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Abstract

Many species are able to share information about their environment by communicating

through auditory, visual, and olfactory cues. In Drosophila melanogaster, exposure to para-

sitoid wasps leads to a decline in egg laying, and exposed females communicate this threat

to naïve flies, which also depress egg laying. We find that species across the genus Dro-

sophila respond to wasps by egg laying reduction, activate cleaved caspase in oocytes, and

communicate the presence of wasps to naïve individuals. Communication within a species

and between closely related species is efficient, while more distantly related species exhibit

partial communication. Remarkably, partial communication between some species is

enhanced after a cohabitation period that requires exchange of visual and olfactory signals.

This interspecies “dialect learning” requires neuronal cAMP signaling in the mushroom

body, suggesting neuronal plasticity facilitates dialect learning and memory. These observa-

tions establish Drosophila as genetic models for interspecies social communication and

evolution of dialects.

Author summary

In this study, we find that many different Drosophila species never having been exposed

to parasitoid wasps can trigger caspase activation in the ovary and depress egg-laying

when placed next to flies that had visual experience with wasps. Interestingly, when

teacher flies of one species are placed with a student of a different species, communication

exists, to varying degrees, which seems dependent on evolutionary relatedness. Cohabita-

tion of two species that can partially communicate can learn each other’s “dialect”, yield-

ing effective interspecies communication. There are various inputs involved in dialect

learning, including the presence of visual and olfactory cues and memory functions,

including genes implicated in social learning defects in murine models, such as PTEN.

The neuroplasticity of adult Drosophila allows for learning of dialects, but the specific dia-

lect learned is dependent on social interactions exclusive to a communal environmental

context, which provides both visual and olfactory inputs. We find flies can communicate

with one another about an anticipated danger, which is suggestive of a fly “language.” The

presence of a neurologically plastic system, allowing for social learning, can subsequently
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lead to a dramatic physiological response, requiring active learning and memory forma-

tion through integration of multiple inputs.

Introduction

The ability to interpret environmental information is a phenomenon found throughout all life

forms. From bacteria to plants and to mammals, communication occurs within as well as

between species. In some cases, information that is being shared can be highly specific, such as

in the case of honeybees communicating instructions on where to find nectar[1–3]. In other

cases, opportunistic bystanders can also benefit from general information. For example, preda-

tor alarm calls generated as a warning are observed, where multiple species participate in

repeating the alarm throughout the community[4–8]. In all cases, the information that is

shared can be dependent on local environmental cues and experiences and the manner in

which information is communicated is strongly influenced by past experiences of each individ-

ual. For example, birds, which live in geographically distinct populations, manifest unique

song variants or regional dialects that can last for decades, but these animals are nevertheless

still able to communicate with others of their species[9–11]. Because dialects are learned and

therefore influenced[12] by specific local environmental differences, it suggests that both social

and non-social experiences can have dramatic effects on cognitive development[13].

It is proposed that a myriad of environmental cues, both social and non-social, are critical

to animal development in determining the ability to convey and receive specific types of infor-

mation. However, there are many outstanding questions as a result of this proposition: What

cues are important? When are these cues important? How can environmental cues interact

with genetically determined developmental programs? Although social communication is

most extensively documented in more derived species such as mammals and birds, insects can

also display a broad range of behavioral tasks. Bees are known to be able to learn from non-

natural sources in order to obtain a reward through social learning. Such information can be

passed on to naïve, student bees through the use of visual cues[14,15]. Insect social learning

extends to the genetic model system of Drosophila, where student, observer flies learn from a

trained, teacher-fly, using visual cues. This has been shown in communication involving food

sources and predator threats[16,17].

Chemical cues can serve as intra- and interspecies signals, such as fox and guinea pig urine

affecting not only conspecific behavior, but also the behavior of other animals[18–20]. Sound

can also be used, such as in bats and bottlenose dolphins, which are able to distinguish mem-

bers of the community through the use of echolocation pitch recognition[21,22]. Plants have a

vast arsenal of responses to pathogens[23], including communicating a threat to neighboring

plants through the use of volatile organic compounds[24]. Plant interspecies[25–31] and intra-

species[32–34] communication occurs both in laboratory settings and in the wild[30,35].

Drosophila melanogaster and other Drosophila species have provided insights into mecha-

nisms of learning, memory, and complex behaviors[36,37]. However, these behaviors and

phenotypes have been studied almost exclusively in domesticated D. melanogaster lab mono-

cultures, while D. melanogaster wild populations are surrounded by a broad range of predators,

microbes, and other Drosophilids, highlighting a communal component of the organism’s life

cycle[38]. This raises the possibility of behavioral phenomenon that have yet to be discovered

and analyzed in domesticated lab monocultures[39–41]. Given the vast range of environmen-

tal inputs on a wild Drosophilid, a fly must be able to discern important information from

extraneous inputs, while interacting with conspecifics and a variety of other species [42–46].

Drosophila exhibit intercommunication species
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Although modes of intra- and interspecies communication are likely to be genetically lim-

ited, there is also value in learning to interpret signals from variable, local environments that

may provide immediate survival benefits. How do genetically constrained neurological fea-

tures and variable environmental factors interact to produce context-dependent, meaningful

information? Under which environmental factors would information sharing between differ-

ent species occur and be beneficial? In this study, we sought to begin to address these questions

in the Drosophila model system by using a pan-Drosophila predator known to elicit social

communication [17,47]. D. melanogaster presented with parasitoid wasps have multiple behav-

ioral responses, including a reduction in oviposition (egg laying) through an increase in ovar-

ian apoptosis [17,48–51]. After removal of the wasp, a wasp-exposed “teacher” fly can instruct

a naïve “student” fly about the presence of the wasp threat through the exclusive use of visual

cues, such that students now reduce their own oviposition by triggering ovarian apoptosis.

Using this fly-fly social communication paradigm we asked (1) whether social communication

is conserved among other Drosophila species, (2) if Drosophilids engage in interspecies com-

munication, and (3) what environmental and genetic factors are required for interspecies

communication.

Results

Intra- and interspecies communication

We utilized the fly duplex, an apparatus with two transparent acrylic compartments to test

whether different species respond to seeing predators (acute response) and if exposed

“teacher” female flies can communicate this threat to naïve unexposed “student” female flies

[17]. The duplex allows flies to see other flies or wasps in the adjacent compartment, without

direct contact, making all communication only visual (Fig 1A). Ten female and two male flies

are placed into one duplex compartment, with an adjacent compartment containing twenty

female wasps. Following a 24-hour exposure, wasps are removed and acute response is mea-

sured by counting the number of eggs laid in the first 24-hour period in a blinded manner.

Flies are shifted to a new duplex, with ten female and two male naïve student flies in the adja-

cent compartment (Fig 1A, see Methods). Following a second 24-hour period, all flies are

removed and the response of both teacher and student is measured by counting the number of

eggs laid in a blinded manner. The 24-48-hour period measures memory of teachers having

seen the wasps and students having learned from the teachers. Using wild-type D. melanoga-
ster, we find both an acute response and a memory response to the wasp in teacher flies and a

learned response in naïve student flies (Fig 1B, S1A Fig, S1 File for all raw egg counts and p-

values in this study) [17,50,51].

We then asked whether the acute, memory, and student social learning behaviors are con-

served in other Drosophila species, with varying relatedness to D. melanogaster ranging from

sister species, such as D. simulans, to very distantly related species, such as D. virilis. For each

species, we tested a sister species as an additional way to validate our observations. Across a

broad span of the genus Drosophila, we find the conservation of both the acute and memory

responses in teacher flies in addition to the ability of teachers to communicate to conspecific

student flies. (Fig 1C, S1B–S1H Fig). Some of these species have been previously shown to

depress oviposition during wasp exposure [51]. Our experimental design allows for only visual

cues to be detected from the wasps and from teachers to student flies. Thus, in all species

tested, visual cues are sufficient for flies to detect wasps and for naïve flies to learn from wasp-

exposed teacher flies. Conservation of these behaviors is especially impressive as the species

tested are separated by millions of years of evolution, yet the basic behaviors observed in D.

melanogaster are maintained. Moreover, this conservation further underscores the importance

Drosophila exhibit intercommunication species
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Fig 1. A predator threat is communicated through visual cues within species across the genus Drosophila, modulating

reproductive behavior and caspase activation. (A) Standard experimental design. (B) Percentage of eggs laid by exposed flies

normalized to eggs laid by unexposed flies is shown. Wild-type D. melanogaster (Canton S) exposed to wasps lay fewer eggs

than unexposed flies. (C) Phylogeny of 8 species tested across the genus Drosophila that demonstrate the ability to

communicate through visual cues. Green boxes indicate social learning is present in species tested. Representative ovary of

control and wasp exposed Drosophila showing caspase activation (D. melanogaster). DAPI (D, H), activated Dcp-1 (E, I),

WGA (F,J), and the merged images (G, K) are shown. Arrows denote apoptotic egg chambers. Error bars represent standard

error (n = 12 biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g001
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this innate behavior must have since even laboratory cultures that have not experienced wasp

for many generations nevertheless exhibit a robust response. In particular, the conservation of

the fly-fly communication behavior speaks to a presence of a conserved form of fly signaling

and signal interpretation, which we suggest might be thought of as a “fly language” in this

paradigm.

Oviposition reduction is modulated in part by the effector caspase Dcp-1[17]. In D. melano-
gaster, we observe overlapping staining of activated Dcp-1 with a punctate pattern of DNA

staining with 4’, 6-diamidino-2-phenylindole (DAPI), indicative of oocyte specific apoptotic

activity (Fig 1D–1K, S2 Fig). We performed immunofluorescence with antibodies specific to

activated Dcp-1 across a broad range of Drosophila species, revealing cleaved caspase follow-

ing wasp exposure in all 15 Drosophila species tested (S3–S16 Figs). We observed an increase

in positive cleaved caspase oocytes following wasp exposure (S17 Fig), along with a decrease in

total number of egg chambers (S18 Fig), suggestive of ovarian apoptosis and elimination of

oocytes[17]. Phylogenetic trees shown are adapted from previous work [52].

Following the observation that an acute response to wasps and intraspecies communication

is conserved across the genus, we asked whether the wasp threat could be communicated

between two different species. We utilized 15 Drosophila species that respond to wasps to

answer this question (S3–S18 Figs). The species were selected to span the phylogeny with dif-

ferent degrees of relatedness to D. melanogaster [52]. We find that D. melanogaster are able to

communicate the threat to and receive communications from closely related species, such as

D. simulans and D. yakuba, with oviposition of students paired with wasp-exposed teachers

being ~10–30% compared to unexposed (Fig 2A and 2B, S19A–S19F Fig). Interestingly, spe-

cies more distantly related to D. melanogaster, such as D. ananassae and its sister species, elicit

a partial communication phenotype, with oviposition depression of students paired with

wasp-exposed teachers being ~50–65% of unexposed flies (Fig 2C–2F, S19G–S19J Fig). A sec-

ond strain isolate of D. ananassae also show partial communication with D. melanogaster (Fig

2C–2F, S19G–S19J Fig). Species more distantly related to D. melanogaster, such as D. willistoni,
D. equinoxialis, and D. virilis, cannot communicate with D. melanogaster (Fig 2G–2L, S19K–

S19P Fig). We statistically characterized these category assignments based on the criteria of

mean value and statistical significance compared to unexposed in order to define efficient, par-

tially, and lack of communication (S2 File, Methods). Collectively, the data suggest that evolu-

tionary distance contributes to the efficiency of interspecies communication. D. ananassae
show varying communication phenotypes with other Drosophila species, though the pattern

of communication is different. For example, D. ananassae exhibit partial communication with

D. simulans (S20A and S20B Fig), strong communication with its sister D. kikkawai (S20C and

S20D Fig), and partial communication with D. equinoxialis and D. willistoni (S20E–S20H Fig).

D. ananassae, in addition to D. melanogaster, are unable to communicate with the distantly

related D. mojavensis and D. virilis (Fig 2I and 2J, S20I–S20L Fig). Species such as D. virilis,
which were unable to communicate with D. melanogaster and D. ananassae, can communicate

with other species, such as its sister species D. mojavensis (Fig 2K and 2L). Thus, although all

species tested are capable of intraspecies communication, there is a fundamental, species-spe-

cific difference in communication mode or “fly language” when communicating wasp preda-

tor threat.

Fixed versus plastic behavior

We wished to assay whether the observed communication behavior is hardwired in the fly

brain, or if it had a level of plasticity as a result of socialization. Known learning and memory

mutants have shown defects in socialization assays [53,54]. Additionally, the cuticular

Drosophila exhibit intercommunication species
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hydrocarbon composition on flies changes as a function of social, but not sexual, experience

[55], though sexual experience is also affected by isolation [56]. Thus, we sought to assay

whether socialization, which has been shown to have behavioral affects in other assays [57]

including egg laying behavior [44,58], has an effect on intraspecies communication.

To ask this question, we collected L1 larvae and isolated each larva in a Falcon round-bot-

tom polypropylene tube containing 1 mL standard Drosophila media. Larvae were allowed to

pupate and eclose in isolation. Each tube was kept separate such that no visual information

could be transferred between individuals in tubes. Following eclosion, 1 female aged 3–5 days

Fig 2. Interspecies communication of predator threats. Percentage of eggs laid by exposed flies normalized to eggs laid by

unexposed flies is shown. Flies exposed to wasps lay fewer eggs than unexposed flies. Communication between D. melanogaster
and: D. simulans (A, B), D. ananassae (C, D), D. kikkawai (E,F), D. willistoni (G,H), D. equinoxialis (I,J) and D. virilis (K,L)

shows varying communication abilities. Communication between D. virilis and D. mojavensis occurs (M,N). Error bars

represent standard error (n = 12 biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g002
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old was used as the student, paired with one socialized female teacher (Fig 3A). This 1:1 ratio

was first tested with D. melanogaster where both teachers and students were previously social-

ized, observing typical strong communication (Fig 3B). Interestingly, the flies raised in isola-

tion presented with a partial communication phenotype, similar to when normally socialized

D. melanogaster and D. ananassae are paired (Fig 3C). Larval isolation has been previously

shown to have effects on cooperative larval behavior, and thus, we cannot rule out the possibil-

ity that isolation of larvae translates to behavioral defects in adult flies [59]. However, given the

observation of this partial communication phenotype, we suggest that while the ability to com-

municate is hardwired in the fly brain, there exists a degree of plasticity that is dependent on

previous socialization.

Dialect learning

Given that our isolation experiments demonstrate a level of plasticity dependent on socializa-

tion, we wished to explore the possibility that partial communication between species might be

alleviated as a result of socialization between two different species. Since closely related species

can communicate the threat of a wasp, we postulated that environmental factors contributing

to interspecies communication for distantly related species may be partially dependent on

socialization. To test this idea, D. melanogaster were cohabitated with species capable of only

partial communication (e.g. D. ananassae) (Fig 2C and 2D). Cohabitation lasted for one week

in a single container, allowing for frequent and multiple channels of sensory interactions. Fol-

lowing a weeklong cohabitation period, the two species were separated and used as students

paired with teachers of the other species (Fig 4A). In all experiments teachers had existed only

as a monoculture, kept separate from other species monocultures, while all flies experiencing

an interspecies cohabitation period were subsequently used only as students.

If cohabitation of different species results in exchange of information that later facilitates

communication between these two species, then we predict that species capable of only partial

communication may then be capable of full or enhanced communication. We find that cohab-

itation can greatly enhance communication between some species, suggesting that some form

of training occurs during this period. After cohabitation, D. ananassae students learn very effi-

ciently from D. melanogaster teachers, demonstrating that cohabitation of two species yields

an expanded communication repertoire (Fig 4, S21 Fig). This observation indicates that poorly

communicating species are not limited by structural barriers such as wing shape or olfactory

capacity. Instead this suggests that, similar to local dialects in bird songs, Drosophila species-

specific cues can be learned simply by repeated exposure to the “dialect”, and provides further

evidence for the role of socialization in Drosophila communication (Fig 3). Thus, there exists a

variation of signal among populations of different species of Drosophila, even though there

exists a conserved fly “language” to communicate the threat of a wasp. Thus, we suggest this to

be analogous to “dialects” as it reflects natural variations between a common mode of commu-

nication, which can be alleviated through socialization between species. Hereafter we refer to

this cohabitation as a “dialect learning” period.

We observed dialect learning in two different D. ananassae strain isolates, and two addi-

tional sister species (Fig 4B–4E, S21A–S21G Fig), indicating that dialect learning is likely to be

a wide-spread phenomenon in Drosophila. Interestingly, some distantly related species that

were unable to communicate with D. melanogaster (i.e. D. willistoni, D. equinoxialis) acquired

the ability to partially communicate following a cohabitation-training period (Fig 4F–4I, S21H

and S21I Fig). This was not the case for very distantly related species (i.e. D. virilis, D. mojaven-
sis), which showed no ability to communicate with D. melanogaster even after a week-long

cohabitation (Fig 4J and 4K, S21J–S21M Fig). We also tested a transgenic D. melanogaster, to

Drosophila exhibit intercommunication species
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Fig 3. Flies raised in isolation have difficulty learning from socialized teachers. (A) Experimental design of isolation of

L1 larvae. Flies are allowed to lay for 24 hours, after which the adults are removed. Eggs are allowed to hatch and L1 larvae

are isolated in an individual tube and allowed to eclose. A single isolated female fly is paired with a single isolated male

and used as students to a single male and single female fly teacher that are socialized throughout life. Percentage of eggs

laid by exposed flies normalized to eggs laid by unexposed flies is shown. Communication between socialized D.

melanogaster teachers and: D. melanogaster, socialized students showing strong communication (B) and D. melanogaster
students raised in isolation showing partial communication ability (C). Error bars represent standard error (n = 24

biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g003

Drosophila exhibit intercommunication species

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007430 July 19, 2018 8 / 32

https://doi.org/10.1371/journal.pgen.1007430.g003
https://doi.org/10.1371/journal.pgen.1007430


Fig 4. Species cohabitation enables inter-species communication. (A) Experimental design of dialect training for flies that

are used as students. Two species are cohabitated for one week prior to being used as students for naive, untrained teacher

flies of the opposite species. Percentage of eggs laid by exposed flies normalized to eggs laid by unexposed flies is shown.

Communication between trained students D. melanogaster and: D. ananassae showing strong communication following

cohabitation (B, C), D. kikkawai showing strong communication following co-incubation (D, E), D. willistoni showing partial

communication following co-incubation (F,G), D. equinoxialis showing partial communication following co-incubation (H,

I), and D. virilis showing no communication following co-incubation (J,K). Error bars represent standard error (n = 12

biological replicates except for (C), n = 24 replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g004
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see if it was capable of teaching and dialect learning, and find such flies can teach their dialect

to and learn the dialect from D. ananassae (S21N and S21O Fig).

Additionally, we tested whether D. ananassae communication could benefit from cohabita-

tion-training with species other than D. melanogaster. We find efficient communication

between D. simulans (S22A and S22B Fig), D. equinoxialis (S22C and S22D Fig), and D. moja-
vensis (S22E and S22F Fig) with D. ananassae following a cohabitation-training period. In con-

trast to the D. melanogaster results, we find communication with more distantly related species

is altered after dialect training. With D. virilis and D. mojavensis, in the untrained states, we

observe no ability to communicate (S20I–S20L Fig), but find a partial communication pheno-

type following cohabitation (S22G–S22J Fig). D. virilis and D. mojavensis, although capable

of interspecies communication and dialect learning, cannot learn the D. melanogaster dialect,

but can learn D. ananassae dialect. These results suggest that some interspecies communica-

tion barriers do exist while others can be overcome by a period of dialect training during

cohabitation.

Given our observation that two species can learn dialects following a cohabitation-train-

ing period, we wondered whether having more species present during the dialect training

period influences dialect learning. In nature, flies encounter many different species of Dro-

sophila, and given this knowledge, we hypothesized that neuronal plasticity exists in the fly

brain to allow flies to learn multiple dialects from a given training period that includes multi-

ple species as inputs. To probe this question, D. melanogaster were cohabitated with species

capable of only partial communication or no communication in the untrained state, but

show efficient and partial communication after dialect training (i.e. D. ananassae and D. will-
istoni, respectively). These three species were cohabitated for one week in a single container.

We then used the trained D. melanogaster as students with untrained D. ananassae and D.

willistoni teachers (Fig 5A). We find that trained D. melanogaster are able to efficiently com-

municate with D. ananassae and partially communicate with D. willistoni (Fig 5B and 5C).

These results mirror assays where these species were individually trained (Fig 4B, 4C, 4F and

4G), suggesting that flies can simultaneously make use of multiple inputs from multiple spe-

cies and be able to learn and remember each unique dialect they encounter. Additionally, we

tested D. ananassae and D. willistoni as students that were cohabitated with D. melanogaster.
We find that D. ananassae can communicate efficiently with D. melanogaster and D. willis-
toni (Fig 5D and 5E), and that D. willistoni can partially communicate with D. melanogaster
and effectively communicate with D. ananassae (Fig 5F and 5G). These data also mirror indi-

vidual training (Fig 4B, 4C, 4F and 4G, S22E and S22F Fig). Collectively, these data demon-

strate that a fly can have vast communication repertoires consisting of multiple dialects that

it acquires.

Given the result above with multiple species being able to learn multiple dialects, we won-

dered the level of specificity and the level of generalization of dialect learning as a means to

provide insight into the identity of the “signal” being transferred between species. To test this,

we performed cohabitation of D. melanogaster and D. kikkawai, a sister species to D. ananas-
sae. We then assayed the communication ability of D. melanogaster with either D. ananassae
or D. willistoni (S23A Fig). We find that D. kikkawai trained D. melanogaster are able to effec-

tively communicate with D. ananassae, suggesting that there is a generalizability to dialect

learning (S23B Fig). We tested the ability of these flies to communicate with D. willistoni, as

D. ananassae has an ability to communicate with D. willistoni in the naïve state, while D. mela-
nogaster does not, allowing further analysis into the generalizability of the signal. We find that

D. kikkawai trained D. melanogaster are unable to communicate with D. willistoni, suggesting

that while dialect learning is generalizable in some instances, it also has a layer of specificity

(S23C Fig).

Drosophila exhibit intercommunication species
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Fig 5. Flies can learn multiple dialects. (A) Experimental design of dialect training for flies that are used as students

using multiple three unique species. Percentage of eggs laid by exposed flies normalized to eggs laid by unexposed flies

is shown. Communication between D. melanogaster students trained by D. ananassae and D. willistoni, shows that D.

melanogaster learn each species dialect even in the presence of more than one species (B, C). Communication between

D. ananassae students trained by D. melanogaster and D. willistoni, shows that D. ananassae learn each species dialect

even in the presence of more than one species (D, E). Communication between D. willistoni students trained by D.

melanogaster and D. ananassae, shows that D. willistoni learn each species dialect even in the presence of more than

one species (F, G). Error bars represent standard error (n = 12 biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g005
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Dialect learning inputs

In order to better understand dialect learning, we tested the roles of sensory cues and genetic

factors during the dialect learning period. We measured dialect learning by quantifying

improvement in interspecies partial communication between D. melanogaster and D. ananas-
sae that normally exhibit efficient communication only after cohabitation. Given that in D.

melanogaster, and in other species tested, we found visual cues to be sufficient for the teacher-

student dynamic (Fig 1) [17], we asked if visual cues are sufficient and/or necessary for dialect

learning. We approached this question by performing the dialect training in the fly duplex,

such that the two species could only see each other (Fig 6A), or by performing the training in

the dark, so that the two species could physically interact, but lacked visual cues (S24A Fig).

We find that visual cues alone are not sufficient (Fig 6B and 6C), but are necessary (S24B and

S24C Fig) for dialect learning. The observation that visual cues are necessary but not sufficient

makes the dialect learning process different from the teacher-student dynamic that requires

only visual cues[17]. Furthermore, we wondered if seeing another species altered the behavior

of a fly to facilitate dialect learning. This hypothesis addresses the possibility that flies are pas-

sively acquiring information through eavesdropping and that the communication ability

gained could be unidirectional. Blind D. melanogaster ninaB mutants do not function as stu-

dents. Surprisingly, D. ananassae cohabitated with blind D. melanogaster do not learn the D.

melanogaster dialect (S24D and S24E Fig). This result is striking because it suggests that there

is an active learning component and a bidirectional exchange of information between fly spe-

cies and not simply eavesdropping or mimicry. We also performed cohabitation training

under two different, monochromatic light sources, and this resulted in only a partial commu-

nication between D. melanogaster and D. ananassae, (Fig 6D and 6E, S24F and S24G Fig). To

exclude the possibility of a dimmer light source inhibiting dialect training under monochro-

matic settings, we repeated cohabitation-dialect-training in a full spectrum, lower light inten-

sity setting, and found both species were able to learn the dialect (S24H and S24I Fig). Thus,

full spectrum light is essential in dialect learning. Importantly, the observation that blind D.

melanogaster do not allow wild-type D. ananassae to dialect learn suggests that visual inputs

are critical to altering behavioral/chemical outputs required to facilitate dialect learning. This

also suggests that during the dialect learning period, transfer of information may occur bidi-

rectionally, if the visual input that is required is indeed provided by the other species.

Wing movement was shown to be required for teacher flies to instruct students in the

teacher-student dynamic[17], raising the possibility that wing movement was also important

for dialect learning. Therefore, we tested flies mutant in the erect wing gene (ewg), which

impairs wing movement while maintaining morphologically normal wings. The allele tested

has wild-type EWG protein expression in the nervous system, thus is only deficient in its non-

neuronal functions, such as flight muscles [60]. We find that D. ananassae cannot dialect learn

from ewgNS4 flies (Fig 6F), although ewgNS4 mutants have no dialect learning impairment (Fig

6G). This suggests that dialect learning by D. ananassae requires D. melanogaster to have

mobile wings.

To test if olfactory cues play a role in dialect learning, we utilized D. melanogaster mutants

defective in chemosensory signaling. The majority of olfactory receptors require a co-receptor

for wild-type function, including Orco (Or83b) for odorant receptors [61] and Ir8a or Ir25a
for ionotropic receptors [62]. Ir8a olfactory sensory neurons (OSNs) primarily detect acids

and Ir25a OSNs detect amines, allowing us to probe specificity of detection. We find that D.

ananassae are able to learn dialect from Orco1, Ir8a1, Ir25a2, single and Ir8a1;Ir25a2;Orco1

triple mutants and RNAi expressing D. melanogaster targeting each of these gene products

(Fig 6H and 6J, S25A–S25L Fig). By contrast only Ir25a2 mutant and RNAi knockdown D.
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Fig 6. Dialect training requires multiple sensory inputs. (A) Experimental design of dialect training for flies that are used as

students using only visual cues (panels B,C). Flies only see each other through the duplex, with no direct interaction. Two

species are co-incubated for one week prior to being used as students. Percentage of eggs laid by exposed flies normalized to

eggs laid by unexposed flies is shown. Communication between trained students D. melanogaster and D. ananassae with

training through visual cues only, shows that visual cues are not sufficient (B, C). Communication between trained students

D. melanogaster and D. ananassae with training through monochromatic, red light only, shows a lack of dialect training (D,

E). Communication between trained students ewgNS4, mutant flies, and D. ananassae shows that moving wings are necessary

(F, G). Communication between trained students Orco1 and D. ananassae shows that olfactory cues are necessary (H, I).

Communication between trained students Ir8a1 and D. ananassae shows that Ir8a is a necessary receptor (J, K).
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melanogaster were able to learn the D. ananassae dialect (Fig 6I and 6K, S25A–S25L Fig).

These data demonstrate that Orco- and Ir8a-mediated olfactory inputs are required for dialect

learning. This further suggests that multiple olfactory cues play important roles in the dialect

learning period. We also find that D. melanogaster males and females are both required for dia-

lect training D. ananassae (Fig 6L–6M, S25M and S25N Fig) and that the length of the training

period is also critical, as 24 hours is insufficient a period for dialect learning (S25O and S25P

Fig). Thus, although the exact olfactory molecule(s) critical during a dialect learning period

are yet to be identified, we speculate that dialect learning is a complex process requiring visual,

olfactory and sex specific cues.

To examine the possibility that dialect training involves active learning mediated by neu-

rons of the mushroom body, we utilized the GAL4 Gene-Switch system to transiently express a

transgene specifically in the mushroom body (MB). Using the GAL4 Gene-Switch ligand sys-

tem, RU486 [63] activates the GAL4 transcription factor, while administration of the vehicle

(methanol) does not [63]. RU486 was administered during the cohabitation period (or metha-

nol for control), but not when flies were used as students, post-dialect training (Fig 7A). Feed-

ing of RU486 to the MB switch driver line does not impair dialect learning (S26A Fig). We

expressed the Tetanus toxin light chain (UAS-TeTx) specifically in the MB of D. melanogaster
(to inhibit synaptic transmission during dialect training). We find that D. ananassae are able

to learn the dialect of these MB inhibited flies (Fig 7B). However, D. melanogaster in which

MB synaptic transmission is inhibited during the training period are unable to learn the D.

ananassae dialect (Fig 7C). Control methanol-only conditions (i.e. no RU486 ligand) with flies

of identical genotypes do not show this defect (S26B Fig). These data collectively indicate that

visual and olfactory cues are required and possibly relayed to the MB, either directly or indi-

rectly through a currently unknown circuit, to facilitate dialect learning. By contrast MB func-

tion does not appear to be important for D. melanogaster behavior(s) that enable D. ananassae
to learn a dialect (S6B Fig). Consistent with this idea, although Orb2ΔQ mutants cannot func-

tion as students (Fig 7E) [17], D. ananassae nevertheless learns the D. melanogaster dialect

from Orb2ΔQ mutants (Fig 7D).

Because MB function is necessary for dialect learning during dialect training, we tested the

long-term memory proteins Orb2, FMR1, and phosphatase and tensin homolog (PTEN)

[64,65] that are known to be required in the MB for memory formation. PTEN has been impli-

cated in murine social learning models, though it has not been tested in a social learning assay

in Drosophila [66]. We used the MB Gene-Switch to knockdown expression only during the

cohabitation period, after which expression was allowed to resume. D. ananassae learn the dia-

lect of each of these three knockdown lines, again suggesting that MB mediated processes in D.

melanogaster are not necessary for D. ananassae dialect training (S26C–S26G Fig). However,

under these conditions we find that functional Orb2 and PTEN are required for dialect learn-

ing in D. melanogaster, but FMR1 is dispensable (Fig 7F–7H). Orb2 and FMR1 were previously

shown to be important in the teacher-student transmission of a wasp threat, and knockdown

of either gene completely ablated students learning from teacher flies [17]. In this case, partial

communication between D. ananassae teachers and D. melanogaster students can occur

because Orb2 and PTEN expression is restored after the dialect training period, thus function-

ing as wild-type D. melanogaster. D. melanogaster flies having undergone knockdown of

Orb2 and PTEN only during dialect training are able to function as students to wild-type D.

Communication between trained students D. melanogaster and D. ananassae with training by male D. melanogaster only or

by female D. melanogaster only, is not sufficient for dialect training (L,M). Error bars represent standard error (n = 12

biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g006
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Fig 7. Genetic perturbations reveal a critical role of the mushroom body and memory proteins for dialect learning. (A)

Experimental design of dialect training for flies being fed RU486 or methanol that are used as students. Both species are fed

either RU486 or methanol during dialect training. Two species are co-incubated for one week prior to being used as students

for naive, untrained teacher flies of the opposite species. Standard Drosophila media is used once the training period is over.

Percentage of eggs laid by exposed flies normalized to eggs laid by unexposed flies is shown. Communication between trained

students D. melanogaster and D. ananassae trained by flies expressing tetanus toxin (UAS-TeTx) in the mushroom body

(MB) shows that the MB serves a critical role during the training period. D. ananassae learn from D. melanogaster with an

inhibited MB, demonstrating that a functional MB is not needed to confer information during the training period (B, C).

Communication between trained students Orb2ΔQ and D. ananassae shows that Orb2 is required in students, but is

dispensable for teachers to D. ananassae (D, E). Communication between D. ananassae and students co-incubated with D.

ananassae that have RNAi-mediated Orb2 knockdown in the MB through RU486 feeding shows that the MB requires Orb2

during the training period (F). Communication between D. ananassae and students co-incubated with D. ananassae that have

RNAi-mediated FMR1 knockdown (strain #24944) in the MB through RU486 feeding shows that FMR1 is not required in the

MB during the training period (G). Communication between D. ananassae and students co-incubated with D. ananassae that

have RNAi-mediated PTEN knockdown in the MB through RU486 feeding shows that PTEN is required in the MB during

the training period (H). Error bars represent standard error (n = 12 biological replicates) (�p< 0.05).

https://doi.org/10.1371/journal.pgen.1007430.g007
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melanogaster after the cohabitation period is completed, suggesting the partial communication

phenotype observed with D. ananassae teachers is a result of gene knockdown during cohab-

itation and not a by-product of irreversible cellular damage or death caused by the RNAi treat-

ments (S26H–S26L Fig). Collectively, these data show critical gene products are required to

function in the MB for dialect learning during the training period. Importantly, although

visual inputs are necessary MB function and active learning are not necessary in D. melanoga-
ster in order to in turn provide cues enabling dialect learning by a wild-type D. ananassae
student.

Discussion

In this study, we present an evolutionarily conserved response to predatory wasps across the

genus Drosophila, manifesting as egg laying depression coincident with an activated effector

caspase, Dcp-1. These endoparasitoid wasps are ubiquitous keystone species in many ecosys-

tems around the world, which prey on Drosophila larvae, with infections rates as high as

90% in natural populations [67–69]. We have shown that flies communicate a wasp threat

through visual cues. We used a known generalist wasp species, Leptopilina heterotoma
[70,71], suggesting that the communication observed may constitute a form of “social pro-

tection” against a pan-threat. Given the geographical distribution of this generalist wasp, spe-

cies tested in this study have a high likelihood of wasp encounter [72–75]. The effects of

other larval and pupal generalists, in addition to specialist wasps, are currently unknown, but

may provide a fruitful avenue of study. The high infection rate and prevalence of parasitoids

in nature suggest to us that other wasp strains and species may also induce intra- and inter-

species communication.

Interspecies communication occurs to varying degrees, likely dependent on evolutionary

relatedness. Closely related species, such as D. melanogaster and D. simulans, D. ananassae
and D. kikkawai, and D. mojavensis and D. virilis, communicate as effectively as conspecifics.

Species more distantly related to D. melanogaster exhibit only partial communication or lack

the ability to confer predator information with D. melanogaster. Because of this natural varia-

tion in ability to communicate we suggest a useful analogy to language “dialects” that may

hinder efficient communication between two dissimilar dialects of a common language.

When two species are only able to partially communicate, they can learn each other’s dialect

after a period of cohabitation, yielding interspecies communication enhanced to levels nor-

mally observed among conspecifics. Such signals benefiting two individuals has been mod-

eled to be honest, and evolutionarily stable [76]. Although dialect learning facilitates

interspecies communication across broad evolutionary distances, the ability to learn a spe-

cific dialect is dependent on relatedness of the two species (Fig 8A). This observation of the

role of phylogenetic distance influencing dialect learning is true in cases both utilizing D.

melanogaster and D. ananassae in combination with other species tested (Fig 8A, S27 Fig).

The observation that different strains of the same species exhibit this partial communication

that can then be enhanced by cohabitation, suggests that both social communication and dia-

lect learning are innate behaviors conserved among all Drosophilids tested here (Fig 8A, S27

Fig). Multiple strains of D. melanogaster reared in the laboratory for many decades exhibit

this behavior, supporting the idea that this is an innate behavior. However, flies reared in iso-

lation from the larval stage result in compromised communication ability, suggesting that

while the ability to communicate is hardwired, or innate, there is a socialization dependent

input the facilitates efficient communication, even between conspecifics. Thus, adult Dro-

sophila neuronal plasticity allows for learning of both the communication between conspe-

cifics and of dialects, but the specific dialect learned is dependent on social interactions
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Fig 8. Phylogenetic summary of dialect learning and pathway model for interspecies social learning. Utilizing species

across the genus Drosophila (A) demonstrates conservation of oviposition depression following wasp exposure, mediated by

activated Dcp-1 to varying degrees and with varying expression patterns. The ability to communicate with D. melanogaster
and the ability to demonstrate interspecies communication varies across the genus, with species closely related to D.

melanogaster able to communicate without barriers. More distantly related species have difficulty communicating, though the

barrier can be alleviated with dialect training. Finally, some species are too distantly related to communicate even after dialect

training. Double boxes in a given row and column indicate multiple wild-type strains were tested. Interspecies

communication is dependent on the presence of both male and female flies, the visual and olfactory systems, the mushroom

body, and various long-term memory gene products (B). This model is based of the use of D. melanogaster and D. ananasse.
Alleles tested in (B) are: Orco[1], Ir8a[1];Ir25a[2];Orco[1], Ir8a[1], Ir25a[2], ninaB[P315], Orb2ΔQ, ewg[NS4], Orb2[RNAi],

PTEN[RNAi], FMR1[RNAi], and UAS-TeTx.

https://doi.org/10.1371/journal.pgen.1007430.g008

Drosophila exhibit intercommunication species

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007430 July 19, 2018 17 / 32

https://doi.org/10.1371/journal.pgen.1007430.g008
https://doi.org/10.1371/journal.pgen.1007430


specific to a communal environmental context that provides both visual and olfactory inputs.

This same plasticity allows for the learning of multiple dialects in a given environment. It is

remarkable that communal rearing of two species can enhance communication about a pred-

ator that is yet to be experienced by either species. Furthermore, dialect learning does not

trigger Dcp-1 activation and oviposition depression, suggesting that social communication

about predator presence is different from social interactions that enable dialect learning that

later enhances predator presence communication.

Understanding memory formation, storage and retrieval requires knowledge of the under-

lying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of learning

and memory and we find that the MB is necessary for dialect learning [77,78]. We hypothesize

that, given the large number of inputs required in dialect learning (olfactory, ionotropic, and

visual cues), which are then relayed to the MB, the “dialect” may be implemented in the MB

via several neuronal classes that are activated and deactivated [77]. We suspect that there are

increases in MB output neurons (MBONs) that reinforce the memory following a sufficient

amount of time of stimulation (i.e. greater than 24 hours in our assay). At the same time, we

suspect there may be a decrease in inhibitory MBONs that may be responsible for ignoring

other species. This increase/decrease would promote interactions and learning between spe-

cies. Following this MBONs changing in synaptic strength, we suspect that dopaminergic neu-

rons (DAN(s)) reinforce these signals in the appropriate MB lobes, similar to olfactory

memories in other assays. We propose this given the need for olfactory reinforcement during

dialect training, in addition to other necessary cues, which emulate the known MB circuitry

[77].

We propose dialect learning to be a novel behavior requiring visual and olfactory inputs,

perhaps integrated in and relayed through the MB, resulting in the ability to more efficiently

receive information about a common predator. Without dialect learning, this information

would otherwise be lost in translation or muddled, resulting in an inefficient behavioral

response with significant survival disadvantages. Inhibiting synaptic transmission and

knockdown of key learning and memory genes in the MB demonstrates that these inputs

must be processed and consolidated in the MB, although input neuronal signaling is initiated

from the visual and olfactory systems (Fig 8B). Given the need for multiple sensory inputs,

dialect learning is fundamentally different from the previously described teacher-student

paradigm, where visual cues are necessary and sufficient for information exchange[17].

Additionally, we suggest that this study also points to previously unappreciated functions of

the Drosophila MB in integrating information from multiple olfactory and visual inputs

[77]. Such cognitive plasticity that allows for dialect learning from many different species

hints that adult behaviors could only emerge in a manner that is dependent on previous

social experiences where relevant ecological pressures are ever present and multiple species

co-exist in nature. Thus, there is a real benefit to cognitive plasticity, where sharing of infor-

mation directly, or by coincident bystanders, could result in behavioral immunity to pan-

specific threats.

The specific information shared by different species during dialect learning is not known.

This study, however, provides important clues as the complex suite of sensory systems and

cues that may be required for efficient dialect learning. We have presented an example of how

interspecies social communication and dialect learning in Drosophila can lead to changes in

germline physiology and reproductive behavior. What other ethological behaviors are modu-

lated by MB functions and social interactions typically not revealed in laboratory monocul-

tures? We suggest that the Drosophila MB may integrate a myriad of social and environmental

cues in order to produce ethologically relevant behavior that is responsive and useful to local

environmental conditions.
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Materials and methods

Insect species/strains

The D. melanogaster strains Canton-S (CS), Oregon-R (OR), white1118(w1118), and transgenic

flies carrying Histone H2AvD-RFP (His-RFP) were used as wild-type strains. Experiments

were primarily performed using CS as wild type flies except where otherwise indicated.

Orco1(Or83b1), UAS-TeTx, UAS-Orb2RNAi, UAS-FMR1RNAi, UAS-FMR1RNAi, UAS-PTENRNAi,

UAS-Ir8aRNAi, UAS-Ir25aRNAi, ninaBP315 were acquired from the Bloomington Drosophila

Stock Center (stock numbers 23129, 28838, 27050, 27484, 34944, 25841, 25813, 43985, and

24776 respectively). Drosophila species were acquired from the Drosophila Species Stock Center

(DSSC) at the University of California, San Diego. Flies and their respective stock numbers

are listed: D. simulans (14021–0251.196), D. mauritiana (14021–0241.01), D. sechellia (14021–

0248.25), D. yakuba (14021–0261.01), D. tsacasi (14028–0701.00), D. kikkawai (14028–0561.00),

D. ananassae (14024–0371.13 and 14024–0371.11), D. pseudoobscura (14011–0121.00), D. neo-
cordata (14041–0831.00), D. equinoxialis (14030–0741.00), D. willistoni (14030–0811.00), D.

immigrans (15111–1731.08), D. mojavensis (15081–1352.22), and D. virilis (15010–1051.87). All

experiments with D. ananassae used strain number 14024–0371.13 unless otherwise noted (S1

Table). All stocks were kept separate to prevent visual transfer of information that could con-

found experiments.

The ewgNS4 mutant line was kindly provided by Yashi Ahmed (Geisel School of Medicine at

Dartmouth). The mushroom body Gene-Switch line was kindly provided by Greg Roman

(Baylor College of Medicine). Ir8a1, Ir25a2, Ir8a>GAL4, Ir25a>GAL4 and Ir8a1;Ir25a2;Orco1

lines were kindly provided by Greg S. B. Suh (Skirball Institute at NYU). Flies aged 3–6 days

post-eclosion on fresh Drosophila media were used in all experiments. Flies were maintained

at room temperature with approximately 30% humidity. All species and strains used were

maintained in fly bottles (Genesse catalog number 32–130) containing 50 mL of standard Dro-

sophila media. Bottles were supplemented with 3 Kimwipes rolled together and placed into the

center of the food. Drosophila media was also scored to promote oviposition. Fly species stocks

were kept separate to account for visual cues that could be conferred if the stocks were kept

side-by-side.

The Figitid larval endoparasitoid Leptopilina heterotoma (strain Lh14) was used in all exper-

iments. L. heterotoma strain Lh14 originated from a single female collected in Winters, Califor-

nia in 2002. In order to propagate wasp stocks, we used adult D. virilis in batches of 40 females

and 15 males per each vial (Genesse catalog number 32–116). Adult flies were allowed to lay

eggs in standard Drosophila vials containing 5 mL standard Drosophila media supplemented

with live yeast (approximately 25 granules) for 4–6 days before being replaced by adult wasps,

using 15 female and 6 male wasps, for infections. These wasps deposit eggs in developing fly

larvae, and we gave them access specifically to the L2 stage of D. virilis larvae. Wasp containing

vials were supplemented with approximately 500 μL of a 50% honey/water solution applied to

the inside of the cotton vial plugs. Organic honey was used as a supplement. Wasps aged 3–7

days post eclosion were used for all infections and experiments. Wasps were never reused for

experiments. If wasps were used for an experiment, they were subsequently disposed of and

not used to propagate the stock.

Fly duplexes

Briefly, fly duplexes were constructed (Desco, Norfolk, MA) by using three standard 25mm

x 75mm pieces of acrylic that were adhered between two 75mm x 50mm x 3mm pieces of

acrylic. Clear acrylic sealant was used to glue these pieces together, making two compartments
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separated by one 3mm thick acrylic piece. Following sealant curing, each duplex was soaked in

water and Sparkleen detergent (Fisherbrand catalog number 04-320-4) overnight, then soaked

in distilled water overnight and finally air-dried. This same cleaning protocol is used following

usage of a duplex. The interior dimensions of each of the two units measured approximately

23.5mm (wide) x 25mm (deep) x 75mm (tall).

For experiments using Fly Duplexes (teacher-student interaction), bead boxes (6 slot jewel-

ers bead storage box watch part organizer sold by FindingKing) were used to accommodate 12

replicates of each treatment group. Each compartment measures 32 x 114 mm with the tray in

total measuring 21 x 12 x 3.5 mm. Each compartment holds 2 duplexes, and the tray in total

holds 12 duplexes. Each bead box was soaked in water and Sparkleen detergent (Fisherbrand

catalog number 04-320-4) overnight, then soaked in distilled water overnight and finally

air-dried every time before and after use. Empty duplexes were placed into the bead

box compartments. 50 mL standard Drosophila media in a standard Drosophila bottle (Gen-

esse catalog number 32–130) was microwaved for 39 seconds. This heated media was allowed

to cool for 2 minutes on ice before being dispensed. Each duplex unit was then filled with 5

mL of the media and further allowed to cool until solidification. The open end of the Fly

Duplex was plugged with a cotton plug (Genesse catalog number 51-102B) to prevent insect

escape. 10 female flies and 2 male flies were placed into one chamber of the Fly Duplex in the

control, while 20 female Lh14 wasps were placed next to the flies in the experimental setting

for 24 hours. After the 24-hour exposure, flies and wasps were removed by anesthetizing flies

and wasps in the Fly Duplexes. Control flies underwent the same anesthetization. Wasps were

removed and replaced with 10 female and two male “student” flies. All flies were placed into

new clean duplexes for the second 24-hour period, containing 5 mL Drosophila media in a

new bead box. For fly duplexes containing a subset of species, specifically D. mojavensis, D.

immigrans, and D. virilis, 10 yeast granules were added to the standard Drosophila media after

solidification of the food. This activated yeast was added to promote oviposition. Flies showed

minimal oviposition in food lacking yeast. We speculate this was observed due to the fly food

being optimized for D. melanogaster, which could be creating sensitized species to wasp pres-

ence. Plugs used to keep insects in the duplex were replaced every 24 hours to prevent odorant

deposition on plugs that could influence behavior. The oviposition bead box from each treat-

ment was replaced 24 hours after the start of the experiment, and the second bead box was

removed 48 hours after the start of the experiment. Fly egg counts from each bead box were

made at the 0–24 and 24-48-hour time points. 12 biological replicates were performed except

where otherwise indicated.

All experimental treatments were run at 25˚C with a 12:12 light:dark cycle at light intensity

167, using twelve replicates at 40% humidity unless otherwise noted. Light intensity was mea-

sured using a Sekonic L-308DC light meter. The light meter measures incident light and was

set at shutter speed 120, sensitivity at iso8000, with a 1/10 step measurement value (f-stop). Fly

duplexes and bead boxes soaked with distilled water mixed with Sparkleen after every use for

and subsequently rinsed with distilled water and air-dried in the manner described above. To

avoid bias, all egg plates were coded and scoring was blind as the individual counting eggs was

not aware of treatments or genotypes/species.

Dialect exposure

Species were cohabitated in standard Drosophila bottles (Genesee catalog number 32–130)

containing 50 mL standard Drosophila media. Three Kimwipes were rolled together and

placed into the center of the food. Batches of 3 bottles were made per treatment. Two species

were incubated in each bottle with 100 female and 20 males of each species per bottle. Every
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two days, flies were placed into new bottles prepared in the identical manner. Flies were cohab-

itation for approximately 168 hours (7 days), unless otherwise noted. Following cohabitation,

flies were anesthetized and the two species were separated. The flies were then used as students

to wasp or mock exposure teachers of the opposite species. For example, we cohabitated D.

melanogaster and D. ananassae for one week. Following the weeklong cohabitation, we sepa-

rated the dialect trained flies. Trained D. melanogaster were placed in duplexes next to D. ana-
nassae either mock or wasp exposed. Trained D. ananassae were placed in duplexes next to D.

melanogaster either mock treated or wasp exposed.

For experiments utilizing more than two species for dialect learning, species were cohabi-

tated in standard Drosophila bottles (Genesee catalog number 32–130) containing 50 mL stan-

dard Drosophila media. Three Kimwipes were rolled together and placed into the center of the

food. Batches of 3 bottles were made per treatment. The three species were incubated in each

bottle with 100 female and 20 males of each species per bottle. Every two days, flies were placed

into new bottles prepared in the identical manner. The three-fly species were cohabitation for

approximately 168 hours (7 days), unless otherwise noted. Following cohabitation, flies were

anesthetized and one of the three species was tested by pairing them with teachers of the other

two species. For example, we cohabitated D. melanogaster, D. ananassae, and D. willistoni for

one week. Following the weeklong cohabitation, we separated the dialect trained flies. Trained

D. melanogaster were placed in duplexes next to either D. ananassae or D. willistoni, mock or

wasp exposed.

For cohabitation experiments where two species were allowed visual only cues, the Fly

Duplex was utilized. The two species were co-incubated side-by-side with 100 female and 20

males of each species per unit using the two chambers of the fly duplex such that the flies could

only see each other. The fly duplex was placed into bead boxes, with each unit of the duplex

containing 5 mL of standard Drosophila media. Every two days, flies were placed into new fly

duplexes with fresh 5 mL standard Drosophila media. Following the weeklong co-incubation,

flies were anesthetized and the two species were separated. The flies were then used as students

to wasp or mock exposure teachers of the opposite species.

For cohabitation experiments where the two species did not have visual cues, the two spe-

cies were incubated in bottles with 100 female and 20 males of each species per bottle in com-

plete darkness. The only difference between this method and other training sessions was the

lack of light—meaning flies were subject to 25˚C with 40% humidity. Every two days, flies

were placed into new bottles prepared in the identical manner. Flies were exposed to light

for less than 30 seconds, during which they were placed into a new bottle, and immediately

returned to the dark. Following the weeklong dark-cohabitation, flies were anesthetized and

the two species were separated. The flies were then used as students to wasp or mock exposure

teachers of the opposite species.

For cohabitation experiments under monochromatic light settings, batches of 3 bottles with

100 female and 20 males of each species were placed into 27.9cm x 16.8cm x 13.7cm plastic

boxes (Sterilite 1962 Medium Clip Box with Blue Aquarium Latches sold by Flikis). These

boxes were externally wrapped with colored cellophane wrap, allowing only a certain wave-

length of light to be transmitted into the boxes. Red and blue cellophane wraps were purchased

from Amscam (Amscan Party Supplies for Any Occasion Functional Cellophane Wrap, 16’ x

30", Rose Red and Spanish Blue). Cellophane wrapped boxes with bottles containing flies were

subject to 25˚C with 40% humidity under the same light intensity as previous experiments.

Light intensity within the red wrapped box was 112 and within the blue wrapped box was

115 measured using the Sekonic L-308DC light meter. Every two days, flies were placed into

new bottles prepared in the manner described previously. Flies were exposed to broad-spec-

trum light for less than 30 seconds, during which they were placed into a new bottle, and
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immediately returned to monochromatic light. Following the weeklong monochromatic-light-

cohabitation, flies were anesthetized and the two species were separated. The flies were then

used as students to wasp or mock exposure teachers of the opposite species.

For the one-day cohabitation experiments, batches of 3 bottles with 100 females and 20

males of each species were placed at 25˚C with 40% humidity for 24 hours. Following the

24-hour cohabitation, flies were anesthetized and the two species were separated. The flies

were then used as students to wasp or mock exposure teachers of the opposite species.

Isolation experiment

In order to ask whether socialization is needed for learning ability between D. melanogaster,
we performed isolation experiments (Fig 3). In order to acquire isolated flies, we performed a

24-hour egg lay using approximately 100 females and 20 males of 3-5-day old Canton S at

25˚C with 40% humidity on grape juice agar plates. Grape juice plates were made in aliquots of

30 plates, containing a total of 100 mL. We mixed: Dextrose (5.8 g), Sucrose (3.0 g), Agar (2.2

g), and Yeast (2.2 g). We added 86 mL distilled water and 12 mL grape juice concentrate

(welches brand) to these solids. This solution was brought to a boil in a microwave, and

allowed to pour and solidify. Plates were used immediately upon cooling.

Following the 24-hour egg lay, flies were removed and the egg lay plate was placed at 25˚C

with 40% humidity with a 12:12 light: dark cycle for a second 24-hour period, after which, L1

larvae were collected and placed into a Falcon round-bottom polypropylene tube (catalog

number 352063) containing 1 mL standard Drosophila media. Larvae were allowed to pupate

and eclose in isolation. Each tube was kept separate such that no visual information could be

transferred between tubes. Following eclosion, 3–5 day old flies were used as students. 1 female

and 1 male isolated Canton S were used as students, paired with 1 female, 1 male Canton S
raised under typical socialized conditions. Social conditions were achieved by performing the

same egg lay protocol as above, but 100 L1 larvae were transferred to standard Drosophila bot-

tles (Genesee catalog number 32–130) containing 50 mL standard Drosophila media and

allowed to pupate and eclose at 25˚C with 40% humidity.

RU486 feeding

RU486 (Mifepristone) was used from Sigma (Lot number SLBG0210V) as the ligand for Gene-

Switch experiments. Dialect training bottles were prepared by directly pipetting an RU486

solution onto the 3 Kimwipes in the bottle. The solution was prepared by dissolving 3.575 mg

of RU486 in 800μL methanol (Fisher Scientific Lot number 141313). This solution was added

to 15.2 mL of distilled water. The total solution (16 mL) was thoroughly mixed and 4000 μL

was pipetted onto the Kimwipe in each bottle. For bottles containing no RU486 (methanol

only) 800μL methanol was mixed with 15.2 mL of distilled water. The total solution (16 mL)

was thoroughly mixed and 4000 μL were pipetted onto the Kimwipe in each bottle. Flies were

shifted to new bottles prepared in the exact same manner every two days. Flies were cohabi-

tated for approximately 7 days. Following cohabitation, flies were anesthetized and the two

species were separated. The flies were then used as students to wasp or mock exposure teachers

of the opposite species.

Immunofluorescence

Ovaries were collected from flies that were placed in vials along with female wasps for experi-

mental or no wasps for control settings. Flies were placed in batches into standard vials (Gene-

see catalog number 32–116) of 20 females, 2 males along with 20 female wasps for exposed

vials, or simple placing 20 female and 2 male flies in vials for the unexposed treatments. Three
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vials were prepared to produce three replicates to account for batch effects. We observed no

batch effects so each of the 12 ovaries imaged from each treatment were then counted as a rep-

licate, thus providing an n of 36. Ovaries that were prepared for immunofluorescence were

fixed in 4% methanol-free formaldehyde in PBS with 0.001% Triton-X for approximately five

minutes. The samples were then washed in PBS with 0.1% Triton-X, and blocked with 2%

normal goat serum (NGS) for two hours. The primary antibody, cleaved Drosophila Dcp-1

(Asp216) (Cell Signaling number 9578) at a concentration of 1:100, was used to incubate the

ovaries overnight at 4˚ C in 2% normal goat serum (NGS). The secondary antibody used was

Fluorescein isothiocyanate (FITC) conjugated (Jackson Immunoresearch), and used at a con-

centration of 1:200 for a two-hour incubation at room temperature. This was followed by a

10-minute nuclear stain with 4’, 6-diamidino-2-phenylindole (DAPI). For confocal imaging of

D. melanogaster ovaries, wheat germ agglutinin (WGA) was also used as a membrane marker

(Fig 1F and 1J, S2 Fig). All egg chambers were counted to acquire total egg chamber number

and egg chambers showing Dcp-1 signal were counted as positive for Dcp-1. All ovary quanti-

fications were performed in a blinded manner such that the counter did not know the condi-

tion (exposed v unexposed) or species of the Drosophila ovaries being counted.

Imaging

A Nikon A1R SI Confocal microscope was used for imaging activated Dcp-1 caspase staining

in D. melanogaster (Fig 1D–1K, S2 Fig). Image averaging of 4x during image capture was used

for all images. A Nikon E800 Epifluorescence microscope with Olympus DP software was used

to image Dcp-1 caspase staining on all other Drosophila species tested (S3–S16 Figs). This

microscope was also used to quantify egg chambers with Dcp-1 signal and total number of egg

chambers in all species tested (S17 and S18 Figs).

Statistical analysis

Statistical tests on exposed v unexposed/teacher v student interactions were performed in

Microsoft Excel. Welch’s two-tailed t-tests were performed for data. P-values reported were

calculated for comparisons between paired treatment-group and unexposed and are included

in S1 File.

Categorization assignments were made based on the criteria of mean value and statistical

significance compared to unexposed. ‘No communication’ is assigned in instances where

there was not a statistically significant decrease of the exposed group. ‘Partial communication’,

requires a statistically significant decrease of the exposed group, with an exposed mean above

50%. ‘Full communication’, criteria are a statistically significant decrease of the exposed group,

along with a mean below 50%. Direct comparisons between partial and full communication

groups would require analysis of data collected at different times and between genotypes, ren-

dering any such p-values invalid. However, to satisfy the desire for p-values associated with the

partial/full threshold, one sample one tailed t tests were performed on exposed samples that

were statistically less than unexposed (S2 File). Corresponding p-values asses if the exposed

group is statistically less than 50%. Statistical comparisons were performed in R (version 3.0.2

“Frisbee Sailing”).

Supporting information

S1 Fig. Intraspecies communication is present across the genus Drosophila. Percentage of

eggs laid by exposed flies normalized to eggs laid by unexposed flies is shown. Species shown

are (A) D. melanogaster (Oregon-R), (B) D. simulans, (C) D. ananassae, (D) D. kikkawai, (E)

D. willistoni, (F) D. equinoxialis, (G) D. mojavensis, and (H) D. virilis. Error bars represent
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standard error (n = 12 biological replicates) (�p< 0.05).

(TIFF)

S2 Fig. Activated Dcp-1 is indicative of apoptotic events in D. melanogaster. Magnified

images from Fig 1(H)–1(K) showing apoptotic egg chamber displaying activated caspase.

DAPI (A), activated Dcp-1 (B), WGA (C) and merge are shown (D). Additional representative

ovaries of unexposed and wasp-exposed D. melanogaster are shown. DAPI (E, I, M, Q, U), acti-

vated Dcp-1 (F, J, N, R,V), WGA (G, K, O, S, W), and the merged images (H, L, P, T, X) are

shown. Arrows denote apoptotic egg chambers.

(TIFF)

S3 Fig. Increases in activated caspase are observed in the ovary in D. simulans following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S4 Fig. Increases in activated caspase are observed in the ovary in D. mauritiana following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S5 Fig. Increases in activated caspase are observed in the ovary in D. sechellia following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S6 Fig. Increases in activated caspase are observed in the ovary in D. yakuba following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S7 Fig. Increases in activated caspase are observed in the ovary in D. tsacasi following wasp

exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries stained

for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged images (C,

F,I,L) are shown.

(TIFF)

S8 Fig. Increases in activated caspase are observed in the ovary in D. kikkawai following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S9 Fig. Increases in activated caspase are observed in the ovary in D. ananassae following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)
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S10 Fig. Increases in activated caspase are observed in the ovary in D. pseudoobscura fol-

lowing wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L)

ovaries stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the

merged images (C,F,I,L) are shown.

(TIFF)

S11 Fig. Increases in activated caspase are observed in the ovary in D. neocordata following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S12 Fig. Increases in activated caspase are observed in the ovary in D. equinoxialis follow-

ing wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ova-

ries stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S13 Fig. Increases in activated caspase are observed in the ovary in D. willistoni following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S14 Fig. Increases in activated caspase are observed in the ovary in D. immigrans following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S15 Fig. Increases in activated caspase are observed in the ovary in D. mojavensis following

wasp exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries

stained for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged

images (C,F,I,L) are shown.

(TIFF)

S16 Fig. Increases in activated caspase are observed in the ovary in D. virilis following wasp

exposure. Representative images of unexposed (A-F) and wasp-exposed (G-L) ovaries stained

for activated Dcp-1 are shown. DAPI (A,D,G,J), Dcp-1 (B,E,H,K), and the merged images (C,

F,I,L) are shown.

(TIFF)

S17 Fig. Increases in activated caspase are quantified in the ovary across the genus Dro-

sophila following wasp exposure. Proportion of egg chambers with Dcp-1 signal shown for

(A) D. melanogaster, (B) D. simulans, (C) D. mauritiana, (D) D. sechellia, (E) D. yakuba, (F) D.

tsacasi, (G) D. kikkawai, (H) D. ananassae, (I) D. pseudoobscura, (J) D. neocordata, (K) D. equi-
noxialis, (L) D. willistoni, (M) D. immigrans, (N) D. mojavensis, and (O) D. virilis. Error bars

represent standard error (n = 36 ovaries) (�p< 0.05).

(TIFF)

S18 Fig. A decrease in egg chamber numbers are quantified in the ovary across the genus

Drosophila following wasp exposure. Total number of egg chambers shown for (A) D. mela-
nogaster, (B) D. simulans, (C) D. mauritiana, (D) D. sechellia, (E) D. yakuba, (F) D. tsacasi, (G)
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D. kikkawai, (H) D. ananassae, (I) D. pseudoobscura, (J) D. neocordata, (K) D. equinoxialis, (L)

D. willistoni, (M) D. immigrans, (N) D. mojavensis, and (O) D. virilis. Error bars represent stan-

dard error (n = 36 ovaries) (�p< 0.05).

(TIFF)

S19 Fig. Interspecies communication of predator threats. Percentage of eggs laid by exposed

flies normalized to eggs laid by unexposed flies is shown. Communication between D. melano-
gaster and: D. sechellia (A, B), D. mauritianna (C, D), D. yakuba (E, F), D. tsacasi (G, H), D.

pseudoobscura (I, J), D. neocordata (K, L), D. immigrans (M, N), and D. mojavensis (O, P),

shows varying communication abilities. Error bars represent standard error (n = 12 biological

replicates except for (O), n = 24 replicates) (�p< 0.05).

(TIFF)

S20 Fig. Interspecies communication of predator threats using D. ananassae. Percentage of

eggs laid by exposed flies normalized to eggs laid by unexposed flies is shown. Communication

between D. ananassae and: D. simulans (A, B), D. kikkawai (C, D), D. equinoxialis (E, F), D.

willistoni (G, H), D. mojavensis (I, J), and D. virilis (K, L), shows varying communication abili-

ties. Error bars represent standard error (n = 12 biological replicates) (�p< 0.05).

(TIFF)

S21 Fig. Cohabitation of additional species with D. melanogaster allows for interspecies

communication. Percentage of eggs laid by exposed flies normalized to eggs laid by unexposed

flies is shown. Communication between trained students D. melanogaster and: D. ananassae
(second line) (A-C), D. tsacasi (D, E), D. pseudoobscura (F, G), D. neocordata (H, I), D. immi-
grans (J, K), and D. mojavensis (L, M). (C) An additional D. melanogaster line (w1118) learns

from w1118 trained D. ananassae. Communication between D. ananassae and a transgenic D.

melanogaster (Histone-RFP) occurs following training period (N, O). Error bars represent

standard error (n = 12 biological replicates except for (N,O), n = 24 replicates) (�p< 0.05).

(TIFF)

S22 Fig. Cohabitation of additional species with D. ananassae allows for interspecies com-

munication. Percentage of eggs laid by exposed flies normalized to eggs laid by unexposed

flies is shown. Communication between trained students D. ananassae and: D. simulans (A,B),

D. equinoxialis (C,D), D. willistoni (E,F), D. mojavensis (G,H), and D. virilis (I,J). Error bars

represent standard error (n = 12 biological replicates) (�p< 0.05).

(TIFF)

S23 Fig. Dialect is generalizable to related species, but has specificity. (A) Experimental

design of testing specificity and generalizability of dialect. D. melanogaster were dialect trained

with the sister species of D. ananassae, D. kikkawai. Following dialect training, D. melanogaster
were used as students to either D. ananassae or D. willistoni teachers. Percentage of eggs laid

by exposed flies normalized to eggs laid by unexposed flies is shown. Communication between

D. kikkawai—trained D. melanogaster students and: D. ananassae teachers show strong com-

munication (B), demonstrating a generalizability of the dialect signal; when paired with D. will-
istoni teachers, no communication is observed (C), demonstrating a signal specificity. Error

bars represent standard error (n = 12 biological replicates) (�p< 0.05).

(TIFF)

S24 Fig. Additional evidence demonstrating that dialect training requires visual cues. (A)

Experimental design of dialect training for flies that are used as students using no visual cues

by running the dialect training period in the dark (B,C). Flies do not see each other, but still

interact and innervate other sensory inputs. The two species are co-incubated for one week
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prior to being used as students for naive, untrained teacher flies of the opposite species. Per-

centage of eggs laid by exposed flies normalized to eggs laid by unexposed flies is shown.

Communication between trained students D. melanogaster and D. ananassae with training

involving no visual cues (dark-trained), shows that visual cues necessary for dialect learning

(B, C). Communication between trained students D. ananassae and the mutant ninaB (D,E).

Communication between trained students D. melanogaster and D. ananassae, with training

in monochromatic blue light only, shows a lack of dialect training (F, G). Communication

between trained students of D. ananassae and D. melanogaster at 4.08 light intensity shows

communication (H,I). Error bars represent standard error (n = 12 biological replicates)

(�p< 0.05).

(TIFF)

S25 Fig. Further evidence demonstrating that dialect training requires multiple sensory

inputs including olfactory cues and duration of training. Percentage of eggs laid by exposed

flies normalized to eggs laid by unexposed flies is shown. Communication between naïve D.

ananassae and Ir8a1 mutant flies shows partial communication (A). Communication between

naive students of Ir8a knockdown in Ir8a-expressing neurons and D. ananassae shows partial

communication (B). Communication between trained students Ir8aRNAi knockdown in Ir8a

expressing neurons and D. ananassae shows that IR8a receptor-mediated cues are necessary

(C, D). Communication between naïve Ir25a2 mutants and D. ananassae shows partial com-

munication (E). Communication between trained students Ir25a2 mutants and D. ananassae
shows communication suggesting that IR25a receptors are not required for dialect training (F,

G). Communication between naïve Ir25a knockdown in Ir25a-expressing neurons and D. ana-
nassae shows partial communication (H). Communication between trained students Ir25aRNAi

knockdown in Ir25a-expressing neurons and D. ananassae shows communication suggesting

that IR25a receptors are not required for dialect training (I, J). Communication between

trained Ir8a1;Ir25a2;Orco1 students and D. ananassae shows that olfactory and IR-receptor

mediated cues are necessary (K, L). Communication between students D. melanogaster and D.

ananassae, with training by males only or by females only, shows partial communication, sug-

gesting that both male and female flies are required for dialect learning (M, N). Communica-

tion between trained students D. melanogaster and D. ananassae, with training for only one

day, shows that 24 hours is not sufficient for dialect training (O, P). Error bars represent stan-

dard error (n = 12 biological replicates) (�p < 0.05).

(TIFF)

S26 Fig. Further evidence showing a critical role for the mushroom body and memory pro-

teins for dialect learning. Percentage of eggs laid by exposed flies normalized to eggs laid by

unexposed flies is shown. Communication between trained D. melanogaster, MBswitch/+ (out-

crossed to Canton S) students and D. ananassae teachers fed RU486 during the training period

shows communication between the two species, demonstrating that RU486 feeding does not

perturb dialect learning (A). Communication between trained students D. melanogaster and

D. ananassae, with training by flies not expressing tetanus toxin (UAS-TeTx) in the mushroom

body (MB) (i.e. methanol fed), shows communication between the species (B). Communica-

tion between D. ananassae and students trained with D. ananassae with no RNAi-mediated

Orb2 knockdown in the MB (i.e. methanol fed) shows communication between the species

(C). Communication between D. ananassae and students trained with D. ananassae with

RNAi-mediated FMR1 knockdown (strain #34944) in the MB (i.e. RU486 fed) shows that

FMR1 is not required in the MB during the training period (D). Communication between D.

ananassae and students trained with D. ananassae with no FMR1 knockdown (strain #24944)

in the MB (i.e. methanol fed) shows wild-type behavior (E). Communication between D.
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ananassae and students trained with D. ananassae with no FMR1 knockdown (strain #34944)

in the MB (i.e. methanol fed) shows wild-type behavior (F). Communication between D. ana-
nassae and students trained with D. ananassae with no PTEN knockdown in the MB (i.e.

methanol fed) shows wild-type behavior (G). Error bars represent standard error (n = 12 bio-

logical replicates) (�p< 0.05). Communication between various D. melanogaster lines trained

by D. ananassae show wild-type communication with D. melanogaster (Canton S). Lines

shown are MB switch expressing TeTx (H), Orb2RNAi (I), FMR1RNAi (strain number 27484)

(J), FMR1RNAi (strain number 34944) (K), PTENRNAi (L), and were fed RU486 during cohab-

itation with D. ananassae.
(TIFF)

S27 Fig. Phylogenetic summary of dialect learning for D. ananassae. We utilize species

across the genus Drosophila to show communication ability of D. ananassae (A). We observe

the ability to demonstrate interspecies communication, which varies across the genus, with

species closely related to D. ananassae able to communicate without barriers. More distantly

related species have difficulty communicating, though the barrier can be alleviated with dialect

training. Double boxes in a given row/column indicate multiple wild-type strains tested.

(TIFF)

S1 Table. Fly lines and species used in this study.

(TIFF)

S1 File. Raw egg counts and p values for figures used in this study.

(XLSX)

S2 File. P values for all comparisons before and after dialect training.

(XLSX)
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