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Abstract: Biofilm-associated tissue and device infection is a major threat to therapy. The present
work aims to potentiate β-lactam antibiotics with biologically synthesized copper oxide nanoparticles.
The synergistic combination of amoxyclav with copper oxide nanoparticles was investigated by
checkerboard assay and time-kill assay against bacteria isolated from a burn wound and a urinary
catheter. The control of biofilm formation and extracellular polymeric substance production by the
synergistic combination was quantified in well plate assay. The effect of copper oxide nanoparticles
on the viability of human dermal fibroblasts was evaluated. The minimum inhibitory concentration
and minimum bactericidal concentration of amoxyclav were 70 µg/mL and 140 µg/mL, respectively,
against Proteus mirabilis and 50 µg/mL and 100 µg/mL, respectively, against Staphylococcus aureus.
The synergistic combination of amoxyclav with copper oxide nanoparticles reduced the minimum
inhibitory concentration of amoxyclav by 16-fold against P. mirabilis and 32-fold against S. aureus.
Above 17.5 µg/mL, amoxyclav exhibited additive activity with copper oxide nanoparticles against
P. mirabilis. The time-kill assay showed the efficacy of the synergistic combination on the complete
inhibition of P. mirabilis and S. aureus within 20 h and 24 h, respectively, whereas amoxyclav and copper
oxide nanoparticles did not inhibit P. mirabilis and S. aureus until 48 h. The synergistic combination of
amoxyclav with copper oxide nanoparticles significantly reduced the biofilm formed by P. mirabilis
and S. aureus by 85% and 93%, respectively. The concentration of proteins, carbohydrates, and DNA
in extracellular polymeric substances of the biofilm was significantly reduced by the synergistic
combination of amoxyclav and copper oxide nanoparticles. The fibroblast cells cultured in the
presence of copper oxide nanoparticles showed normal morphology with 99.47% viability. No
cytopathic effect was observed. Thus, the study demonstrated the re-potentiation of amoxyclav by
copper oxide nanoparticles.
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1. Introduction

Biofilm is a community of bacteria that survives like multicellular organisms. The biofilm
phenotype is different from planktonic cells [1]. Biofilm forms through a complex cascade of
events that encapsulate bacteria within self-assembled extracellular polymeric substances (EPS) [2].
Approximately 65% to 95% of biofilm is composed of water. The EPS of biofilm are made up of
proteins (≥2%), carbohydrates (1–2%), and DNA (≤1%) [3]. It is a viscous layer that prevents the
entry of chemotherapeutic agents, leading to the recalcitrance of bacteria [4]. Bacteria inside the
biofilm are resistant to external stress and evade the host immune system [5]. The therapeutic
failure of antibiotics in the treatment of tissue and medical device-associated infections is mainly
due to persistent biofilm formation. About 80% of recalcitrant infections are due to biofilm [6].
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Biofilm-associated tissue infections are the sole cause of nosocomial infections [7], periodontitis [5],
tooth decay [8], endocarditis [9], pulmonary infections [10], osteomyelitis [11], cystic fibrosis [12],
tuberculosis [13], etc. Implantable and non-implantable medical devices are infected by bacteria. They
establish biofilm on devices like contact lenses [14], intravenous catheters [15], breast implants [16],
orthopedic implants [17], voice prostheses [18], cardiac valves [19], shunts [20], urinary catheters [15],
dialysis units [21], ventricular assisted devices [22], etc. Infections caused by biofilm are responsible
for high rates of morbidity and mortality. Biofilm architecture, stages of biofilm formation, and
device-associated infection were reviewed by Algburi et al. [23].

Chronic wounds are a silent epidemic affecting millions of people globally. Among chronic
wounds, burn wounds deserve special attention because of the extensive damage caused by heat. This
type of wound is a major cause of mortality and morbidity [24]. Patients who are hospitalized for long
periods void urine through urinary catheters [14], and long-term use of indwelling urinary catheters
can cause urinary tract infections [25]. Biofilm formation by uropathogens is the most common cause
of persistent infection in the genitourinary tract [26].

The post-antibiotic era is witnessing the co-evolution of pathogens resistant to antibiotics [27].
Even after the discovery of many diverse classes of antibiotics, β-lactam makes up 65% of the antibiotic
market [28]. β-lactam antibiotics are widely used for a wide range of treatments, from simple boils
and fever to the most complicated and life-threatening diseases, such as pneumonia, gonorrhea,
meningitis, etc. [29]. Sales of β-lactam antibiotics amount to about $15 billion [30]. These antibiotics
are broad-spectrum agents, which makes them the first choice to ward off infection. Bacteria develop
resistance to antibiotics due to their improper use [31].

Bacteria synthesize β-lactamase and cleave β-lactam rings [32]. To overcome this challenge,
scientists have used β-lactam antibiotics together with β-lactamase inhibitors, such as clavulanic acid
(amoxyclav) [33], sulbactam (ampicillin/sulbactam) [34], and tazobactam (piperacillin/tazobactam) [35].
Amoxicillin combined with the β-lactamase inhibitor clavulanic acid was initially effective against a
broad spectrum of bacteria [33]. The clinical efficacy and safety of amoxicillin/clavulanic acid were
compared with those of clindamycin in the treatment of odontogenic infections in a phase IV clinical
trial [36,37]. The study reported that amoxyclav was not inferior to clindamycin in its efficacy and
safety. A study by Assimakopoulos et al. [34] evaluated the clinical efficacy of ampicillin/sulbactam
in patients in the intensive care unit suffering from ventilator-associated pneumonia caused by
pandrug-resistant Acinetobacter baumannii. The study concluded that the combination of ampicillin
and sulbactam was highly effective against pneumonia [34]. Shirley [36] examined the clinical
efficacy of ceftazidime/avibactam and meropenem for the treatment of hospital-acquired and
ventilator-associated bacterial pneumonia in a phase III clinical trial and demonstrated the clinical
success of ceftazidime/avibactam. However, after a few years of extensive use, bacteria developed
recalcitrance to β-lactamase inhibitors (clavulinic acid, sulbactam, avibactam, and tazobactam), as
these inhibitors have an integral β-lactam ring, which is also cleaved by β-lactamase, resisting their
combination. The prevalence of multidrug resistance among bacteria is due to the single target and
single mode of action of antibiotics [33]. The rapid spread of multidrug resistance is due to the
horizontal transfer of resistance genes between bacteria. Biofilm is the community of heterogeneous
organisms where gene transfer is very easy [38].

One way to circumvent this phenomenon is to re-potentiate the antibiotics by using synergistic
combinations with other antibiotics or with natural phytochemicals, such as thymoquinone, a
benzoquinone [39] or pterostilbene, a polyphenol [40], which possess medicinal properties. The
synergistic combination of more than one drug extends the sensitivity of pathogens to antimicrobial
agents, reduces the toxicity of high doses of any single agent, and reduces the chance of developing
resistance by acting on multiple targets of bacteria. Recently, metal oxide nanoparticles, such as
silver [41] and copper [42], have been used to augment the efficiency of antibiotics. Copper oxide
nanoparticles (CuO NPs) are biocompatible and effective against pathogens. There are many methods
of synthesizing CuO NPs, such as microwave irradiation [43], sonochemical irradiation [44], etc.
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Among the many methods available for synthesizing copper nanocubes, green synthesis employs
water and does not require any toxic solvents [45]. Green methods for the synthesis of CuO NPs use
bacteria [46], fungi [47], algae [48], or plants [49]. Among the plants, Tamarindus indica L. (Indian
tamarind) fruit possesses many pharmacologically important properties and are used to control
infection, fever, diarrhea, jaundice, etc.

The present work reports the isolation and identification of bacteria from a burn wound and a
urinary catheter. The resistance profiles of the bacteria are evaluated and the possibility of synergistically
using amoxyclav with CuO NPs is investigated for the ability to mitigate biofilm formation by targeting
EPS formation. Moreover, the minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) of the T. indica fruit extract, amoxyclav, and CuO NPs are assessed against the
isolated bacteria. The synergistic combination of amoxyclav and CuO NPs is investigated by the
checkerboard method and a time-kill assay. In addition to the effect on planktonic cells, the effect on
biofilm formation and protective EPSs is also investigated in the present study. Finally, the effect of
CuO NPs on fibroblast viability is assessed.

2. Results

2.1. Isolation, Identification, and Antibiotic Sensitivity of Bacteria from Urinary Catheter and Burn Wound

The main goal of the present study is to evaluate the synergistic activity of CuO NPs with
amoxyclav against multidrug-resistant bacteria. Quality control strains are susceptible to all antibiotics
and do not reflect the antibiotic-resistant pattern of bacteria prevalent in clinical units. So bacteria
were isolated from a burn wound and a urinary catheter of a hospitalized patient in Sivakasi, India’s
fireworks headquarters. The bacteria from the urinary catheter and burn wound were identified by 16S
ribosomal RNA(rRNA) sequencing as Proteus mirabilis and Staphylococcus aureus, as shown in Figure 1.
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Figure 1. Phylogenetic tree of the bacterial isolate. (a) Urinary catheter; (b) burn wound.

2.2. Susceptibility of Isolates to Antibiotics

Investigating the sensitivity of isolates to antibiotics is essential for proper antibiotic therapy. The
susceptibility of the isolated bacteria to different classes of antibiotics was assessed, and the results are
presented in Table 1. The lowest susceptibility to amoxicillin (β-lactam class) was shown by S. aureus,
with an inhibition zone of 3 ± 0.03 mm. Similarly, P. mirabilis exhibited very low susceptibility to
amoxicillin. When the combination of amoxicillin with clavulanic acid (amoxyclav) was used, the
inhibition zone was increased to 10 ± 0.05 mm and 12 ± 0.08 mm against P. mirabilis and S. aureus,
respectively. Even though the inhibition zone was greater than with amoxicillin alone, it was still
within the resistance zone as per the Clinical and Laboratory Standards Institute [50]. The highest
inhibition was exhibited by gentamicin (aminoglycoside), with an inhibition zone of 25 ± 0.07 mm and
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28 ± 0.08 mm with P. mirabilis and S. aureus, respectively. The inhibition zone shown by azithromycin
(macrolide) was 8 ± 0.04 mm and 12 ± 0.07 mm against P. mirabilis and S. aureus, respectively. The
bacteria were designated as susceptible or resistant to an antibiotic based on the guidelines provided
by the Clinical and Laboratory Standards Institute [50]. As the bacteria were resistant to more than
one class of antibiotic, they were designated as multidrug-resistant. The resistance profile reveals an
urgent need to develop strategies to combat multidrug resistance in bacteria.

Table 1. Antibiotic sensitivity profiles of bacteria.

Diameter of Inhibition Zone (mm)

S. No Bacteria Amoxicillin Amoxyclav Cefixime Ciprofloxacin Gentamicin Azithromycin

1 P. mirabilis 5 ± 0.02 10 ± 0.05 11 ± 0.09 13 ± 1 25 ± 0.07 8 ± 0.04
2 S. aureus 3 ± 0.03 12 ± 0.08 12 ± 0.05 14 ± 0.06 28 ± 0.08 12 ± 0.07

2.3. Synthesis and Characterization of CuO NPs

The characteristics of CuO NPs are shown in Figure 2. The formation of CuO NPs (Figure 2a)
was initiated by the change from the blue color of copper acetate to green, greenish-yellow, yellowish
orange, and finally to the brick-red precipitation of CuO NPs. The UV-Vis absorption spectrum of
CuO NPs displayed surface plasmon resonance (SPR) at 490 nm, as shown in Figure 2b. Once the
CuO NPs were formed, the size distribution of particles was analyzed in a particle size analyzer,
and the result is shown in Figure 2c, showing the homogeneous distribution of particles between
40 nm and 50 nm. The shape of the CuO NPs was observed to be cubes, as shown in Figure 2d. The
elemental composition confirms the presence of Cu, as shown in Figure 2d. The participation of various
functional groups present in the T. indica fruit involved in the synthesis of CuO NPs was recorded
by Fourier-transform infrared spectroscopy (FTIR), and the results are shown in Figure 2e. Peaks at
3379 cm−1 and 2936 cm−1 indicate the stretching vibrations of the OH and CH of the alkyl groups,
respectively. The presence of conjugated phenolics is indicated by the peak at 2340 cm−1. In the T. indica
fruit extract, the peak at 1799 cm−1 is due to the presence of aromatic structures. The peak observed at
1630 cm−1 is due to the stretching vibrations of C=O groups. Peaks at 1417 cm−1 and 1207 cm−1 are
ascribed to CH2 bending and C–O–C stretching, respectively. The peak at 682 cm−1 represents the
presence of halogen-containing compounds. In CuO NPs, the presence of CuO is indicated by the
presence of strong stretching vibrations of CuO at 590 cm−1. This confirms the metal oxide bond and
the monoclinic phase of CuO NPs.It showed a peak at 2340 cm−1 that exactly matched the peak of
T. indica. X-ray diffraction (XRD) shows diffraction peaks at (111), (200), (220), and (222), as shown in
Figure 2f. The thermo gravimetric analysis (TGA) curve shown in Figure 2g reveals a loss of 11.37% of
the mass. The ultimate reduction in mass indicates a loss of moisture and organic moieties present in
the prepared CuO NPs sample. An exothermic peak at 962.5 ◦C by differential scanning calorimetry
(DSC) is an indication of the monoclinic phase of CuO NPs, as shown in Figure 2h.

2.4. Antibacterial Activity of CuO NPs

Table 2 shows the concentration-dependent bactericidal activity of CuO NPs from 5 µg/mL to
30 µg/mL. The maximum bactericidal activity of 29 ± 1 mm was observed with 30 µg/mL against
S. aureus. S. aureus was more susceptible to antimicrobial agents than P. mirabilis. In order to
understand the antibacterial activity of the T. indica fruit extract alone, it was used as control, revealing
bactericidal activity with an inhibition zone of 10 ± 0.06 mm and 16 ± 0.06 mm against P. mirabilis and
S. aureus, respectively.
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Figure 2. Synthesis and characterization of CuO NPs. (a) Formation of CuO NPs; (b) UV-Vis
spectrum; (c) particle size distribution; (d) field emission scanning electron microscopic image (FESEM);
(e) Fourier-transformed infrared spectrum (FTIR); (f) X-ray diffraction (XRD); (g) differential scanning
calorimetry (DSC); (h) thermo gravimetric analysis (TGA).
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Table 2. Antibacterial activity of CuO NPs (diameter of inhibition zone in mm).

Concentration of CuO NPs (µg/mL)

S. No. Bacteria 5 10 15 20 25 30

1 P. mirabilis 5 10 ± 0.06 14 ± 0.08 16± 0.05 18 ± 1 24 ± 1
2 S. aureus 8 14 ± 0.07 18 ± 0.07 21± 0.09 24 ± 1 29 ± 1

Concentration of T. indica fruit extract (30 µg/mL)

1 P. mirabilis 10 ± 0.06
2 S. aureus 16 ± 0.06

2.5. MIC and MBC

Once the bactericidal activity was confirmed by diffusion assay, the minimum concentration
required to inhibit bacterial growth was evaluated by determining the minimum inhibitory
concentration (MIC) and minimum bactericidal concentration (MBC), and the results are shown
in Table 3. As the fruit extract of T. indica was used to synthesize CuO NPs, the MIC and MBC of the
extract were also quantified. The MIC and MBC of the fruit extract against P. mirabilis were 1000 µg/mL
and 4000 µg/mL, respectively. The fruit extract had an MIC and MBC of 800 µg/mL and 3200 µg/mL,
respectively, against S. aureus. The MIC and MBC of amoxyclav were 70 µg/mL and 140 µg/mL,
respectively, against P. mirabilis and 50 µg/mL and 100 µg/mL, respectively, against S. aureus.

Table 3. Antibacterial activity of amoxyclav and CuO NPs.

P. mirabilis S. aureus

S. No. Antibacterial
Activity Amoxyclav CuO NP T. indica

Fruit Extract Amoxyclav CuO NP T. indica
Fruit Extract

1 MIC (µg/mL) 70 30 1000 50 20 800
2 MBC (µg/mL) 140 60 4000 100 40 3200

2.6. Synergistic Interaction between Amoxyclav and CuO NPs against Bacteria

The combination of amoxyclav and CuO NPs in different ratios and its impact on fractional
inhibitory concentration (FIC) and fractional inhibitory concentration index (FICI) are represented
in Table 4. It can be inferred from the table that the FIC of both amoxyclav and CuO NPs decreased
significantly at synergistic concentrations. When amoxyclav and CuO NPs were used in synergistic
combination, the MIC was reduced 15.9-fold and 2-fold, respectively, for P. mirabilis. The synergistic
combination reduced the MIC of amoxyclav and CuO NPs 32-fold and 2-fold, respectively, for S. aureus.
Above 17.5 µg/mL, amoxyclav exhibited additive activity with CuO NPs against P. mirabilis. The
results obtained from the checkerboard assay proved the synergistic activity of CuO NPs with β-lactam
antibiotics through the isobologram depicted in Figure 3. MICA and MICB are the MIC of amoxyclav
and CuO NPs, respectively. MICAX and MICBX are the MIC of amoxyclav and CuO NPs in synergistic
combination, respectively.
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Table 4. Fractional inhibitory concentration index (FICI) of amoxyclav and CuO NPs.

P. mirabilis

Amoxyclav
(µg/mL)

CuO NP
(µg/mL)

FIC of
Amoxyclav FIC of CuO NP FICI Interaction

4.4 15 0.062 0.25 0.267 Synergistic
8.8 7.5 0.125 0.126 0.251 Synergistic

17.5 3.8 0.25 0.063 0.313 Synergistic
35 1.9 0.5 0.031 0.531 Additive

S. aureus

1.56 10 0.03 0.5 0.503 Additive
3.15 5 0.06 0.25 0.31 Synergistic
6.25 2.5 0.12 0.125 0.225 Synergistic
12.5 1.25 0.24 0.06 0.31 Synergistic
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2.7. Time-Kill Assay

Upon determining the synergistic combination of amoxyclav and CuO NPs, the combination was
investigated for its time-dependent bactericidal activity. The results of the experiment are shown in
Figure 4. With the passing of time from 4 h to 48 h, the reduction in the bacterial population was less
with amoxyclav. However, when used in the synergistic combination with CuO NPs, a very significant
reduction to 4 log colony forming units (CFU) was observed at 4 h. As the time proceeded to 12 h, it
was further reduced to 2.5 log CFU. At 24 h, the bacteria were completely cleared. Amoxyclav and
CuO NPs reduced the bacteria to 2.5 log CFU and 0.75 log CFU, respectively. The results demonstrated
the effective control of multidrug-resistant pathogens by the synergistic combination of amoxyclav
and CuO NPs. The time-kill assay showed the efficacy of the synergistic combination on the complete
inhibition of P. mirabilis and S. aureus within 20 h and 24 h, respectively, whereas amoxyclav and CuO
NPs did not inhibit P. mirabilis and S. aureus until 48 h.
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2.8. Effect of Amoxyclav and CuO NPs on Biofilm Formation

The synergistic combination of amoxyclav and CuO NPs was assessed for its inhibitory effect
on biofilm formation by P. mirabilis and S. aureus. The results are presented in Figure 5. Amoxyclav
inhibited 19% of P. mirabilis biofilm and 35% of S. aureus biofilm. The synergistic combination of
amoxyclav with CuO NPs significantly reduced biofilm formed by P. mirabilis and S. aureus by 85% and
93%, respectively. Biofilm and planktonic cells of P. mirabilis and S. aureus showed higher susceptibility
to CuO NPs and amoxyclav in synergistic combination.
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2.9. Effect of Amoxyclav and CuO NPs on EPS Formation

EPS serves as a barrier to the entry of chemotherapeutic agents. It protects the biofilm community
from the host defense. The effect of amoxyclav and CuO NPs on reducing biofilm is shown in Figure 6.
In the control, the concentration of proteins was 130.4 µg/mL, which was reduced to 104, 78, and
15.7 µg/mL in the presence of amoxyclav, CuO NPs, and the synergistic combination of amoxyclav and
CuO NPs, respectively. In addition to proteins, carbohydrates were also present in EPS. Carbohydrates
were remarkably reduced from 113 µg/mL in the control to 10.5 µg/mL in the synergistic combination.
Similarly, the concentration of DNA was also reduced in the synergistic combination treatment.
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(a) P. mirabilis; and (b) S. aureus.

2.10. Effect of CuO NPs on Viability of Human Dermal Fibroblasts

The effect of CuO NPs on the viability of human dermal fibroblasts (HiFiTM Human Adult Dermal
Fibroblast-HiMedia, Mumbai, India) was evaluated, and the results are shown in Table 5 and Figure 7.
The viability of the control was 100%. With reference to the control, CuO NPs showed 99.47% viability.
The cells cultured in the presence of CuO NPs showed normal morphology and no cytopathic effect
was observed. This confirms that CuO NPs are safe for human application.
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Table 5. Impact of CuO NPs on viability of human dermal fibroblast cells.

S. No. Treatment Viability (%)

1 Control 100
2 CuO NPs (30 µg/mL) 99.47
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3. Discussion

Chronic wounds are infected by different types of pathogens. S. aureus is the predominant
gram-positive organism reported in burn wounds [51]. P. mirabilis and Escherichia coli are the dominant
agents of urinary tract infections [25]. The present study was focused on re-potentiating amoxyclav
by synergistically combining it with CuO NPs due to its multiple modes of action against bacteria.
Controlled synthesis of CuO NPs by biological methods was reported [52]. Nanocubes were synthesized
at 75 ◦C within 10 min through a sequence of color changes as shown in Figure 8. During these chemical
reactions, copper ions were released from copper acetate and reduced by the reducing groups present
in the fruit extract of T. indica [51,52]. Red precipitate indicated the formation of CuO NPs [53]. At
70 ◦C, the reaction was accelerated, leading to the formation of nanocubes. SPR at shorter wavelengths
confirmed the smaller size of the CuO NPs [51]. The peak was attributed to the band gap transition
of the CuO NPs. The fruit of T. indica is a rich source of flavonoids, alkaloids, and many aromatic
compounds that are potent antibacterial agents [54]. Studies by Ieven et al. [54] reported that T. indica
fruit has a higher concentration of secondary metabolites than stem and leaves. These secondary
metabolites, when capped onto CuO NPs, can augment the antibacterial activity of the CuO NPs.
FTIR data confirmed the presence of various functional groups of compounds in the fruit extract of
T. indica and CuO NPs synthesized using the fruit. Peaks of conjugated polyphenols were present in
both T. indica fruit and CuO NPs synthesized using it [55]. The presence of aromatic compounds was
confirmed by the FTIR peak. The data indicate that T. indica contains a variety of phenolic compounds
that play a major role in the formation of CuO NPs. The presence of conjugated phenolics in the extract
of T. indica was supported by Zaibunnisa, et al. [56]. Polyphenolics such as catechin, epicatechin,
taxifolin, apigenin, eriodictyol, luteolin, and naringenin are some of the flavonoids reported to be
present in T. indica [57]. They serve as stabilizing and capping agents responsible for the well-dispersed
synthesis of copper nanocubes. All nanocubes were complete without any truncation. The cubes
showed smooth margins and uniform distribution. The process is energetically efficient and does not
require extreme purification steps in downstream processing, as it uses no solvent except water.
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Ordered cubic-shaped CuO NPs revealed their well-dispersed size and shape. The asymmetric
peak of CuO NPs was confirmed by the presence of a peak at 590 cm–1 [58]. The high packing
efficiency of self-assembled nanocubes was supported in earlier studies [59]. Nanocubes with high
packing density are preferable for drug delivery and interaction with cells and biomolecules [60].
The nanocube has a preference for 111 planes over other planes. These results coincide with the
observations of Liu et al. [61]. The monoclinic phase of CuO NPs corroborates with the observations of
Topnani et al. [58]. Cube-shaped structures provide greater contact area than spherical nanoparticles
for interaction with bacteria. The more contact points there are, the greater the bactericidal activity.
Studies by Kolhatkar et al., support the greater surface area of nanocubes over other shapes [62]. The
thermal properties of CuO NPs were used to show the presence of compounds other than CuO NP.

The miniaturization of CuO at nanoscale provides high surface area and reactivity to interact with
bacteria [63]. Phenolic compounds from the fruit of T. indica capped the nanocubes, which augment the
bactericidal activity of CuO NPs [64]. CuO NPs create oxidative stress and generate reactive oxygen
species, which is lethal to pathogens.

The synergistic combination of amoxyclav and CuO NPs significantly reduced biofilm in multiple
ways. Amoxyclav is lethal by inhibiting bacterial cell wall biosynthesis. When used in synergistic
combination, CuO NPs might bind with β-lactamase, making it ineffective for cleaving the β-lactam
ring. In the absence of β-lactamase activity, the potency of amoxyclav was restored. The lowest
concentration of amoxyclav and CuO NPs required in the synergistic combination is due to the multiple
modes of action of the agents against bacteria. CuO NPs interact with the negatively charged bacterial
membrane by electrostatic attraction and accumulate, encapsulating the bacteria [52]. In addition,
they impose oxidative stress by forming free radicals, which diffuse freely into the bacteria, causing
a lethal effect. Oxidative stress oxidizes proteins, carbohydrates, and nucleic acids [65]. In addition,
many different mechanisms, such as the release of copper ions, disruption of membrane integrity,
and inhibition of metabolic activity, were proposed for the bactericidal activity of CuO NPs [52].
The synergistic combination was effective against both P. mirabilis and S. aureus. CuO NPs have a
broad spectrum of antibacterial activity against both gram-positive and gram-negative organisms [52].
Complete elimination of biofilm formation by uropathogens was reported for CuO NPs. Similar to the
present study, the broad-spectrum bactericidal activity of CuO NPs was documented [66]. CuO NPs
were reported to be safe to eukaryotic cells. Studies by De Jong, et al. [67] reported that CuO NPs were
safe in rats in amounts up to 32 mg/kg. The physiological response of diarrhea was observed in rats only
after administration of 512 mg CuO NPs/kg. In the present study, the MIC of CuO NPs was 30 µg/mL,
but in the synergistic combination with amoxyclav, the FIC was a maximum of 15 µg/mL. The effect of
CuO NPs on fibroblasts was studied at 30 µg/mL, showing 99.47% viability, so the concentration of
CuO NPs in synergistic concentration with amoxyclav had no cytotoxic effect.
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4. Materials and Methods

4.1. Chemicals

All chemicals were purchased from HiMedia, Mumbai, India.

4.2. Isolation and Identification of Bacteria

The bacteria infecting the burn wound were isolated by swabbing the wound with a sterile swab
before dressing. Immediately the swab was transported in an icebox to the laboratory for the isolation
of bacteria. The swab was transferred to a blood agar medium. The plate was incubated for 18 h in an
incubator at 37 ◦C. To determine whether the urinary catheter was also infected, it was collected on the
day of replacement and used for the isolation of bacteria. The surface of the catheter was washed with
sterile distilled water, and the catheter was opened at cross-sections. The cut catheter samples were
placed in buffered saline and incubated in a shaker at 150 rpm (revolutions per minute) for 1 h. Bacteria
transferred from the catheter bits to the saline sample were isolated by the pour plate technique. A single
colony from the plate was selected and pure cultured. Genomic DNA was isolated using a HiPurATM

Bacterial Genomic DNA Purification Kit, and the 16S rRNA sequence was amplified using the primers
27F 5′-AGAGTTTGATCMTGGCTCAG-3′ and 1492R 5′-TACGGYTACCTTGTTACGACTT-3′. The 16S
rRNA sequencing was performed by Yaazh Xenomics, Coimbatore, India. Sequencing reactions were
performed using ABI PRISM® BigDyeTM Terminator Cycle Sequencing Kits with AmpliTaq® DNA
polymerase (FS enzyme) (Applied Biosystems, Thermo Fischer Scientific, Waltham, MA, USA) in an
ABI 3730 × l sequencer (Applied Biosystems). Nucleotide sequences were resolved using the basic local
alignment search tool on the National Center for Biotechnology Information (NCBI) website and the
sequences of related taxa were retrieved. Sequence alignment was conducted and the phylogenetic tree
was generated using the neighbor-joining method [68] and Molecular Evolutionary Genetics Analysis
(MEGA) version 5.0-Pennsylvania State University, PA, USA [69]. Data analysis was performed on a
bootstrapped set with 1000 replicates.

4.3. Susceptibility of Bacteria to Antimicrobial Agents

An antibiotic susceptibility test was performed by the disc diffusion method [50]. A single colony
of the isolated organisms was inoculated into 2 mL of sterile nutrient broth separately and incubated
at 37 ◦C in a shaker at 120 rpm for 12 h. The culture was adjusted to 1 × 106 CFU/mL, and 100 µL of
the culture was swabbed onto Mueller and Hinton agar plates (Himedia, Mumbai, India). Discs of
amoxicillin (30 µg), amoxyclav (30 µg), ciprofloxacin (30 µg), cefixime (30 µg), azithromycin (30 µg),
and gentamicin (50 µL) were used. The plates were incubated at 37 ◦C for 12 h, and then the diameter
of the zone of inhibition around the well was measured. The zone of inhibition was interpreted using
the standards published by the Clinical and Laboratory Standards Institute [50].

4.4. Synthesis and Characterization of CuO NPs

CuO NPs were synthesized using the aqueous extract of Tamarindus indica L. (Indian tamarind)
fruit. The T. indica fruit was obtained from a local market. The fruit pulp (without seeds) was soaked
in water for 60 minutes at room temperature. The aqueous extract of the fruit was prepared by
extracting 10 g of fruit pulp with 100 mL of Milli-Q water at room temperature. The extract was
centrifuged at 10,000 rpm for 15 min. The supernatant was concentrated and used. The extract was
centrifuged at 10,000 rpm for 15 min. The supernatant was concentrated and used. Under heating
and constant stirring, 10 mL of extract was slowly added to 100 mL of 3 µM copper acetate solution.
The red precipitate was separated by centrifugation at 15,000 rpm for 15 min. The precipitate was
dried and stored [70]. Visible light absorption and vibrational spectra were recorded using a UV-Vis
spectrophotometer (Hitachi, Tokyo, Japan) and Fourier-transform infrared spectrophotometer (Thermo
Sceintific Ltd., Waltham, MA, USA). The size of the CuO NPs was documented using a particle size
analyzer. Structural and elemental analysis was captured using field emission scanning electron
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microscopy (FESEM, Carl Zeiss, Cambridge, UK) and energy dispersive spectroscopy (Bruker, Billerica,
MA, USA). The crystalline behavior of copper nanoparticles was recorded using a powder X-ray
diffractometer (X’Pert Pro–PANalytic-Malvern Panalytical, Almelo, The Netherlands). The thermal
stability of CuO NPs was determined using DSC coupled with TGA (Netzch, Selb, Germany).

4.5. Determination of Antibacterial Activity, MIC, and MBC

The bactericidal activity of CuO NPs (30 µg) was determined by well diffusion. The MIC and
MBC of CuO NPs, and amoxyclavh were determined by 2-fold serial dilution in broth [71]. The
experiment was performed in flat-bottomed 96-well plates. The cultures of P. mirabilis and S. aureus
grown overnight were adjusted to 108 CFU/mL. The plate was maintained with broth as a negative
control. Growth control was maintained with the broth and the culture without any antimicrobial
agents. In one of the wells, 100 µL of amoxyclav (2040 µg/mL) was added. In a separate well, 100 µL
of CuO NPs (1920 µg/mL) was added. From these wells, 2-fold dilutions were done serially in the
subsequent wells to attain 2040µg /mL to 4.35 µg/mL amoxyclav and 1920 µg/mL to 3.75 µg/mL CuO
NPs. Then 100 µL each of P. mirabilis and S. aureus (108 CFU/mL) was added to the respective plates.
The plates were incubated at 37 ◦C for 12 h. The concentration of the antimicrobial agent in the well
where no visible growth was observed was considered as the MIC. Then 100 µL of the sample from
the respective MIC wells and the three preceding wells were taken and plated onto nutrient agar to
determine the MBC. The concentration of the antimicrobial agent where no colony was found in the
plate was recorded as the MBC.

4.6. Time-Kill Assay

The synergy between amoxyclav and CuO NPs was determined by a time-kill assay [72]. To
determine the time-dependent lethal effect of amoxyclav and CuO NPs on P. mirabilis and S. aureus, the
culture grown overnight was adjusted to 1 × 108 CFU/mL. Then 25 mL of Luria-Bertani (LB) broth was
inoculated with 1 mL each of P. mirabilis and S. aureus in separate conical flasks, and 30 µg/mL each of
CuO NPs and amoxyclav were added to the flasks. The flasks were kept in an incubator-cum-shaker at
37 ◦C. Growth control was maintained in the same manner except for the addition of any antimicrobial
agent. Viable colony count was measured by sampling the culture at 4 h intervals for 48 h. Synergistic
interaction was determined by the reduction in the number of viable cells by more than 2 logs between
the single agent and the combination of agents. A reduction of less than 2 logs indicated no difference.

4.7. Synergistic Interaction between Amoxyclav and CuO NPs

The synergistic interaction between two or more drugs was determined by checkerboard assay,
where the test compounds were serially diluted alone and in all combinations of drugs [73]. The
fractional inhibitory concentration (FIC) of amoxyclav and CuO NPs was determined by 2-fold serial
dilution from 0.5 ×MIC to 0.015 ×MIC. To determine FICI, amoxyclav was varied in a descending
manner and CuO NPs were decreased vertically. In the plates, negative control was maintained with
the broth and the growth control was maintained with culture alone without any antimicrobial agent
for comparison. The wells other than the negative control were loaded with 10 µL of 1 × 106 CFU/mL
of P. mirabilis and S. aureus in separate plates. The plates were incubated at 37 ◦C for 24 h. The wells
where bacterial growth was reduced by more than 80% were considered as the MIC. The combined
effect of the drugs was concluded from the FICI value: FICI = MIC in combination/MIC alone of
amoxyclav + MIC in combination/MIC alone of CuO NPs. The data were interpreted according to the
instructions of the European Committee on Antimicrobial Susceptibility Testing [74].

4.8. Effect of Amoxyclav and CuO NPs on Biofilm Formation

To evaluate biofilm inhibition by antibiotics and CuO NPs, biofilm was formed in 96-well
flat-bottomed polystyrene microtiter plates in triplicate [75]. For this, 10 µL each of (1 × 106 CFU/mL)
P. mirabilis and S. aureus was inoculated onto 190 µL of LB in separate wells, then 10 µL of CuO NPs
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(30 µg/mL) was added to the wells. Negative control was maintained without an antimicrobial agent
and positive control was maintained with amoxyclav and CuO NPs. The plates were incubated at
37 ◦C for 24 h. The medium was aspirated in order to remove the planktonic cells and gently washed
thrice with phosphate-buffered saline. Then 200 µL of 2% crystal violet solution was added to the
wells and left undisturbed for 20 min. Excess crystal violet stain was removed and washed using a
buffer. The crystal violet staining the biofilm was solubilized by 125 µL of 30% acetic acid. The color
was measured using a microplate reader (BIO-RAD, Hercules, CA, USA) at 570 nm.

4.9. Effect of Amoxyclav and CuO NP on EPS Formation

Biofilm was formed in 96-well plates in triplicate, as mentioned above [75]. After biofilm formation,
the cells were not stained with crystal violet. Instead, the attached cells were collected by vigorous
mixing and washing with a 2 mM phosphate buffer at pH 7. The suspension was vortexed for 30 min
and an equal volume of 30% ethylenediaminetetraacetic acid (EDTA) was added. The mixture was
incubated in a shaker for 3 h at 4 ◦C. The sample was centrifuged at 15,000 rpm for 15 min. The
supernatant was filtered, sterilized (0.22 µm), and dialyzed in a dialysis bag with a 3500 Da cutoff

against Milli-Q water to separate the high-molecular-mass compounds. The sample was used for
the quantification of carbohydrates, proteins, and DNA. The total carbohydrates were quantified by
the phenol–sulfuric acid method [76]. Proteins were determined by Lowry’s method [77]. DNA was
quantified by the dye-binding method [78].

5. Effect of CuO NPs on Viability of Human Dermal Fibroblasts

The effect of CuO NPs on the viability of fibroblasts was quantified by (3-[4, methylthiazol-2-yl]-2,
5-diphenyl tetrazolium bromide (MTT) dye assay [79]. This test is based on the reduction of
water-soluble yellow MTT dye to water-insoluble purple formazan crystals by live cells. The cells
(500 µL) were seeded onto wells at a density of 1 × 106 cells/mL in Dulbecco’s modified eagle medium
supplemented with 10% fetal bovine serum. The plates were incubated in a humidified CO2 incubator
maintained at 37 ◦C for 24 h. After 24 h, 30 µg of CuO NPs was added to the wells. A control well
was maintained without CuO NPs. After 48 h, the medium was removed and replaced with a fresh
medium containing MTT (5 mg/mL) and incubated in the dark for 4 h. The purple formazan crystals
were dissolved in dimethylsulfoxide and read at 570 nm in an ELISA reader (Thermo Sceintific Ltd.,
Waltham, MA, USA). The viability of cells was calculated with reference to the absorbance of control
cells using the formula:

Viability (%) = (Control OD)/(Test OD) ×100
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