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Isolation of the bioactive peptides CCHamide-1 and
CCHamide-2 from Drosophila and their putative role in
appetite regulation as ligands for G protein-coupled
receptors
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There are many orphan G protein-coupled receptors (GPCRs) for which ligands have not yet
been identified. One such GPCR is the bombesin receptor subtype 3 (BRS-3). BRS-3 plays
a role in the onset of diabetes and obesity. GPCRs in invertebrates are similar to those in
vertebrates. Two Drosophila GPCRs (CG30106 and CG14593) belong to the BRS-3 phylo-
genetic subgroup. Here, we succeeded to biochemically purify the endogenous ligands of
Drosophila CG30106 and CG14593 from whole Drosophila homogenates using functional
assays with the reverse pharmacological technique, and identified their primary amino acid
sequences.The purified ligands had been termed CCHamide-1 and CCHamide-2, although
structurally identical to the peptides recently predicted from the genomic sequence search-
ing. In addition, our biochemical characterization demonstrated two N-terminal extended
forms of CCHamide-2. When administered to blowflies, CCHamide-2 increased their feed-
ing motivation. Our results demonstrated these peptides actually present as the major
components to activate these receptors in living Drosophila. Studies on the effects of
CCHamides will facilitate the search for BRS-3 ligands.
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INTRODUCTION
G protein-coupled receptors (GPCRs) constitute a large protein
superfamily that shares a 7-transmembrane motif as a common
structure. Human genome sequencing has identified several hun-
dred orphan GPCRs for which ligands have not yet been identified
(Vassilatis et al., 2003). GPCRs play crucial roles in cell-to-cell
communication involved in a variety of physiological phenom-
ena and are the most common target of pharmaceutical drugs.
Therefore, the identification of endogenous ligands for orphan
GPCRs will lead to clarification of novel physiological regula-
tory mechanisms and potentially facilitate the development of new
GPCR-targeted therapeutics. Many bioactive molecules have been
discovered or identified as endogenous ligands of orphan GPCRs
through reverse pharmacology to date (Civelli et al., 2012). These
molecules include nociceptin, prolactin-releasing peptide, orexin,
apelin, ghrelin, metastin, and neuromedin S. The discovery of

Abbreviations: BRS-3, bombesin receptor subtype 3; GPCR, G protein-coupled
receptors.

novel endogenous ligands for orphan GPCRs in mammals is cur-
rently challenging, possibly because of the restricted timing of
expression or distribution of GPCR ligands. One orphan receptor
in mammals is the bombesin receptor subtype 3 (BRS-3). BRS-
3 is primarily expressed in the hypothalamus and plays a role in
the onset of diabetes and obesity (Ohki-Hamazaki et al., 1997).
Although several small molecules that are agonists and antago-
nists for BRS-3 have been synthesized, the native ligand of BRS-3
has not yet been identified (Majumdar and Weber, 2012).

The recent sequencing of the Drosophila melanogaster genome
has enabled the identification of at least 160 fly GPCRs (Brody
and Cravchik, 2000). Drosophila is an excellent animal model
for genetic analysis of developmental and behavioral processes,
as it is a small, genetically modifiable organism with a relatively
short lifecycle and can be bred easily under laboratory conditions.
Structural or sequence comparison of newly discovered peptides in
Drosophila with candidate molecules in mammals may lead to the
discovery of new peptide signaling modules. We recently reported
the discovery of dRYamide-1, dRYamide-2, and trissin as ligands
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for Drosophila orphan GPCRs (Ida et al., 2011a,b). We consider
it likely that additional novel bioactive peptides can be discov-
ered for orphan GPCRs. Two Drosophila GPCRs (CG14593 and
CG30106) belong to the BRS-3 phylogenetic subgroup (Hewes and
Taghert, 2001).

Here, we report the identification of CCHamide-1 and CCHa-
mide-2, which are ligands for GPCRs CG30106 and CG14593,
respectively, in D. melanogaster. Injection of CCHamide-2 resulted
in the stimulation of feeding motivation in blowflies. These
bioactive peptides may provide new insights in the search for
BRS-3 ligands and the elucidation of D. melanogaster feeding
mechanisms.

MATERIALS AND METHODS
PURIFICATION OF Drosophila CCHamide-1 AND CCHamide-2
An assay system using CG30106- or CG14593-expressing cells was
prepared as previously described (Ida et al., 2011a,b). The full-
length cDNA of Drosophila CG30106 (GenBank accession num-
ber: NM_136355; residues −31 to 1700) and CG14593 (GenBank
accession number: NM_136355; residues 656–2185) was obtained
by RT-PCR using Drosophila cDNA as the template. The sense and
antisense primers for CG30106 were 5′-aaatcgagcggactcagtacat-
3′ and 5′-gtggcctgtaattcctgtaaactc-3′, respectively. The sense and
antisense primers for CG14593 were 5′-tgagacatcttgcccaggag-
3′ and 5′-gtgtttcggtacctccatttat-3′, respectively. The amplified
cDNA was ligated into the pcDNA3.1 vector (Invitrogen). The
expression vector, i.e., CG30106 or CG14593-pcDNA3.1, was
transfected into Chinese hamster ovary (CHO) cells by using with
Fugene6 transfection reagent (Roche), and stably expressing cells
were selected using 1 mg/ml G418. The selected cell line, i.e.,
CHO-CG30106-line 2-4 or CHO-CG14593-line 10-1, showed the
highest expression of CG3106 or CG14593 mRNA, respectively.
Cells were cultured in a humidified environment of 95% air and
5% CO2. Changes in intracellular Ca2+ concentrations ([Ca2+]i)
were measured using the FlexStation 3 fluorometric imaging plate
reader to conduct high-throughput measurements of intracellu-
lar Ca2+ concentration (Molecular Devices, CA, USA; Marshall
et al., 2005). CHO-CG30106 or CHO-CG14593 cells (3 × 104

cells) were plated into 96-well black-wall microplates (Corning,
NY, USA) 20 h before each assay. The cells were incubated with
100 μl of Calcium 4 assay kit reagent (Molecular Devices) for 1 h,
and then 50 μl of each sample was added to the CHO-CG30106
or CHO-CG14593 cells to induce changes in fluorescence. The
maximum [Ca2+]i changes were recorded.

Drosophila melanogaster flies (Canton S.; 350 g) were collected
on dry ice. The whole body of each fly was boiled for 10 min
in 10 volumes of water to inactivate intrinsic proteases. The
solution was adjusted to 1 M AcOH. Peptides were extracted by
homogenization using a Polytron mixer. The supernatant of the
extracts, obtained after 30 min of centrifugation at 11,000 rpm,
was concentrated to approximately 1/10 by an evaporator. The
residual concentrate was subjected to acetone precipitation using
66% acetone. After the precipitates were removed, the super-
natant acetone was evaporated and loaded onto a 40-g cartridge
of Sep-Pak C18 (Waters), which was pre-equilibrated with 0.1%
trifluoroacetic acid (TFA). The Sep-Pak cartridge was washed with
10% CH3CN/0.1% TFA, and then eluted with 60% CH3CN/0.1%

TFA. The eluate was evaporated and lyophilized. The residual
materials were redissolved in 1 M AcOH and then adsorbed
on a column of SP-Sephadex C-25 (H+ form) that had been
pre-equilibrated with 1 M AcOH. Successive elutions with 1 M
AcOH, 2 M pyridine, and 2 M pyridine–AcOH (pH 5.0) pro-
vided three fractions of SP-I, SP-II, and SP-III. A basic peptide
fraction (SP-III) was fractionated on a Sephadex G-50 gel filtra-
tion column (2.9 cm × 142 cm; GE Healthcare, Tokyo, Japan).
A portion of each fraction, equivalent to 1.16 g of flies, was sub-
jected to the assay using CHO-CG30106 or CHO-CG14593 cells.
The active fraction was separated by carboxymethyl (CM)-ion-
exchange high-performance liquid chromatography (HPLC) on
a TSK CM-2SW column (4.6 mm × 250 mm; Tosoh, Tokyo,
Japan) with an ammonium formate (HCOONH4; pH 6.5) gra-
dient of 10 mM to 1 M in the presence of 10% acetonitrile
(ACN) at a flow rate of 1 ml/min for 160 min. The active
fractions were separated by reverse-phase (RP)-HPLC with a
μBondasphere C18 column (3.9 mm × 150 mm, Waters, MA,
USA) by using a 10–60% ACN/0.1% TFA linear gradient at a flow
rate of 1 ml/min for 80 min. The active fractions were further puri-
fied by RP-HPLC using a diphenyl column (2.1 mm × 150 mm,
219TP5125; Vydac, Hesperia, CA, USA) for 80 min by using
a linear gradient of 10–60% ACN/0.1% TFA at a flow rate of
0.2 ml/min. Fractions corresponding to absorption peaks were
collected, and an aliquot of each fraction (2 g tissue equivalent)
was assayed by using the FLEX system. The active fractions were
further purified by RP-HPLC by using a Chemcosorb 3ODSH
column (2.1 mm × 75 mm; Chemco, Osaka, Japan) for 80
or 160 min by using a linear gradient of 10–60% ACN/0.1%
TFA at a flow rate of 0.2 ml/min. Fractions corresponding to
absorption peaks were collected, and an aliquot of each fraction
(2 g tissue equivalent) was assayed by using the FLEX system.
Approximately 20 pmol of the final purified peptides was analyzed
using a protein sequencer (model 494; Applied Biosystems, CA,
USA), and approximately 1 pmol of each active fraction was sub-
jected to determination of molecular weight by matrix-assisted
laser desorption–ionization time of flight (MALDI-TOF) mass
spectrometry by using a Voyager-DE PRO instrument (Applied
Biosystems).

CLONING OF Drosophila PREPRO-CCHamide-1 AND CCHamide-2 cDNA
A tBLASTn search of the Drosophila genome resources was per-
formed by using sequence of the purified peptides, and we
obtained D. melanogaster mRNA sequences [CG14358 (CCHa-
mide-1), NM_001104314; and CG14375 (CCHamide-2),
NM_142028] derived from an annotated genomic sequence. We
searched for open reading frames upstream and downstream
of the genome sequences of CCHamide-1 and CCHamide-2
by using specific primers 5′-cgtgcagcttgcgaaataata-3′ and 5′-ctt-
ctggcttagctagcgtgttatc-3′ for CCHamide-1 and 5′-caccagccaagtgc-
aagtatc-3′ and 5′-cggtttttaatgtacgttgtgg-3′ for CCHamide-2. The
candidate PCR product was subcloned into the pCR-II TOPO
vector and sequenced. The nucleotide sequence of the isolated
cDNA fragment was determined by automated sequencing (DNA
sequencer model 3100; Applied Biosystems) according to the pro-
tocol for the BigDye terminator cycle sequencing kit (Applied
Biosystems).
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PEPTIDES
CCHamide-1 (SCLEYGHSCWGAH-NH2), CCHamide-2 (GCQ-
AYGHVCYGGH-NH2), CCHamide-1 C-terminal free (SCLEYG-
HSCWGAH), CCHamide-2 C-terminal free (GCQAYGHV-
CYGGH), long-form CCHamide-2 (AQQSQAKKGCQAYGHVC-
YGGH-NH2), and long-form CCHamide-2 C-terminal free
(AQQSQAKKGCQAYGHVCYGGH) were synthesized by Peptide
Institute Inc. (Osaka, Japan).

PROBOSCIS EXTENSION REFLEX TEST FOR APPETITE MEASUREMENT
The proboscis extension reflex (PER) test and feeding test were
performed for the blowfly Phormia regina as previously described
(Nisimura et al., 2005; Ida et al., 2011a). CCHamide-2 was dis-
solved in blowfly linger solution at a concentration of 10 pμol/ml.
Twenty flies were secured by their wings using washing pins, and
the first PER test was performed by using 12 steps of sucrose con-
centrations that had been prepared by twofold serial dilutions in
distilled water, beginning from a sucrose concentration of 1 M. We
investigated the PER in three different groups of 20 flies each: no
injection, fly linger injection, and fly linger plus peptide injection.
The PER tests were performed 30 min after 1 μl of blowfly linger
solution with or without peptide was injected into the shoulder of
each fly. We repeated five sets of PER tests each, in which 20 flies
were used in each batch.

STATISTICAL ANALYSIS
Results are presented as the mean ± SEM for each group. To
compare the PER thresholds among the three groups, we used
a non-parametric Steel–Dwass test. The criterion for statistical
significance was p < 0.05 for all tests. The statistical software pro-
gram GraphPad PRISM (GraphPad software, CA, USA) was used
for analyses.

RESULTS
STRUCTURAL DETERMINATION OF CCHamide-1 FOR CG30106
[Ca2+]i assays were performed by using the gel filtration sam-
ples to isolate the endogenous ligands of CG30106 (Figure 1A).
The active fractions were observed in eight sequential fractions
(numbers 48–55). The fractions (51–55) with particularly high
activity were separated by CM-ion-exchange HPLC at pH 6.5. The
active fractions were separated by RP-HPLC. The active fraction
was purified as a single peak in the final RP-HPLC (Figure 1B, P1).
The amino acid sequence of the purified peptide was determined
as SXLEYGHSXWGAH (P1; where X is a position that was not
identified) using a protein sequencer. To elucidate the complete
amino acid sequence of this peptide, Drosophila cDNA encoding
the purified peptides was isolated by RT-PCR. The cDNA encoded
a 182-residue protein (CG14358; Figure 1C) that contained fea-
tures characteristic of an N-terminal signal peptide immediately
preceding the purified peptide sequence. Every X residue was a
cysteine, and the rest of the sequence was identical to that deter-
mined by peptide sequencing (Figure 1C). Sequencing resulted
in a very low yield of phenyl thiohydantoin (PTH) at the steps
involving X, which suggests that two cysteines may form disulfide
bonds (S–S bonds). The preproprotein contained a potential pro-
cessing site at the C-terminal end of the purified peptide sequence.
This peptide contained Gly residues that presumably serve as an

amide donor for C-terminal amidation. We therefore deduced the
primary structure of the peptide to be SCLEYGHSCWGAH-NH2.
This peptide had been named CCHamide-1 (Roller et al., 2008).
Mass spectrometric analysis revealed that the observed monoiso-
topic m/z value of the purified peptide (1445.30) was very similar
to the theoretically predicted value for this peptide (1445.55) when
including an intrachain disulfide bond and C-terminal amidation.
We generated the synthetic peptide SCLEYGHSCWGAH-NH2

(CCHamide-1). The retention time of the P1 active fraction
was identical to that of the synthetic SCLEYGHSCWGAH-NH2

peptide (which has an intrachain disulfide bond) on RP-HPLC
(Figure 1D). Thus, these data suggest that both natural pep-
tides have an intrachain disulfide bond and C-terminal amidation.
Figure 1E shows the active fractions of each chromatography and
the amino acid sequence of CCHamide-1.

STRUCTURAL DETERMINATION OF CCHamide-2 FOR CG14593
The endogenous ligands of CG14593 were isolated in the same
manner as those of CG30106 (Figure 2A). Three separate active
fractions were revealed (Figure 2G, P2, P3, and P4), and each
active fraction was purified as a single peak in the final RP-
HPLC (Figures 2B–D). From the results obtained by using
a protein sequencer and Drosophila cDNA encoding the puri-
fied peptides (Figure 2E), we deduced the primary structure of
the peptide to be AQQSQAKKGCQAYGHVCYGGH-NH2 (P2),
GCQAYGHVCYGGH-NH2 (P3), and KKGCQAYGHVCYGGH-
NH2 (P4; Figure 2G). All of these cysteines may form S–S bonds.
The shortest peptide (P3) had been named CCHamide-2. The
cDNA encoded a 136-residue protein (CG14375; Figure 2E)
that contained features characteristic of an N-terminal sig-
nal peptide immediately preceding the purified longest peptide
sequence (P2). All peptides were derived from the same pre-
cursor (CG14375), but the length of the N-terminal peptide
was different. Mass spectrometric analysis revealed that the
observed monoisotopic m/z values of the purified peptides (P2,
2216.80; P3, 1347.69; and P4, 1603.60) were similar to the
theoretically predicted values (2216.99, 1347.52, and 1603.71,
respectively) for a peptide that has an intrachain S–S bonds
and C-terminal amidation. We generated the synthetic peptides
AQQSQAKKGCQAYGHVCYGGH-NH2 (long-form CCHamide-
2) and GCQAYGHVCYGGH-NH2 (CCHamide-2). The reten-
tion times of the P2 and P3 active fractions were identical to
those of the synthetic AQQSQAKKGCQAYGHVCYGGH-NH2

and GCQAYGHVCYGGH-NH2 peptides (which have an intra-
chain disulfide bond) on RP-HPLC,respectively (Figure 2F). Thus,
these data suggest that both natural peptides have an intrachain
disulfide bond and C-terminal amidation.

PHARMACOLOGICAL CHARACTERIZATION
The interaction of CCHamide-1 and CCHamide-2 with CG30106
or CG14593 was examined using synthetic peptides. CCHamide-1
induced concentration-dependent, robust increases in [Ca2+]i in
CHO-CG30106 cells, with a half-maximal response concentration
(EC50) of 1.80×10−11 M (Figure 3A). CCHamide-2 potently acti-
vated CG30106 (EC50; 4.86 × 10−9 M (Figure 3A). CCHamide-2
induced dose-dependent, robust increases in [Ca2+]i in CHO-
CG14593 cells, with an EC50 of 4.80 × 10−11 M (Figure 3B).
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FIGURE 1 | Purification of CCHamide-1 from fly extracts. Black bars
indicate changes of [Ca2+]i fluorescence signal in CHO-CG30106 cells. (A)

G-50 gel filtration of the SP-III fraction of fly extracts. The active fraction was
subjected to one step of CM-ion-exchange HPLC and three steps of RP-HPLC.
(B) Final purification of the active fraction by RP-HPLC. (C) Nucleotide
sequence and deduced amino acid sequence of CCHamide-1 cDNA.
CCHamide-1 cDNA encode 182-residue peptides. The asterisk indicates a
glycine residue that serves as an amide donor for C-terminal amidation. The

CCHamide-1 sequence is underlined as (1). (D) Chromatographic comparison
by RP-HPLC of natural CCHamide-1 and synthetic CCHamide-1. Black bar (P1)
indicates the changes of [Ca2+]i fluorescence signal in CHO-CG30106 cells.
Each peptide was applied to a Symmetry C18 column (3.9 mm × 150 mm,
Waters, MA, USA) with a 10–60% ACN/0.1% trifluoroacetic acid (TFA) linear
gradient at a flow rate of 1 ml/min for 80 min. P1 represent active fraction
containing natural CCHamide-1. (a) Synthetic CCHamide-1. (E) Active fractions
of each chromatography and the amino acid sequence of CCHamide-1.

CCHamide-1 potently activated CG14593 (EC50; 3.32 × 10−8 M
(Figure 3B). Neither CCHamide-2 nor CCHamide-1 induced a
response in CHO cells transfected with the vector alone (data not
shown). In the investigation of the interaction between non-C-
terminal amidated synthetic peptides or long-form CCHamide-2
and CG30106, the EC50 values were as follows: non-C-terminal
amidated CCHamide-1, 1.66 × 10−10 M; non-C-terminal ami-
dated long-form CCHamide-2, 8.93 × 10−8 M; long-form
CCHamide-2, 6.45 × 10−8 M; and non-C-terminal amidated
CCHamide-2, 1.22 × 10−7 M (Figure 3C). For CG14593,

the EC50 values were as follows: long-form CCHamide-2,
1.49 × 10−10 M; non-C-terminal amidated long-form CCHa-
mide-2, 1.18 × 10−9 M; non-C-terminal amidated CCHamide-
2, 1.13 × 10−8 M; and non-C-terminal amidated CCHamide-1,
1.02 × 10−7 M (Figure 3D).

PER TEST FOR MEASURING FEEDING SENSITIVITY
As shown in Figure 4, a significant decrease was observed in the
mean PER threshold, which was defined as the sucrose concentra-
tion at which 50% of flies show PER, after the injection of 10 pmol
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FIGURE 2 | Purification of CCHamide-2 from fly extracts. Black bars
indicate changes of [Ca2+]i fluorescent signal in CHO-CG14593 cells.
(A) G-50 gel filtration of the SP-III fraction of fly extracts. The active
fraction was subjected to one step of CM-ion-exchange HPLC and
three steps of RP-HPLC. (B–D) Final purification of the active fraction
by RP-HPLC. (E) Nucleotide sequence and deduced amino acid sequence
of CCHamide-2 cDNA. CCHamide-2 cDNA encodes a 136-residue peptides.
The asterisk indicates a glycine residue that serves as an amide donor for
C-terminal amidation. The CCHamide-2 sequence is underlined as (4).

The other long-form of CCHamide-2 is translated from (2) or (3).
(F) Chromatographic comparison by RP-HPLC of natural CCHamide-2
and synthetic CCHamide-2. Black bars (P2, P3) indicate the changes of
[Ca2+]i fluorescence signal in CHO-CG14593 cells. Each peptide was
applied to a Symmetry C18 column with a linear gradient elution for 80 min.
P2 and P3 represent active fractions containing natural CCHamide-2. (b)
Synthetic long-form of CCHamide-2. (c) Synthetic CCHamide-2. (G) Active
fractions of each chromatography and the amino acid sequence of
CCHamide-2.
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FIGURE 3 | Pharmacological characterization of synthetic peptides

using CG30106 or CG14593 stably expressed in CHO cells. (A,B)

Concentration–response relationships of changes in [Ca2+]i for CCHamide-1
(open circle) and CCHamide-2 (open square), in CHO-CG30106 cells (A) or
CHO-CG14593 cells (B). (C,D) Concentration–response relationships of
changes in [Ca2+]i for various peptides, CCHamide-1 (open circle), and

CCHamide-2 (open square) in CHO-CG30106 cells (C) or CHO-CG14593 cells
(D). Non-C-terminal amidated CCHamide-1 (filled circle), non-C-terminal
amidated CCHamide-2 (filled square), long-form CCHamide-2 (open triangle),
and non-C-terminal amidated long-form CCHamide-2 (filled triangle). Each
symbol on the line graph represents the mean ± SEM of data from six
replicates for each experiment.
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FIGURE 4 | Effect of CCHamide-2 on PER of the blowfly. Sigmoidal
curves show the sucrose concentration–PER relationship for three fly
groups: no injection (closed circle), injection with linger solution (open
square), and injection of CCHamide-2 (open triangle). Each symbol on the
line graph represents the mean ± SEM of data from five replicates for each
experiment.

of CCHamide-2: the mean PER threshold decreased from 236 mM
(30 min after linger solution injection) to 77.2 mM (30 min after
CCHamide-2 injection; p < 0.05). In contrast, no difference was
observed between the mean PER threshold without any injec-
tion and 30 min after linger solution injection (222 and 236 mM,
respectively, p > 0.05).

DISCUSSION
In this study, we biochemically purified 2 Drosophila pep-
tides (CCHamide-1 and CCHamide-2) as endogenous lig-
ands for Drosophila GPCRs CG30106 and CG14593. Recently,
Hansen et al. (2011) independently identified these peptides
from genome database and reported that synthetic CCHamide-
1 and CCHamide-2 potently activated CHO/G-16 cells expressing
recombinant CG30106 and CG14593. Then, Reiher et al. (2011)
characterized CCHamide-1 and CCHamide-2 from the Drosophila
midgut by capillary offline RP-HPLC coupled with MALDI-TOF
MS/MS. Our biochemical characterization, however, for the first
time, demonstrated three forms of CCHamide-2. The CCHamide-
2 preproprotein is 136 amino acid residues long and contains three
forms of CCHamide-2. The CCHamide-1 preproprotein is 182
amino acid residues long and contains one form of CCHamide-1.
Pharmacological characterization by using CHO cells express-
ing GPCRs indicated that CCHamide-1 had a high potency
for activating recombinant CG30106, but CCHamide-2 rather
potently activated CG30106. In contrast, CCHamide-2 had a high
potency for activating recombinant CG14593, but CCHamide-1
rather potently activated CG14593. Long-form CCHamide-2 and
CCHamide-2 shared a highly similar potency for activating recom-
binant CG14593. Although we did not generate synthetic KKGC-
QAYGHVCYGGH-NH2, it is predicted to have a high potency
similar to that of other forms of CCHamide-2 for activating
CG14593 because of the relationship between the amount of puri-
fied peptide and the specific activity. KKGCQAYGHVCYGGH-
NH2 (P4) and AQQSQAKKGCQAYGHVCYGGH-NH2 (P2) may

be incomplete processing intermediates of GCQAYGHVCYGGH-
NH2 (P3), originating from two alternative signal peptide cleavage
sites and incomplete KK prohormone convertase processing. The
quantity of the purified peptide could not be accurately measured
at the time of the experiments. Because the gel filtration fractions
with particularly high activity were separated by CM-ion-exchange
HPLC at pH 6.5, we did not purify all peptides for their receptors
from the flies collected. However, we purified peptide KKGCQAY-
GHVCYGGH-NH2 (P4) > AQQSQAKKGCQAYGHVCYGGH-
NH2 (P2) > GCQAYGHVCYGGH-NH2 (P3) in amount.
Therefore, in this study, we cannot conclude whether P4 and P2
are mature peptides or incomplete processing intermediates of
P3. Because both CCHamide-1 and CCHamide-2 have a disul-
fide bond and a YGH motif, the disulfide bond is predicted
to be an important structure for GPCR activation. Addition-
ally, both peptides have a GXG-NH2 motif at the C-terminus.
Therefore, we synthesized non-C-terminal amidated peptides
to determine whether the C-terminal amide was necessary for
the activation of each receptor. These results show that these
peptides are considered to require both disulfide bonds and C-
terminal amides to activate their respective GPCRs. Because we
biochemically purified these ligands for the receptors by using
the reverse pharmacological technique, we propose that no fur-
ther modified forms or unknown ligands exist for these receptors
in the fruit fly. CCHamide-1 is a cognate ligand for CG30106
and the three forms of CCHamide-2 are cognate ligands for
CG14593.

BRS-3 is a mammalian orphan receptor (Ohki-Hamazaki et al.,
1997). Drosophila CG30106 and CG14593 belong to the BRS-3
phylogenetic subgroup (Hewes and Taghert,2001). To provide new
insights into the search for BRS-3 ligands, we examined whether
CCHamides activate BRS-3, but we did not find any effect (data
not shown).

CCHamide-1 and CCHamide-2 have been shown to be
expressed predominantly in the brain and midgut (by FlyAt-
las; http://www.flyatlas.org/; Chintapalli et al., 2007). In addition,
CCHamide-1 and CCHamide-2 have been detected in the ner-
vous system and midgut in a mass spectrometry study performed
by Reiher et al. (2011). Therefore, CCHamides are suggested
to be brain–gut peptides in insects. It is generally accepted
that brain–gut peptides regulate feeding behavior in mammals
(Williams et al., 2001). These peptides include neuropeptide Y,
peptide YY, gastrin-releasing peptide, vasoactive intestinal peptide,
adrenomedullin, cholecystokinin, galanin, glucagon-like peptide-
1, and neuromedin U (Zimanyi et al., 1998; Beck, 2001). In
addition, CCHamide-2 was distributed in the larval fat body (by
FlyAtlas). The insect fat body is a functional counterpart of the
mammalian adipose tissue and liver (Gutierrez et al., 2007). In
mammal adipose tissue, leptin and adiponectin are important for
feeding modulation. Therefore, we evaluated the effects of CCHa-
mide on feeding by using the PER test in the blowfly Phormia
regina. In flies and certain other insects, the PER test has long
been used to investigate behavioral sensitivity to phagostimulative
tastes (Nisimura et al., 2005). Flies extend their proboscis when
the contact chemosensilla on their labella detects sweetness of
sugar above a certain threshold concentration. Thus, we estimated
the appetite or feeding motivation of the flies on the basis
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of the PER test for sucrose, in which the threshold concentration
of sucrose was evaluated as an indicator of feeding sensitivity.
The injection of CCHamide-2 decreased the threshold for feed-
ing on a sucrose solution. These data suggest that CCHamide-2
stimulates the feeding motivation of flies. Indeed, administra-
tion of CCHamide-2 significantly increased the sucrose intake
(Hiraguchi et al., paper in preparation). In the presence of amino
acids in the diet, target-of-rapamycin complex 1 (TORC1) signal-
ing in fat cells generates a positive messenger that is released into
the hemolymph (Colombani et al., 2003). This signal reaches the
brain insulin-producing cells (IPCs), where it remotely controls
the secretion of Drosophila insulin-like peptides (Dilp). Insulin-
like peptides couple growth, metabolism, longevity, and fertility
with changes in nutritional availability (Géminard et al., 2009). If
CCHamide is a humoral factor that is secreted from the fat body
like unpaired 2, it may play an important role in the modula-
tion of nutrient status and growth (Rajan and Perrimon, 2012).
Mice lacking functional BRS-3 develop metabolic defects and obe-
sity (Ohki-Hamazaki et al., 1997). Therefore, the natural ligand of

BRS-3 is expected to be a prominent inhibitor of appetitive behav-
ior. The difference between CCHamide and the unknown ligand
for BRS-3 with regard to feeding behavior is not clear. Further
studies should de-orphanize BRS-3 by considering CCHamide by
using bioinformatics or antibodies for CCHamide or Drosophila
GPCRs.
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