmutant𝛼-synwith Fe3+ resulted in the formation of short
thick fibrils [192]. In BE(2)-M17 cells overexpressing wild
type or mutant 𝛼-syn (A30P and A53T), treatment with Fe2+,
dopamine, and hydrogen peroxide generated 𝛼-syn-positive
inclusions, which also contained ubiquitin [193]. Similarly,
Fe2+-treated BE(2)-M17 cells were more susceptible to Fe2+-
induced DNA damage when overexpressing mutant 𝛼-syn
[194]. In contrast, Mg2+ inhibits both spontaneous and Fe2+-
induced aggregation of wild type but not A53T 𝛼-syn [195],
and dopamine suppresses the Fe3+-induced fibrillation of 𝛼-
syn [196].

Interestingly, 𝛼-syn aggregation in turn produces oxida-
tive stress, in a processmediated bymetal ions like Fe andMn,
thus generating a vicious cycle between oxidative stress and
𝛼-syn aggregation [197–201]. Moreover, pesticides such as
rotenone, paraquat and dieldrin, and metal ions (iron, man-
ganese, copper, lead, mercury, zinc, and aluminum) induce
a conformational change in 𝛼-syn and directly accelerate the
rate of formation of 𝛼-syn fibrils in vitro [202–204]. In addi-
tion, the simultaneous presence of metal ions and pesticides
leads to synergistic effects on the rate of fibrillation [205].

In summary, there seems to be a cyclic association
between 𝛼-syn and iron in which 𝛼-syn induces iron accu-
mulation and iron induces 𝛼-syn aggregation. This cycle
is aggravated by 𝛼-syn-induced mitochondrial dysfunction.
These associations may originate a sequence of events in
which 𝛼-syn aggregation inducesmitochondrial dysfunction,
which in turn results in iron accumulation and further 𝛼-syn
aggregation and hydroxyl radical-mediated damage.

7.2. Parkin. Various mutations in Parkin, an E3 ubiquitin
ligase of the ubiquitin-proteasome system, lead to an auto-
somal recessive PD form, which also is seen in some young-
onset sporadic PD cases [206, 207]. Abundant evidence links
Parkin to mitochondrial function. Cultured fibroblasts from
patients carrying Parkin mutations present longer and more
branched mitochondria than controls [208] and leukocyte
mitochondrial complex I and IV activities are reduced in PD
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patients who are homozygous for Parkin mutations [209].
Parkin-deficient mice have decreased levels of mitochondrial
complexes I and IV in the striatum, together with increased
protein and lipid peroxidation [210]. In addition, Parkin-null
D. melanogaster mutants develop muscle degeneration with
mitochondrial pathology and display decreased resistance to
oxidative stress [211, 212].Moreover, overexpression of Parkin
attenuates the dopaminergic neurodegeneration induced by
MPTP through protection of mitochondria and reduction
of 𝛼-syn in the nigrostriatal pathway [213]. After chronic
MPTP administration, Parkin overexpression preventsmotor
deficits and dopaminergic cell loss in mice [214].

Published observations linking Parkin mutations and
iron accumulation are scarce. In an initial study, PD patients
carrying Parkin mutations as well as mutation carriers with-
out clinical manifestations of the disease showed increased
echogenicity of the SNpc, which in asymptomatic Parkin
mutation carriers was associated with abnormal nigrostriatal
F-dopa positron emission tomography [215, 216]. Recently, a
R2∗ relaxometry study in the SNpc of genetic and idiopathic
PD patients reported that R2∗ values, indicative of iron
deposition, were increased in idiopathic PD patients and in
patients carrying Parkin and LRRK2 mutations when com-
pared to control subjects [217].

Overall, the bulk of the evidence points to a relationship
between Parkin and mitochondria structural functionality.
Further investigations are needed to assert if PD Parkin
mutations also result in iron dyshomeostasis.

7.3. PINK1. Mutations in PINK1, a serine-threonine protein
kinase localized to the mitochondrial membrane via an N-
terminal mitochondrial targeting sequence [218], lead to a
rare autosomal form of PD. It is generally accepted that
PINK1 has a physiological role in mitochondria mainte-
nance, suppressing mitochondrial oxidative stress, fission,
and autophagy [219]. PINK1 KO mice exhibit age-dependent
moderate reduction in striatal dopamine levels, accompanied
by low locomotor activity [220–222]. These mice show no
loss of dopaminergic neurons in the SNpc region but display
decreased striatal innervations [223, 224], together with
decreased mitochondrial respiration and mitochondrial aco-
nitase activity in the striatum [220].

Fibroblasts from patients homozygous for the G309D-
PINK1 mutation have reduced complex I activity and evi-
dence oxidative damage compared with cells from control
individuals [225]. In flies, PINK1 deficiency results in loss
of dopaminergic cells, enhanced susceptibility to oxidative
stress, reduced mitochondrial mass with disorganized mor-
phology, and decreased ATP levels [226]. Parkin and PINK1
work in a common pathway, with Parkin acting downstream
of PINK1 [226–228]. Under conditions of severe mitochon-
drial damage, PINK1 and Parkin act to induce mitophagy
and mitochondrial membrane depolarization [229]. PINK1
also regulates mitochondrial dynamics through interaction
with the fission/fusion machinery [230]. Further genetic
studies inDrosophila revealed that the PINK1/Parkin pathway
regulates mitochondrial morphology by tipping the balance
of mitochondrial fission/fusion dynamics toward fission in

dopaminergic and hippocampal neurons [230, 231] and
muscle cells [232–234].

In SNpc dopaminergic neurons, PINK1 is required to
maintain normal mitochondrial morphology and membrane
potential, exerting this neuroprotective effects by inhibiting
ROS formation [235]. In human dopaminergic neurons,
PINK1 deficiency produces mitochondrial dysfunction and
marked oxidative stress.These defects result in reduced long-
term cell viability, with neurons dying via cytochrome c-
mediated apoptosis [236]. Additionally, PINK1 knockdown
SH-SY5Y cells show decreased resistance against thapsigar-
gin-induced apoptosis, while PINK1 overexpression restores
it [237].

Evidence linking PINK1 and iron is scarce. Patients
carrying a PINK1 mutation display a significantly larger area
of SNpc echogenicity assessed with transcranial ultrasound
relative to healthy controls [238]. In a Drosophila model,
PINK1 mutants present increased superoxide levels, which
induce 4Fe-4S cluster inactivation and increased iron levels in
the mitochondrion [239]. As discussed above, decreased ISC
synthesis can lead to iron accumulation through IRP1 activa-
tion [61].

Overall, published data indicates that under conditions of
PINK1 deficiency mitochondrial quality control mechanisms
are compromised, resulting in increased ROS production and
apoptotic cell death. Up to date, evidence of a relationship
between PINK1 loss of function and iron dyshomeosta-
sis is discrete but enticing. The observation of decreased
mitochondrial aconitase activity, indicative of a possible
decrease in ISC synthesis, and the observed link between
PINK1 mutations and superoxide-mediated iron accumu-
lation in mitochondria are powerful incentives to study
possible changes in iron homeostasis under PINK1 deficiency
and to assess how these changes impact on cell death.

7.4. DJ-1. DJ-1 is a multitask protein that participates in the
protection of cells from oxidative stress-related death [240–
243]. DJ-1 null mice show decreased locomotor activity, a
reduction in the release of evoked dopamine in striatum but
no loss of SNpc dopaminergic neurons [223, 224]. A relation-
ship between DJ-1 and mitochondrial function has long been
suspected [244]; however, DJ-1-null mice show no apparent
mitochondrial defects [223, 224]. In contrast, ROS pro-
duction, mitochondrial structural damages, and complex I
deficit are significantly higher inDJ-1-null cultured dopamin-
ergic neurons [245].

To date, the evidence linking DJ-1 and iron is scanty. PD
patients carrying DJ-1 mutations have an area in the SNpc
of significantly larger echogenicity than in healthy controls
[238]. As SNpc hyperechogenicity is related to increased iron
content, these findings suggest that DJ-1mutationsmay result
in iron accumulation.

7.5. LRRK2. LRRK2 is a cytosolic serine-threonine-protein
kinase, with a fraction of about 10% associated with the
outermitochondriamembrane. Overall, LRRK2micemodels
display mild or no functional disruption of nigrostriatal
dopaminergic neurons of the SNpc [246]. Recently, a new
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LRRK2 knock-in mice evidenced profound mitochondrial
abnormalities in the striatum of older homozygous mice,
which are consistent with mitochondrial fission arrest
described previously [247]. In skin biopsies from human
LRRK2 G2019S carriers, however, mitochondrial function
and morphology are perturbed, as demonstrated by reduced
mitochondrial membrane potential, reduced intracellular
ATP levels, mitochondrial elongation, and increased mito-
chondrial interconnectivity [248]. LRRK2 mutations reduce
the activity of peroxiredoxin 3, an antioxidant enzyme located
within mitochondria. This effect appears to be phosphoryla-
tion-dependent [249, 250].

To date, just a few studies have shown a relationship
between LRRK2 dysfunction and iron accumulation. In a
recent study determining R2∗ relaxometry rate, high nigral
iron deposition in LRRK2 mutation carriers was demon-
strated [217]. In a small cohort of patients, it was found that
R2∗ values in the SNpc were increased in idiopathic PD
patients and LRRK2mutation-carrying patients as compared
with controls, with LRRK2 mutation patient having larger
R2∗ values than idiopathic PD patients [217]. Similarly,
studies using transcranial sonography showed that LRRK2-
associated PD patients had increased iron levels in the SNpc
[238, 251]. These evidences support the notion that PD
resulting from a variation in the LRRK2 allele has an iron
accumulation component that affects neurodegeneration via
increased oxidative damage. Further analysis will be required
to evaluate this hypothesis.

7.6. ATP13A2. ATP13A2 is a lysosomal P-type 5 ATPase.
Mutations in its gene are associated with a juvenile-onset,
levodopa-responsive PD type named familial Kufor-Rakeb
syndrome [252, 253]. ATP13A2 null mice display late-onset
sensorimotor deficits and deposition of 𝛼-syn aggregates
without changes in the number of dopaminergic neurons
in the SNpc or in striatal dopamine levels [254]. Arguably,
ATP13A2 may help prevent neurodegeneration both by
inhibiting 𝛼-syn aggregation and by supporting normal
lysosomal and mitochondrial function [253].

A relationship between ATP13A2 and mitochondrial
function is emerging. Reduced activity of ATP13A2 mutants
may lead to mitochondrial defects [255] and higher ROS
levels [256]. Fibroblasts from Kufor-Rakeb syndrome
patients show lower mitochondrial membrane potential and
lower ATP synthesis rates than fibroblast from controls [257].
In addition, overexpression of ATP13A2 inhibits cadmium-
induced mitochondrial fragmentation, while silencing
ATP13A2 expression induces mitochondrial fragmentation
[258]. It remains to be elucidated if ATP13A2-associated
mitochondrial dysfunction is due to a primary effect of on
mitochondria integrity or is secondary to other event(s), like
increased 𝛼-syn aggregation.

Two recent studies report neurodegeneration with brain
iron accumulation in one Pakistani [259] and one Chilean
[257] Kufor-Rakeb syndrome patients. Both patients showed
abnormal bilateral hypo intensity in the putamen and cau-
date nuclei on T2∗ diffuse MRI images. In the Pakistani
patient case, the clinicians attributed the abnormalMRI hypo
intensity to iron deposition [259]. In the Chilean patient,

the clinicians attributed the hypo intensity to ferritin deposits
though they did not perform tests to exclude the possibility of
deposition of other metal ions [257]. However, another study
reported opposite results in an adolescent Brazilian patient
with homozygous ATP13A2mutation [260]. It is possible that
brain metal ion accumulation only occurs very late in the
course of the disease or in cases in which ATP13A2mutations
lead to a total loss of protein function, such as the Pakistani
patient described by Schneider et al. [259]. Additional studies
in patientswith pathogenicATP13A2mutations are needed to
clarify this point.

In summary, the activities of several PD genes, namely,
𝛼-syn, Parkin, PINK1, DJ-1, LRRK2, and ATP13A2, are
involved in the maintenance of mitochondrial function and
integrity. Mutations in these genes that result in familial
PD are accompanied by decreased mitochondrial activity
and increased oxidative stress. Emerging evidence points to
iron dyshomeostasis as a direct or indirect consequence of
decreased mitochondrial activity. There is much to learn
regarding the mechanisms linking particular mitochondria-
associated PD proteins with iron dyshomeostasis.

The question arises on the reasons why dopaminergic
neurons from SNpc are more sensitive to neurodegen-
eration than similar neurons in the midbrain. Neurons
from SNpc have increased IRP1 activity [61, 123, 261] and
increased DMT1 expression [262–264] coupled to decreased
ferritin expression [265–267], which most probably results in
increased redox-active iron and oxidative damage. Similarly,
intrinsic L-type calciumchannel pace-marker activity and the
associated tendency to elevated calcium levels [268, 269] put
a metabolic burden in these neurons. Both aspects, iron and
calcium burden, are particular factors in SNpc neurons that
could be augmented by mitochondrial dysfunction.

8. Iron, Mitochondrial Dynamics,
and Mitophagy

Mitochondria are highly dynamic organelles that continu-
ously fuse and divide through the processes of fusion and
fission, respectively. Increases in the fission events generate
fragmented mitochondria whereas fusion events produce
elongated mitochondria. A balance between mitochondrial
fusion and fission is important in cellular function [270] and
an imbalance can promote neuronal dysfunction and cell
death [269, 271]. In neurons, mitochondrial fission is crucial
for axonal transport of the organelles into areas of high
metabolic demand, whereas mitochondrial fusion supports
substitution and regeneration of mitochondrial proteins,
mitochondrial DNA repair, and functional recovery. Indeed,
enhanced mitochondrial fragmentation was associated with
induction of neuronal death triggered by oxidative stress
[272].

Dynamin-related protein 1 (Drp1) is a key regulator
of mitochondrial fission and it has been associated with
neuronal cell death induced by glutamate toxicity or oxygen-
glucose deprivation in vitro and after ischemic brain damage
in vivo [273]. Many studies have demonstrated that post-
translational modification of Drp1 (phosphorylation, ubiq-
uitination, S-nitrosylation, and others) affects Drp1 activity
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and contributes to altered mitochondria dynamics and neu-
rodegeneration in cell culture systems [274–278]. Recently,
it was shown that ferric ammonium citrate (FAC) decreased
cell viability and promoted cell death of HT-22 cells [279].
The FAC-induced iron overload triggered mitochondrial
fragmentation and Drp1(Ser637) dephosphorylation by cal-
cineurin. Iron chelation and pharmacological inhibition
of calcineurin prevented mitochondrial fragmentation and
apoptotic death. These findings suggest that, under iron-
induced toxicity, calcineurin-mediated dephosphorylation of
Drp1(Ser637) mediates neuronal cell loss by modulating
mitochondrial dynamics [279].

As mentioned above, several groups observed that a defi-
ciency in Parkin and PINK1 leads tomitochondrial pathology
[211, 234, 280, 281]. PINK1 overexpression suppressed the
translocation of Drp1 from the cytosol to the mitochondria,
maintaining mitochondrial function [282]. In Drp1-deficient
cells the Parkin/PINK1 knockdown phenotype did not occur,
indicating that mitochondrial alterations observed in Parkin-
or PINK1-deficient cells are associated with an increase in
mitochondrial fission [281]. Moreover, Drp1 seems to activate
autophagy/mitophagy pathways for morphologic remodel-
ing of mitochondria in PINK1-deficient neuroblastoma cells
[283]. Currently, the inhibition of Drp1 has been proposed as
a strategy of neuroprotection inmany neurodegenerative dis-
eases because the altered Drp1 activity promotes exacerbated
mitochondrial fragmentation.

Iron induces calcium release from intracellular stores,
increase that is mediated by the ryanodine receptor (RyR)
calcium channel [284]. A recent study showed that in hip-
pocampal neurons iron induced a RyR-dependent increase in
mitochondria-associated Drp1 together with increased mito-
chondrial fragmentation [285].These results suggest that iron
accumulation contributes to mitochondrial fission and, pre-
sumably, to the impairment of neuronal function by a mech-
anism that involves RyR activation, calcium release, andDrp1
activation.

9. Iron Chelation as a Therapeutic
Approach for the Treatment of PD

Iron chelators are molecules from different origins with the
ability to coordinate iron ions. In general, three distinct
groups are identified: siderophores isolated from lithotrophic
bacteria, phytochemicals, and synthetic molecules. Histori-
cally, the clinical use of these chelators has been focused on
the treatment of iron-overload syndromes such as hemochro-
matosis,𝛽-thalassemia,myelodysplastic syndrome, and other
blood transfusion-requiring diseases [286, 287]. As discussed
above, however, during the last years a growing set of evi-
dences has demonstrated thatmany neurodegenerative disor-
ders, prominently PD, present an iron accumulation compo-
nent in the affected brain areas [7, 288–292]. Desferrioxamine
(DFO) in 6-OHDA intoxicated rats provided the first evi-
dence of neuroprotection by iron chelation. Injection of DFO
in one cerebral ventricle of rats previously intoxicated showed
partial protection from depletion of DA in the striatum
and improvement in behavioral tests with respect to the
intoxicated rats without DFO administration [293]. Recently,

intranasal administration of DFO to the 𝛼-syn rat model of
PD decreased Fe+3 content and the number of 𝛼-syn inclu-
sions but did not protect dopaminergic neurons from death
[294]. Administration of DFO to endotoxin-shocked mice
attenuates the inflammatory response by suppressing the
activation of mitogen-activated protein kinase (MAPKs) and
NF-𝜅B [295], suggesting an anti-inflammatory effect of DFO.
This is a potentially important observation given that inflam-
mation is associatedwith the dysregulation of iron homeosta-
sis [296–298].

Given the positive effects of DFO and other chelators like
clioquinol and deferiprone (DFP) in PD and other models
of neurodegeneration [290, 299–301], a series of new 8-OH-
quinoline-based chelators was developed, which include VK-
28, HLA-20, M30, and VAR. VK-28 [302], HLA-20 [299],
M30 [303], and VAR [304] were shown to protect TH+
cells in murine MPTP and 6-OHDA intoxicated models
and increase DA content in the striatum. In addition to the
8-hydroxyquinoline chelatormoiety, HLA-20,M30, andVAR
also have the monoamine oxidase (MAO) inhibitor group
propargyl, conforming bifunctional iron chelator/MAO
inhibitor drugs. These molecules were demonstrated to
chelate iron, decreaseDAbreakdown, and induce prosurvival
factors through putative interactions with signaling compo-
nents. Indeed, M30 was shown to upregulate protein levels of
hypoxia inducible factor 1𝛼 (HIF-1𝛼), through decreasing the
activity ofHIF-degrading enzymeHIF prolyl hydrolase [305–
307]. As a consequence,many prosurvival genes controlled by
HIF-1𝛼were upregulated afterM30 administration, including
vascular endothelial growth factor, erythropoietin, enolase-
1, transferrin receptor 1, heme oxygenase-1, inducible nitric
oxide synthase, and glucose transporter 1 [307]. In addition,
mRNAs for brain-derived neurotrophic factor, glial cell-
derived neurotrophic factor, and three antioxidant enzymes
(catalase, superoxide dismutase-1, and glutathione peroxi-
dase) were also upregulated by M30 administration [307,
308]. Possibly, these later genes are activated through the
propargyl moiety via induction of increased phosphoryla-
tion of protein kinase C, mitogen-activated protein kinase
(MAPK/ERK), protein kinase B, and glycogen synthase
kinase-3𝛽s [304]. In addition, Naoi andMaruyama suggested
that the propargyl moiety might stabilize the mitochon-
drial membrane through direct interaction with protein
components of the mitochondrial permeability transition
pore, leading to increasing levels of antiapoptotic Bcl-2 and
Bcl-xL proteins [309]. Supporting the prosurvival effects
of iron chelators, a recent study showed that M30 and
other hydroxyquinoline-based iron chelators regenerate the
neuritic tree in cultured DA neurons treated with sublethal
concentrations of MPP+; in addition, M30 given orally
regenerated nigrostriatal fibers mouse model after MPTP
intoxication [310]. Following themultifunctional approach in
iron chelation, others studies tested iron chelators with D2/
D3 dopamine receptor agonists to attack themotor symptoms
and the oxidative stress simultaneously in the MPTP and
lactacystin PD models. Interestingly, the authors found that
activation of D3 dopamine receptors was important for the
protective effect of these molecules [311, 312].
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Figure 3: Mitochondrial dysfunction leads to iron accumulation and cell death. Mitochondrial dysfunction in PD, caused either by
environmental or endogenous toxins or by genetic dysfunctions, results in decreased ATP and ISC synthesis. The lack of ISCs results in
a false low iron signal and the spurious activation of IRP1. Activation of IRP1 results in increased redox-active iron levels mediated by
increased expression of DMT1 and TfR1 and decreased expression of FPN1. Because of hydroxyl radical generation through the Fenton
reaction, increased redox-active iron results in a decreased GSH/GSSG ratio and an increased oxidative load. The decrease in GSH further
affectsmitochondrial activity.With time, the increased oxidative load induces protein aggregation and saturation of the ubiquitin-proteasome
system, further mitochondrial dysfunction, an inflammatory microenvironment, increased cytochrome c leak, and activation of death
pathways. Iron chelation has been demonstrated to slow this cycle by decreasing iron-associated oxidative damage and by induction of
cell survival and cell-rescue pathways. Environmental and endogenous toxins: paraquat, rotenone, MPTP, nitric oxide, 4-hydroxynonenal,
advanced glycation end products, and aminochrome.Mitochondria-associated PD genes withmitochondrial dysfunction component: 𝛼-Syn,
Parkin, PINK1, DJ-1, LRRK2, and ATP13A2.

Other studies reported that some phytochemicals eval-
uated in their capacity to confer neuroprotection in PD
models acted through iron chelation [313]. Curcumin, a
lyphenolic compound fromCurcuma longadecreases the iron
content in the SNpc of 6-OHDA lesioned rats and partially
protects them from the decrease in the number of TH+ cells
[314]. Moreover, ginkgetin, a biflavonoid from Ginkgo biloba,
showed neuroprotection and attenuated the decrease inmito-
chondrial membrane potential in dopaminergic cell cultures
[295]. In addition, ginkgetin enhanced the performance in
the rotarod test and attenuated SNpc neuron lost in theMPTP
mouse model [295].

Despite the promising character of the field, only the rel-
atively old iron chelator deferiprone (DFP) has been tested in
clinical trials for the treatment of PD.DFP is a small lipophilic
molecule that is orally active since it crosses the intestinal and
blood-brain barriers. DFP also permeates the cell and mito-
chondrial membranes, interchanging iron between mito-
chondria, cytoplasm, and extracellular apotransferrin, that is,
not only chelating iron but also redistributing it [315]. The
ability to “move” iron out ofmitochondria is a very important
property because, as discussed earlier, the mitochondrion
has a prominent reactive iron pool and is the major ROS
producer in the cell [28, 94, 316].

A pilot clinical trial of DFP in PD patients, tested with
a design comparing the progression in iron content trough
MRI and behavior alterations by the Unified Parkinson’s
Disease Rating Scale, was successful. Comparison between
groups that began the treatment with a six-month difference
(“early start” and “delay start” groups) showed significant
improvement in the parameters in the “early start” group
compared with the “delay start” group [317].

A possible drawback of putative iron chelating therapy is
that chelators may facilitate the depletion of systemic iron,
with severe consequences for other organs like the heart, the
liver, and the hematopoietic system [286, 287]. The detected
undesirable effects of iron chelation include neutropenia in a
small percent of DFP-treated patients [317] and the possibility
of high blood pressure resulting from the selective inhibition
of peripheral MAO-A by the propargyl moiety of M30 and
VAR [304]. Maneuvers designed to counteract these undesir-
able effects of iron chelation should be sought-after in futures
studies.

Clioquinol, recently evaluated in clinical trials [318, 319],
presented apparently neurotoxic properties at high doses.
Indeed, clioquinol was indicated like the causative agent
of subacute myelo-optic neuropathy (SMON) [320], DNA
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double-strands breaks induction [321], superoxide dismutase
1 inhibition [322], and nerve growth factor-induced Trk
receptor autophosphorylation inhibition [323]. In addition,
the clioquinol derivative PBT2 showed low effectiveness and
in some cases adverse effects in a recently phase-2 trial for
Huntington’s disease [324].

Overall, the above evidence shows that iron chelation
is a promising therapeutic approach to slow or rescue the
neurodegenerative process of PD. The development of new
chelators should consider characteristics to make them spe-
cific for cell type and effective at lower concentration than
those actually in use. A high affinity for iron seems not to be
relevant for neuroprotection [325] but as Mena et al. showed
[172],mitochondrial targeting should enhancemitochondrial
protection and neuroprotective capacity. In summary, the
neuroprotective effects of iron chelation reported up to date
are a stimuli for the development of newmultifunctional iron
chelators with blood-brain barrier permeability and mito-
chondrial targeting, with significant activity at pharmacolog-
ical concentrations and devoid of noxious side effects.

10. Concluding Remarks

Themitochondrion is themain intrinsic ROS producer in the
cell and has an intensive traffic of iron due to the synthesis of
ISCs and heme prosthetic groups. Because of the Fenton reac-
tion, mitochondrial levels of ROS and iron need to be tightly
regulated to avoid generation of the damaging hydroxyl radi-
cal. In both idiopathic and familial cases of PD,mitochondrial
dysfunction, iron accumulation, and oxidative damage are
commonly found in defective neurons. We propose that
these three occurrences are causally linked (Figure 3). Mito-
chondrial dysfunction, product of endogenous or exogenous
toxins, or genetic predisposition results not only in increased
ROS production but also in decreased ISC synthesis and IRP1
activation. In turn, IRP1 activation results in iron accumu-
lation and hydroxyl radical-mediated damage. These three
events—mitochondrial dysfunction, iron accumulation, and
oxidative damage—generate a positive feedback loop of
increased iron accumulation and oxidative stress. Interven-
tion at someof these three levelsmay retard the progression of
the disease. Pharmacologically, this effect could be achieved
with the use of multifunctional molecules with iron chelation
capacity, since iron chelation has been linked to the protec-
tion against oxidative damage and the activation of prosur-
vival pathways.
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[14] M. A. Acuna, R. Pérez-Nunez, J. Noriega et al., “Altered voltage
dependent calcium currents in a neuronal cell line derived from
the cerebral cortex of a trisomy 16 fetal mouse, an animal model
of down syndrome,” Neurotoxicity Research, vol. 22, no. 1, pp.
59–68, 2012.

[15] M. T. Baltazar, R. J. Dinis-Oliveira, M. de Lourdes Bastos, A. M.
Tsatsakis, J. A. Duarte, and F. Carvalho, “Pesticides exposure as
etiological factors of Parkinson’s disease and other neurodegen-
erative diseases—a mechanistic approach,” Toxicology Letters,
vol. 230, no. 2, pp. 85–103, 2014.

[16] A. Ayala, J. L. Venero, J. Cano, and A.Machado, “Mitochondrial
toxins and neurodegenerative diseases,” Frontiers in Bioscience,
vol. 12, no. 3, pp. 986–1007, 2007.



12 Parkinson’s Disease

[17] A. H. V. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark,
and C. D. Marsden, “Mitochondrial complex I deficiency in
Parkinson’s disease,”The Lancet, vol. 333, no. 8649, p. 1269, 1989.

[18] A. Camilleri and N. Vassallo, “The Centrality of mitochondria
in the pathogenesis and treatment of Parkinson’s disease,” CNS
Neuroscience andTherapeutics, vol. 20, no. 7, pp. 591–602, 2014.

[19] K. J. Barnham and A. I. Bush, “Metals in Alzheimer’s and
Parkinson’s diseases,” Current Opinion in Chemical Biology, vol.
12, no. 2, pp. 222–228, 2008.

[20] K. Boelmans, B. Holst, M. Hackius et al., “Brain iron deposition
fingerprints in Parkinson’s disease and progressive supranuclear
palsy,”Movement Disorders, vol. 27, no. 3, pp. 421–427, 2012.

[21] S. Bolognin, L. Messori, and P. Zatta, “Metal ion physiopathol-
ogy in neurodegenerative disorders,”NeuroMolecular Medicine,
vol. 11, no. 4, pp. 223–238, 2009.

[22] R. R. Crichton, D. T. Dexter, and R. J. Ward, “Brain iron metab-
olism and its perturbation in neurological diseases,” Journal of
Neural Transmission, vol. 118, no. 3, pp. 301–314, 2011.

[23] D. T. Dexter, A. Carayon, F. Javoy-Agid et al., “Alterations in
the levels of iron, ferritin and other trace metals in Parkinson’s
disease and other neurodegenerative diseases affecting the basal
ganglia,” Brain, vol. 114, part 4, pp. 1953–1975, 1991.

[24] J. Galazka-Friedman, E. R. Bauminger, K. Szlachta, and A.
Friedman, “The role of iron in neurodegeneration—mössbauer
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[174] J. Burré, “The synaptic function of 𝛼-synuclein,” Journal of
Parkinson’s Disease, vol. 5, no. 4, pp. 699–713, 2015.

[175] J. Xu, S.-Y. Kao, F. J. S. Lee,W. Song, L.-W. Jin, and B. A. Yankner,
“Dopamine-dependent neurotoxicity of 𝛼-synuclein: a mech-
anism for selective neurodegeneration in Parkinson disease,”
Nature Medicine, vol. 8, no. 6, pp. 600–606, 2002.

[176] H.-J. Lee and S.-J. Lee, “Characterization of cytoplasmic 𝛼-
synuclein aggregates. Fibril formation is tightly linked to the
inclusion-forming process in cells,” The Journal of Biological
Chemistry, vol. 277, no. 50, pp. 48976–48983, 2002.

[177] L. J. Hsu, Y. Sagara, A. Arroyo et al., “𝛼-synuclein promotes
mitochondrial deficit and oxidative stress,” The American Jour-
nal of Pathology, vol. 157, no. 2, pp. 401–410, 2000.

[178] Y. Tanaka, S. Engelender, S. Igarashi et al., “Inducible expres-
sion of mutant 𝛼-synuclein decreases proteasome activity and
increases sensitivity to mitochondria-dependent apoptosis,”
Human Molecular Genetics, vol. 10, no. 9, pp. 919–926, 2001.

[179] C. E.-H.Moussa, C.Wersinger, Y. Tomita, andA. Sidhu, “Differ-
ential cytotoxicity of human wild type and mutant 𝛼-synuclein
in human neuroblastoma SH-SY5Y cells in the presence of
dopamine,” Biochemistry, vol. 43, no. 18, pp. 5539–5550, 2004.

[180] A. Bir, O. Sen, S. Anand et al., “𝛼-synuclein-induced mito-
chondrial dysfunction in isolated preparation and intact cells:
implications in the pathogenesis of Parkinson’s disease,” Journal
of Neurochemistry, vol. 131, no. 6, pp. 868–877, 2014.

[181] N. B. Cole, D. DiEuliis, P. Leo, D. C. Mitchell, and R. L. Nuss-
baum, “Mitochondrial translocation of𝛼-synuclein is promoted



Parkinson’s Disease 17

by intracellular acidification,” Experimental Cell Research, vol.
314, no. 10, pp. 2076–2089, 2008.

[182] S. Shavali, H. M. Brown-Borg, M. Ebadi, and J. Porter, “Mito-
chondrial localization of alpha-synuclein protein in alpha-
synuclein overexpressing cells,” Neuroscience Letters, vol. 439,
no. 2, pp. 125–128, 2008.

[183] L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani,
and H. K. Anandatheerthavarada, “Mitochondrial import and
accumulation of 𝛼-synuclein impair complex I in human
dopaminergic neuronal cultures and Parkinson disease brain,”
The Journal of Biological Chemistry, vol. 283, no. 14, pp. 9089–
9100, 2008.

[184] M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and
P. Ghafourifar, “Mitochondrial association of alpha-synuclein
causes oxidative stress,”Cellular andMolecular Life Sciences, vol.
65, no. 7-8, pp. 1272–1284, 2008.

[185] L. J. Martin, Y. Pan, A. C. Price et al., “Parkinson’s disease
𝛼-synuclein transgenic mice develop neuronal mitochondrial
degeneration and cell death,” The Journal of Neuroscience, vol.
26, no. 1, pp. 41–50, 2006.

[186] D.D. Song, C.W. Shults, A. Sisk, E. Rockenstein, andE.Masliah,
“Enhanced substantia nigramitochondrial pathology in human
𝛼-synuclein transgenicmice after treatmentwithMPTP,”Exper-
imental Neurology, vol. 186, no. 2, pp. 158–172, 2004.

[187] M. Zaltieri, F. Longhena, M. Pizzi, C. Missale, P. Spano, and A.
Bellucci, “Mitochondrial dysfunction and 𝛼-synuclein synaptic
pathology in Parkinson’s disease: who’s on first?” Parkinson’s
Disease, vol. 2015, Article ID 108029, 10 pages, 2015.

[188] J. Howitt, A. M. Gysbers, S. Ayton et al., “Increased Ndfip1 in
the substantia nigra of parkinsonian brains is associated with
elevated iron levels,” PLoS ONE, vol. 9, no. 1, article e87119, 2014.

[189] R. Ortega, A. Carmona, S. Roudeau et al., “𝛼-Synuclein over-
expression induces increased iron accumulation and redistri-
bution in iron-exposed neurons,” Molecular Neurobiology, vol.
53, no. 3, pp. 1925–1934, 2016.

[190] Y. Peng, C. Wang, H. H. Xu, Y.-N. Liu, and F. Zhou, “Binding
of 𝛼-synuclein with Fe(III) and with Fe(II) and biological
implications of the resultant complexes,” Journal of Inorganic
Biochemistry, vol. 104, no. 4, pp. 365–370, 2010.

[191] A. Binolfi, R.M. Rasia, C.W. Bertoncini et al., “Interaction of 𝛼-
synuclein with divalent metal ions reveals key differences: a link
between structure, binding specificity and fibrillation enhance-
ment,” Journal of the American Chemical Society, vol. 128, no.
30, pp. 9893–9901, 2006.

[192] Bharathi, S. S. Indi, and K. S. J. Rao, “Copper- and iron-induced
differential fibril formation in 𝛼-synuclein: TEM study,” Neuro-
science Letters, vol. 424, no. 2, pp. 78–82, 2007.

[193] N. Ostrerova-Golts, L. Petrucelli, J. Hardy, J. M. Lee, M. Farer,
and B. Wolozin, “The A53T 𝛼-synuclein mutation increases
iron-dependent aggregation and toxicity,” The Journal of Neu-
roscience, vol. 20, no. 16, pp. 6048–6054, 2000.

[194] F. L. Martin, S. J. M.Williamson, K. E. Paleologou, R. Hewitt, O.
M. A. El-Agnaf, and D. Allsop, “Fe(II)-induced DNA damage
in 𝛼-synuclein-transfected human dopaminergic BE(2)-M17
neuroblastoma cells: detection by the Comet assay,” Journal of
Neurochemistry, vol. 87, no. 3, pp. 620–630, 2003.

[195] N. Golts, H. Snyder, M. Frasier, C. Theisler, P. Choi, and B.
Wolozin, “Magnesium inhibits spontaneous and iron-induced
aggregation of𝛼-synuclein,” Journal of Biological Chemistry, vol.
277, no. 18, pp. 16116–16123, 2002.

[196] R. Cappai, S.-L. Leek, D. J. Tew et al., “Dopamine promotes 𝛼-
synuclein aggregation into SDS-resistant soluble oligomers via

a distinct folding pathway,” The FASEB Journal, vol. 19, no. 10,
pp. 1377–1379, 2005.

[197] E. Deas, N. Cremades, P. R. Angelova et al., “Alpha-synuclein
oligomers interact withmetal ions to induce oxidative stress and
neuronal death in parkinson’s disease,” Antioxidants & Redox
Signaling, vol. 24, no. 7, pp. 376–391, 2016.

[198] Q. He, N. Song, F. Jia et al., “Role of 𝛼-synuclein aggregation
and the nuclear factor E2-related factor 2/heme oxygenase-
1 pathway in iron-induced neurotoxicity,” The International
Journal of Biochemistry and Cell Biology, vol. 45, no. 6, pp. 1019–
1030, 2013.

[199] W. Xiang, J. C. M. Schlachetzki, S. Helling et al., “Oxida-
tive stress-induced posttranslational modifications of alpha-
synuclein: specific modification of alpha-synuclein by 4-
hydroxy-2-nonenal increases dopaminergic toxicity,”Molecular
and Cellular Neuroscience, vol. 54, pp. 71–83, 2013.

[200] C. Wang, L. Liu, L. Zhang, Y. Peng, and F. Zhou, “Redox reac-
tions of the𝛼-synuclein−Cu2+ complex and their effects on neu-
ronal cell viability,” Biochemistry, vol. 49, no. 37, pp. 8134–8142,
2010.

[201] M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P.
Ghafourifar, “Alpha-synuclein overexpression and aggregation
exacerbates impairment of mitochondrial functions by aug-
menting oxidative stress in human neuroblastoma cells,” The
International Journal of Biochemistry & Cell Biology, vol. 41, no.
10, pp. 2015–2024, 2009.

[202] G. Yamin, C. B. Glaser, V. N. Uversky, and A. L. Fink, “Certain
metals trigger fibrillation of methionine-oxidized 𝛼-synuclein,”
The Journal of Biological Chemistry, vol. 278, no. 30, pp. 27630–
27635, 2003.

[203] A. Santner and V. N. Uversky, “Metalloproteomics and metal
toxicology of 𝛼-synuclein,” Metallomics, vol. 2, no. 6, pp. 378–
392, 2010.

[204] L. A. Munishkina, A. L. Fink, and V. N. Uversky, “Concerted
action of metals and macromolecular crowding on the fibrilla-
tion of 𝛼-synuclein,” Protein and Peptide Letters, vol. 15, no. 10,
pp. 1079–1085, 2008.

[205] V. N. Uversky, J. Li, K. Bower, and A. L. Fink, “Synergistic effects
of pesticides andmetals on the fibrillation of𝛼-synuclein: impli-
cations for Parkinson’s disease,” NeuroToxicology, vol. 23, no.
4-5, pp. 527–536, 2002.
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