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Colletotrichum acutatum is one of the causal agents of anthracnose in several crops,
and of post-flowering fruit drop (PFD) in citrus and key lime anthracnose (KLA). The
pathogen normally attacks flowers, causing lesions only in open flowers. Under very
favorable conditions, however, it can also affect flower buds and small fruits, causing
complete rotting of the fruit and a premature fall, resulting in major economic crop
losses. We isolated endophytic fungi from Tahiti lime to evaluate its diversity, verify
its antagonistic capacity against the phytopathogen Colletotrichum acutatum C-100
in dual tests, and evaluate the ability of various endophytic agents to control flowers
with induced anthracnose. 138 fungal isolates were obtained from 486 fragments of
branches, leaves, and fruit; from which 15 species were identified morphologically.
A higher isolation frequency was found in branches and leaves, with a normal level
of diversity compared to other citrus species. Of the 15 morphospecies, 5 were
trialed against C. acutatum in antagonism tests, resulting in a finding of positive
inhibition. 2 endophytic fungi from the antagonism tests demonstrated high inhibition
of the phytopathogen, and were thus used in in vivo tests with Tahiti lime flowers,
applied in a spore solution. Spore solutions of two molecularly identified species,
Xylaria adscendens, and Trichoderma atroviride, reduced the lesions caused by
the phytopathogen in these in vivo tests. The finding that these endophytes react
antagonistically against C. acutatum may make them good candidates for further
biological control research in an agroindustry that requires environmental sustainability.

Keywords: mycobiota, biocontrol, citrus, phytopathogens, antagonism

INTRODUCTION

The appearance of diseases in citrus crops reduces the quantity that can be produced and sold,
even more so when the products are to be exported (Tennant et al., 2009; Donkersley et al.,
2018). Many citrus diseases are caused by phytopathogens, which colonize various plant tissues
and affect organs such as flowers and fruits both before and after harvesting (Bazioli et al., 2019).
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Citrus varieties found in tropical and subtropical zones around
the world are frequently infected by phytopathogenic fungi
species which cause diseases such as anthracnose (Silva-Junior
et al., 2014; Rhaiem and Taylor, 2016), a condition linked to
Colletotrichum (Cannon et al., 2012; Ben Hadj Daoud et al., 2019;
Mogollón et al., 2021).

Anthracnose is a serious disease in citrus, manifesting
itself in symptoms such as necrosis of leaves and flowers,
and the premature drop of fruit after flowering; the
latter being especially harmful to the crop (Silva-Junior
et al., 2014; Frare et al., 2016; Wang et al., 2021).
Colletotrichum gloeosporioides and Colletotrichum acutatum
are two of the species most responsible for anthracnose
in citrus (Barquero et al., 2013; Ramos et al., 2016;
Ben Hadj Daoud et al., 2019), including the acid lime
and Tahiti lime (Citrus citrus× latifolia). Of the two
varieties, Tahiti limes are more commercially common,
as they are generally larger and contain more juice than
key limes (Evans et al., 2014). Anthracnose results in
negative phytosanitary effects and crop reductions for this
important cultivar (Lima et al., 2011; Mogollón et al., 2021;
Wang et al., 2021).

One possible control methodology for diseases such as
anthracnose is the use of conventional fungicides (Palou
et al., 2008; Bazioli et al., 2019). However, although these
pesticides do help control various species of phytopathogens,
their indiscriminate use also results in undesirable impacts
upon the environment (Yoon et al., 2013; Price et al., 2015).
Furthermore, intensive use of these agrochemicals, including
in citrus crops, can lead to the generation of resistance
mechanisms among phytopathogenic fungal populations (Price
et al., 2015; Forcelini and Peres, 2018). Thus, biological control
strategies are increasingly attractive for this type of agriculture
(Pekas, 2011; Wang et al., 2018, 2020; Rojas et al., 2020),
more so in the current era of sustainable agriculture, which
emphasizes the reduction or elimination of fertilizers and other
agrochemicals (Arora, 2018). Biological control presents a viable
and environmentally friendly solution (Droby et al., 2009;
De Silva et al., 2019).

Among biological control options, endophytic fungi have
become a resource of interest to the agricultural world to
control disease (Latz et al., 2018; De Silva et al., 2019;
Ortega et al., 2020) and improve crop yields (Abo, 2019;
Segaran and Sathiavelu, 2019; Rojas et al., 2020). The symbiotic
interactions of these fungi, and their ability to coexist
safely with the tissues of the host plant make possible the
production of bioactive compounds for the control of pests
and pathogens that attack plants (Selim, 2012; Kusari et al.,
2013; Caruso et al., 2020). In crops, there is a pressing
need to find new solutions, making the exploration of
endophytic mycobiota in species such as Tahiti lime important.
In the present paper, we to identify endophytic fungi in
Tahiti lime (Citrus citrus× latifoliain order to evaluate their
diversity and antagonistic capacity both in vitro and in vivo
against a strain of phytopathogenic fungus Colletotrichum
acutatum C-100, previously isolated from Tahiti lime flowers
with anthracnose.

MATERIALS AND METHODS

Sample Collection
Healthy Tahiti lime (Citrus citrus × latifolia) plant tissues
(without visual disease) such as leaves, stems, and fruits were
obtained from local farms, located in the municipality of Girón,
Santander, Colombia at coordinates: 7◦ 1′ 31.59′′ N; 73◦ 9′
18.77′′ W and 7◦ 1′ 31.78′′ N; 73◦ 9′ 32.62′′ W. The samples
were transported in a cold chain and processed in the agro-
environmental biotechnology laboratory (LIIBAAM_UDES) to
isolate endophytic fungi within 6 h of collection. This same
sampling procedure was carried out in six trips to the field.

Endophyte Isolates
Given that each sample consisted of a different mix of leaves, fruit,
and fragments of branches, the samples were initially washed
in distilled water for 10 min, after which small segments of
approximately 0.7 cm were cut. Thereafter, the samples were
placed in separate Petri dishes for surface disinfection in a
solution of alcohol (70%) for 2 min, sodium hypochlorite (2.5%)
for 2 min, and then two separate washes with distilled water for
2 min each, using a protocol adapted from Kjer et al. (2010).
Once the tissue fragments were disinfected, they were seeded
in Petri dishes with Potato Dextrose Agar (PDA) supplemented
with chloramphenicol and incubated for 10 days at 26◦C. Daily
inspection was carried out to select the endophytic fungi that
appeared. An equal number of non-disinfected vegetal segments
were prepared as a control for the disinfection process, and
seeded in the mycological medium to allow for fungal growth.
Fractions of fungal mycelium emerging from the plant tissues
were extracted aseptically in a laminar flow cabinet to avoid
contact with adjacent samples, and these fungal segments were
seeded into individual Petri dishes with PDA medium. This
process was carried out in triplicate to obtain pure colonies for
subsequent characterization and identification.

Colonization Frequency and Relative
Isolation Frequency
The isolation frequency rate (IR) was defined as the number
of endophytic fungi isolated divided by the total number of
incubated fragments and expressed as a percentage. The relative
frequency of isolation (FR) was calculated as the number of
isolates of a given morphospecies divided by the total number
of isolates, expressed as a percentage. This information was
analyzed by a one-way ANOVA with a Tukey test to identify any
differences between tissue types (leaves, branches and fruits).

Characterization of Fungal Endophytes
and Analysis of Diversity
Endophytic fungi were initially identified by morphospecies,
based on the morphological characteristics of the colonies grown
in PDA medium (colony appearance, diffusible pigments, front
and back color, borders, texture, and growth rate) (Tibpromma
et al., 2018; Estrada and Ramírez, 2019; da Costa Silveira
et al., 2020). To determine these microscopic characteristics,
preparations of the isolated endophytes were made in new PDA
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media, using microcultures and encouraging their sporulation.
The specimens were then placed on slides with lactic acid
and ethanol solution, allowing for the visualization of the
mycelia using an optical microscope (Nikon eclipse-NI-U). The
morphological characteristics of the isolates (hyphae and spores)
were compared with previous descriptions drawn from the
literature, bibliographic resources, and taxonomic keys (Barnett
and Hunter, 1998; Estrada and Ramírez, 2019; da Costa Silveira
et al., 2020). Isolates that did not sporulate were placed in
darkness at room temperature for up to 20 days to stimulate
sporulation. Those isolates that still did not produce spores were
treated as sterile mycelia.

Diversity Analysis
The diversity of endophytic morphotypes was measured using
diversity indices whose parameters are the richness and relative
abundance of species, and which evaluate the contribution of
individuals to the community (Chao et al., 2005). Specifically, the
study used the Shannon-Wiener (H′) and Simpson (D) indices.
The former measures the information content per individual in
samples obtained at random from a “large” community in which
the total number of species (S) is known and which are sampled
at random. This measurement can take values between 0 and 5
and is strongly influenced by the most abundant species (Jin et al.,
2013). It is based on the following formula:

H′ = −6(Pi × lnPi).

The latter, Simpson’s diversity index, measures the probability
of finding two individuals of the same species in two successive
random draws without replacement, by the following formula:
(1− D) (formula: 1 − [D = 6(ni/n)2]), where ni, is the number
of distinct species (i) and (n) is the abundance of each species
in the community. The species evenness (E), which assesses
the contribution of the individuals to the community, was also
calculated using the following formula: E = H/lnS, where S = the
number of species in the sample. The above calculations were all
made using PAST 4 software and Estimates (Colwell, 2004).

Tests for Antagonism: Endophytic Fungi
vs. Colletotrichum acutatum
The fungal morphospecies obtained from the isolates were
seeded in a medium of PDA / water agar (at a 1:3 ratio),
for stressful growth. The fungi which grew in the first 5 days
and demonstrated the highest growth radii were selected for
the antagonism tests with the reference phytopathogenic fungi
Colletotrichum acutatum C-100 that was isolated earlier from
Tahiti lime flowers with anthracnose (Martinez et al., 2009).
Mycelium discs of 5 mm diameter with both the endophytes
and the phytopathogenic fungus were planted equidistantly in
Petri dishes with PDA + chloramphenicol medium spaced
10 mm from the edge of the dish, and were incubated at
26◦C. All of the endophyte-phytopathogen antagonism tests
were performed in triplicate. They were observed daily, and the
antagonistic capability of each fungus was determined, expressed
as a percentage of the radial inhibition of the pathogen’s growth
(PIRG-P) and the endophyte’s (PIRG-E), using the following

formula for the calculation (López et al., 2017):

PIRG− P or − E(%) = (R1− R2)/R1] × 100

Where R1 indicates the radial growth of the phytopathogen or the
endophyte colony in control plates and R2 indicates the radial
growth of the phytopathogen or the endophyte colony (in the
direction of the other fungus) during the antagonism trials. To
determine the type of interaction between the endophyte and
the phytopathogen, the following scale was used with 5 types
of interactions, adapted from López et al. (2017): (1): The two
opposing fungi demonstrate similar growth and overlap; (2):
the endophytic fungus outgrows the pathogenic one; (3): the
phytopathogenic fungus outgrows the endophytic one; (4 and 5):
mutual inhibition of the two colonies at a short distance (<2 mm)
or larger distance (>2 mm), respectively. An ANOVA analysis
with a Bonferroni test was applied a posteriori to compare the
inhibition of the growth between the opposing fungi and verify
which endophytic fungi had the greatest inhibitory impact on
the phytopathogen.

In vivo Tests on Flowers and Severity
Estimation
Of the in vitro antagonism tests, the two morphospecies
of endophytic fungi (EFTL-10 and EFTL-13) with the best
inhibition results against C. acutatum C-100 were selected for
severity tests on the flowers of Tahiti lime. Spore solutions were
prepared from these two fungi with which the petals of the
Tahiti lime flowers were inoculated. Mycelium sections of the
two fungi were grown in flasks of liquid medium. The flasks
were incubated in laboratory conditions using a rotating agitator
at 140 rpm and a temperature of 25◦C for 1 week to allow for
the fungi to sporulate and disperse spores through the medium.
From this stock solution, 5 serial dilutions were prepared to
determine which was best for the inoculation. The spore density
was measured in a Neubauer chamber, and the suspension was
standardized using a final concentration of 1× 103 spores/mL.

The treatments were carried out in a greenhouse at a
temperature of 24± 2◦C and relative humidity of 80%, and using
a completely randomized experimental design in triplicate. The
Tahiti lime flowers used were in fresh anthesis (flower opening).
Each set of flowers was washed with distilled water and 2.0%
sodium hypochlorite for 1 min. 5 flowers were treated in the
following manner:

T1: flowers inoculated with a solution of phytopathogenic
spores of Colletotrichum acutatum;

T2: flowers inoculated with a solution of phytopathogenic
spores + endophytic spore solution 1 at 12 h; T3: flowers
inoculated with a solution of phytopathogenic spores +
endophytic spore solution 2 at 12 h; T4: 5 flowers inoculated with
distilled water as a control. All of the treatments were inspected
at 12, 48, and 72 h for the final measurement of petal lesions,
according to a protocol adapted from Goulin et al. (2019).

To calculate the lesion percentage (necrosis) on the Tahiti
lime flowers, the petals were initially measured lengthwise using
a vernier caliper, after which a photograph was taken with a
conventional digital camera in jpg format. The photos were
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scaled in AutoCAD R© V. 19 software based on the actual petal
area measurements. With the image scaled, the total area of the
flower was delimited, and the affected area (that with lesions) was
determined and expressed as a percentage, using the following
scale of severity (adapted from Lakshmi et al., 2011).

Flower area affected Level

None 0

Up to 5% 1

6–10% 2

11–20% 3

21–50% 4

More than 50% 5

With the numeric values above, apercent severity index (PSI)
was calculated for the flowers, using the following formula:

Percent Severity Index =
Sum of numerical ratings × 100
∗Number of units × Maximum grade

∗flower
To arrive at a general result for the percentage of severity in

the average lesions of the flowers, the following classification was
used:

Group Percent severity index Symptomatology

Highly virulent >40 Large confluent necrotic areas

Moderately virulent >30–40 Numerous small necrotic spots

Less virulent <30 Few necrotic spots

Shivakumar et al. (2016).

Isolation of Fungal DNA and Molecular
Identification
The endophytic fungal morphospecies (EFTL-10 and EFTL-
13) used in the Tahiti lime flower severity tests were
seeded in new PDA media to obtain pure colonies and
extract biomass from mycelia after 8 days of growth. DNA
was extracted using DNeasy Powerlyzer Power Soil Kit
(Qiagen) according to t22he supplier’s extraction protocol.
The evaluation of the purity and quantification of the
DNA extracted from the fungal samples was carried out by
spectrophotometry using Nanodrop 2000c (Thermo Scientific),
calculating the concentration in ng / µL, with dilutions adjusted
for absorbance readings at 260 nm and the yield was calculated
as the amount of DNA obtained (ng) over the weight of
mycelium used for extraction (µg). The extractions were carried
out in triplicate.

Markers ITS and TEF were amplified and used for taxonomic
purposes. ITS region was amplified using the fungal universal
primers ITS1 and ITS 4; ITS1: 5′ TCCGTAGGTGAACCTGCGG
3′—ITS4: 5′ TCCTCCGCTTATTGATATGC 3′; TEF region
was amplified using the fungal universal primers TEF_983F:

5′ GCYCCYGGHCAYCGTGAYTTYAT3′ TEF_2218R:5′AT
GACACCRACRGCRACRGTYTG 3′, and then capillary
sequenced. ITS and TEF sequences were aligned using the
MAFFT package and the alignment was imported into MEGA
v7. The sequence data generated were compared against the
GenBank database through BLAST1 to determine their most
probable closely related taxa. Phylogenetic analysis using ITS
datasets was conducted for the taxonomic study of the EFTL-10
and EFTL-13 isolates. A maximum-likelihood phylogenetic
tree was performed using IQtree software. We used the
TIM2e+I+G4 model, Ultrafast Bootstrap (Hoang et al., 2018)
with 1,000 replicates.

RESULTS

Isolation, Characterization, and Diversity
of Endophytic Fungi
Fifteen morphospecies of endophytic fungi were isolated from
the tissues of the Tahiti lime and identified using the code EFTL-
(Endophytic Fungi Tahiti Lime), as illustrated in Figure 1. The
endophytic fungi were identified using traditional morphological
identification methods. The morphological characteristics of
these fungi indicate that they belong to the Ascomycetes. Only
two were classified as sterile mycelium. Fungi represented in these
findings include the genera: Phoma sp., Fusarium sp., Curvularia
sp., Colletotrichum sp., Diaporthe sp., Verticillum sp., Xylaria sp.,
Nigrospora sp., Trichoderma sp., Alternaria sp., Phyllosticta sp.,
Chaetomium sp., and Micelia sterilia.

From a total of 486 fragments of branches, leaves, and fruit
seeded in PDA media after each of the 6 sampling trips carried
out, 138 fungal isolates were obtained. Table 1 indicates the
morphospecies identified and the number of isolates, with the
relative isolation frequency for each type of vegetal tissue. It can
be observed that these endophytic isolates from branches, leaves,
and fruit do not always exhibit the same isolation frequency. The
maximum isolation frequency was observed in leaves (41.30%),
followed by branches (39.86%), and fruit (18.84%). An ANOVA
test (p < 0.05) indicated that there are significant differences
in the isolation frequencies between tissues, as is especially
evident in the much lower frequency noted in fruit compared to
branches and leaves.

The morphospecies isolated with the highest frequency from
Tahiti limes were: EFTL-01; EFTL-03; EFTL-04; EFTL-06; EFTL-
08; EFTL-09; EFTL-11; and EFTL-12. Nevertheless, in all of the 6
samplings undertaken, the isolates from fruit exhibited the lowest
frequency (Table 1).

The diversity of endophytic fungi was observed at the level
of their richness (number of taxa = S) and abundance (number
of isolates or individuals). It was noted that although richness of
fungal morphospecies was similar for both branches and leaves,
it was lower in fruit. The diversity of fungi found (Table 2),
using Simpson’s index, was very similar between the branches
(0.92), leaves (0.91), and fruit (0.90). This is to say that a very
similar distribution exists between the species sampled according

1http://blast.ncbi.nlm.nih.gov/
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FIGURE 1 | Morphospecies of endophytic fungi isolated from tissues of Tahiti lime. The identification code corresponds to the name and number of the
morphospecies (Endophyte Fungi Tahiti Lime: EFTL-).

to the type of tissue. The Shannon-Wiener diversity index (with
reference values from 0 to 5), indicates that there is a normal level
of diversity in this fungal community (branches: 2.56; leaves: 2.52;
fruit: 2.35) (Table 2). With respect to this indicator, the tissues
were fairly equal, except for fruit, which was somewhat lower.

TABLE 1 | Number and relative frequencies of fungal isolates by colonized
tissues of Tahiti lime.

Morphospecies Number of isolations Relative frequency percentages

Branches Leaves Fruit

EFTL-01 13 4.35 5.07 0.00

EFTL-02 5 1.45 0.72 1.45

EFTL-03* 11 3.62 2.90 1.45

EFTL-04* 12 3.62 5.07 0.00

EFTL-05 6 1.45 0.72 2.17

EFTL-06 11 4.35 2.90 0.72

EFTL-07 8 2.17 2.17 1.45

EFTL-08 14 4.35 3.62 2.17

EFTL-09 10 2.90 1.45 2.90

EFTL-10* 5 1.45 2.17 0.00

EFTL-11 10 2.17 3.62 1.45

EFTL-12* 10 1.45 4.35 1.45

EFTL-13* 9 2.17 2.90 1.45

EFTL-14 7 1.45 3.62 0.00

EFTL-15 7 2.90 0.00 2.17

Total 138 39.86 41.30 18.84

ANOVA: F = 5.064; (P = 0.01).
*Morphospecies selected for antagonism tests.

Antagonism Tests Against
Phytopathogenic Fungi
The 15 resulting fungal morphospecies were subjected to stressful
growth with low nutrient conditions in a PDA medium for 8
days (before the antagonism tests). Only the fastest-growing after
5 days (EFTL-03, EFTL-04, EFTL-10, EFTL-12, and EFTL-13)
(∗Table 1) were selected to trial against the phytopathogen fungus
Colletotrichum acutatum C-100.

During the first 7 days of dual growth, it was observed
that the average radial growth inhibition percentages of the
endophytic fungi were less than those of the phytopathogenic
fungi (Table 3); that is, the endophytic fungi limited the growth
of the phytopathogens in the culture medium, under the same
temperature and nutrient conditions. Figure 2 illustrates the
comparison in the dual tests (endophyte-phytopathogen) of
the 5 endophytic fungi tested (EFTL-03, EFTL-04, EFTL-10,
EFTL-12, and EFTL-13). Although they grew for the same
experimental time, pairs b and c had higher values for their

TABLE 2 | Diversity indices of endophytic fungi from tissues sampled.

Tissue type

Indicators Branches Leaves Fruit

Individuals (isolates) 49 57 26

Speciesrichness 14 14 11

Shannon- Wiener diversity 2.56 2.52 2.35

Simpson diversity 0.92 0.91 0.90

Speciesevenness 0.92 0.89 0.95
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TABLE 3 | Percent of radial growth inhibition of endophytic and phytopathogenic
fungi (Colletotrichum acutatum C-100).

Dual trial Fungal
morphospecies

Type of
interaction

(PIRG-E-%) (PIRG-P-%)

A EFTL-03 5 3.54 ± 1.6 5.26 ± 1.3

B EFTL-04 5 19.80 ± 1.4 21.47 ± 1.1

C EFTL-10 2++ 27.00 ± 2.3 29.09 ± 1.6

D EFTL-12 5 18.06 ± 0.2 6.38 ± 1.3

E EFTL-13 2+ 10.10 ± 0.3 12.90 ± 0.1

Means of percentage of growth inhibition ± SD.

percentage of inhibition for each fungus; nevertheless, there are
significant differences between these pairs (ANOVA/Bonferroni
test; F = 6.738; P = 0.0013), with the phytopathogen
largely inhibited.

When the trials were completed after 10 days, the fungi
maintained a similar mycelial distribution in three of the pairs
(A,B,D) as is shown in Figure 3. Here, it can be seen that both
did not continue growing, but rather that they exhibited a Type-
5 interaction, where the opposing fungi demonstrated similar
growth but maintained a distance of > 2 mm between them
(black arrows in Figure 3). The c and e pairs exhibited a Type-
2 interaction, where the mycelium of the endophytic fungus
outgrew that of the phytopathogenic. This is seen to be most true
in pair c (2++), and slightly in pair e (2+) (Figure 3). Due to
their performance, these two fungi were selected for the following
in vivo tests.

Severity Tests on Tahiti Lime Flowers
In each of the tests to evaluate the severity of C. acutatum
C-100 on Tahiti lime flowers previously inoculated with the
phytopathogen and then counter-inoculated with a 103 spore/ml
solution of the endophytic fungi EFTL-10 and EFTL-13, no
considerable development of anthracnose-style lesions was found

in the experimental units, nor in the replicas, during the
observation period (72 h). In the control set only inoculated with
C. acutatum C-100, 35.63% coverage of lesions was observed,
yielding a lesion degree of 4, in each of the experimental
units (Table 4).

The flowers that were co-inoculated with the endophytic
spore solutions before the application of the 103 spore/ml
phytopathogen solution (EFTL-10 + C-100; EFTL-13 + C-
100), exhibited low percentages of lesions: 0.29 and 1.85%,
respectively, yielding a lesion degree of 1 (Table 4). This data
was analyzed using an ANOVA and Tukey test aposteriori,
which demonstrated significant differences between treatments
(Figure 4). Specifically, C-100 vs. EFTL-10 (P < 0.0001) and C-
100 vs. EFTL-13 (P < 0.0001) and without significant difference
between the two treatments (P = 0.8153) (Figure 4). That is,
the phytopathogenic fungus was inhibited by the endophytic
on the flower petals; with EFTL-10 being more effective than
EFTL-13 (Figure 5).

The presence of necrotic areas on Tahiti lime flower petals
is common in crops of these plants, as was observed during
sample collection. In the current study, a high percentage
of flowers developed necrotic stains within 72 h in vivo
after inoculation with the phytopathogenic C. acutatum C-100
spores and distilled water, with a high severity index (80%)
as shown in Table 4. The same index for plants inoculated
with the endophytic spore solutions (EFTL-10 and EFTL-13)
before inoculation with the phytopathogen was 1.9 and 12.40%,
respectively. The control exerted by the endophytic fungi over the
development of necrotic areas on flower petals can thus be readily
observed (Figure 5).

Molecular Identification of Antagonistic
Endophytic Fungi
The molecular tests applied to the morphospecies EFTL-10
and EFTL-13 resulted in consensus sequences, which were
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FIGURE 2 | Comparison of antagonism tests during 7 days of growth. E: Endophyte. (a) EFTL-03; (b) EFTL-04; (c) EFTL-10; (d) EFTL-12; (e) EFTL-13; P:
Phytopathogen (Colletotrichum acutatun C-10). All dual trials are significantly different (∗denotes P < 0.05) based on Bonferroni’s range test. ∗denotes significant
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FIGURE 3 | Dual in vitro tests for endophytic fungi (left) vs. Colletotrichum acutatum C-100 (right). (A) EFTL-03/C-100; (B) EFTL-04 / C-100; (C) EFTL-10/C-100;
(D) EFTL-12 / C-100; (E) EFTL-13/C-100. The black arrows indicate the zone of limiting interaction between the two fungi (>2 mm).

compared to the GenBank database, resulting in a finding of
two possible species. The phylogenetic trees for the two species
(Figures 6, 7), illustrate the relationships between the resulting
sequences and those listed in GenBank. The endophytic fungus
EFTL-10 was confirmed to be the species Xylaria adscendens,
with a 99% match to the strain KP133293.1; and the consensus
tree confirmed the genus and specie, Trichoderma atroviride
for EFTL-13. The distance matrix confirmed this result, showing
that the lowest distance iswith Trichoderma atroviride, with
a distance of 0.0020. Both species are taxonomically within
the phylum Ascomycota, and the families Xylariaceae and
Hypocreaceae, respectively.

TABLE 4 | Percentages of floral lesions and percentage severity index (PSI).

Indicators Treatments

C-100 EFTL-10 + C-100 EFTL-13 + C-100

% Lesion R1 37.36 ± 12.3 0.28 ± 0.3 1.96 ± 1.0

% Lesion R2 34.38 ± 12.1 0.30 ± 0.5 2.88 ± 2.5

% Lesion R3 35.16 ± 14.3 0.28 ± 0.4 0.72 ± 1.0

Average (%) 35.63 ± 1.5 0.29 ± 0.1 1.85 ± 1.1

Degreeofeffect 4 1 1

PSI (%) 80.00 1.90 12.40

Means of percentage of flower lesions ± SD.

DISCUSSION

Characterization and Diversity of
Endophytic Fungi From Tahiti Lime
The endophytic fungal community associated with tissues from
Tahiti lime branches, leaves, and fruit in the current study was
mainly composed of fungi belonging to the phylum Ascomycota,
and represented by 15 morphospecies. Although studies of
diversity in citrus are very rare in the literature, in the present
case, the diversity of taxa found was similar to other findings.
For example, in terms of endophyte species richness, our results
were similar to those of Juybari et al. (2019), who found 30 fungal
taxa in leaf, bark, and xylem samples of Citrus sinensis in Iran.
Likewise, Douanla-Meli et al. (2013) recorded 20 morphospecies
in 482 isolates from Citrus limon. In the review “Endophytic fungi
reported from Citrus species” (Nicoletti, 2019), it can be seen
that the endophytic fungi genera found in various citrus species
coincide with those preliminarily reported in the present study;
for example, Alternaria sp., Nigrospora sp., Fusarium sp., Xylaria
sp., Colletotrichum sp, Diaporthe sp., and Chaetomium sp., among
other endophytes.

For the frequency of isolates from plant tissues, the greatest
number were found in leaf fragments (41.3%), closely followed
by branches, but much fewer in fruit. This finding is also very
similar to the Juybari et al. (2019) study, in which 46.2% of
isolates originated from leaves, 34.8% from bark, and 19% from
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FIGURE 4 | Percentage of lesions in Tahiti lime flowers. Flowers inoculated with 20 µL of spore solution to induce anthracnose: C-100 (flowers inoculated with
C.acutatum- control lesions); EFTL-10 + C-100 (flowers inoculated with endophytic spore solution EFTL-10 + spores of C. acutatum at 24 h); EFTL-13 + C-100
(flowers inoculated with EFTL-13 endophyte spore solution + C. acutatum spores at 24 h. Bars with different letters show significant differences (p < 0.05).

FIGURE 5 | Incidence of necrosis (red arrows), in Tahiti lime flowers. In vivo treatments: (A): flowers inoculated with distilled water control; (B): flowers inoculated
with 20 µL spore solution of C. acutatum C-100; (C): EFTL-10 + C-100 (flowers inoculated with 20 µL of EFTL-10 endophyte spore solution + C-100 spore solution
at 24 h; (D): EFTL-13 (flowers inoculated with 20 µL EFTL-13 endophyte spore solution + C-100 spore solution at 24 h).
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FIGURE 6 | Phylogenetic tree (Maximum likelihood) of the ITS ribosomal intergenic region of endophytic fungus EFTL-10, performed using IQtree software. We used
the TIM2e+I+G4 model, Ultrafast Bootstrap (Hoang et al., 2018) with 1,000 replicates.

FIGURE 7 | Phylogenetic tree (Maximum likelihood) for the endophytic fungus EFTL-13. Based on two concatenated markers: the ITS ribosomal intergenic region
and the TEF coding gene of the microorganism. We used the TIM2e + I + G4 model, Ultrafast Bootstrap (Hoang et al., 2018) with 1,000 replicates. The consensus
tree confirmed the genus and specie, Trichoderma atroviride.
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xylem. Although the selectivity of endophytic fungal species
in colonizing different plant tissues remains under debate due
to the many influencing factors in play (Mane et al., 2018),
it should be noted that the presence of endophytic fungal
species is ubiquitous in plant tissues, being differentiated in their
frequency and diversity, and possibly based upon the symbiotic
capacity that they acquire with the host plant (Selim, 2012;
Fesel and Zuccaro, 2016).

The Shannon-Wiener diversity indices reported in the present
study for Tahiti limes, specifically those for branches (2.56) and
leaves (2.52), are similar to those found by Sadeghi et al. (2019).
Those authors evaluated the spatiotemporal distribution and
diversity of endophytic fungi in Citrus reticulata, and found the
similar indices for leaves and stems, with values of 2.55 and
2.61, respectively. The Simpson indices and evenness reported
by those authors were also very similar to those in the present
study. However, the difference between the richness of 15
morphospecies isolated in the present study compared with the
702 endophytes isolated by Sadeghi et al. (2019), suggests that
in our case, the richness may have been limited by the breadth
of sampling locations chosen, as well as the agricultural species
selected, and the difficulty of isolating them from vegetal tissues
(Ikram et al., 2019; Fadiji and Babalola, 2020).

In vitro Antagonism Tests: Endophytic
Fungi vs. Colletotrichum acutatum C-100
In recent years, a large number of studies have reported the
antagonistic effect of endophytic fungi upon phytopathogenic
ones (De Silva et al., 2019; da Costa Silveira et al., 2020;
Rojas et al., 2020). This effect is generally due to the
production of secondary metabolites with bioactivity against
these pathogens (Huang et al., 2015; Serrano et al., 2017;
Latz et al., 2019). C. acutatum is one of the species of
phytopathogenic fungi identified as a causal agent of anthracnose
in citrus hosts (Damm et al., 2012; Barquero et al., 2013;
Ben Hadj Daoud et al., 2019). Nevertheless, other species
also exist, such as Colletotrichum gloeosporioides, with very
similar pathogenic tendencies (Ben Hadj Daoud et al., 2019).
In our study, the in vitro interactions of endophytic fungi
against the phytopathogenic C. acutatum allowed us to
determine that the endophytic fungi produce some substance
or physiological phenomena that impedes the normal growth
of the phytopathogen (Figure 2). In 3 of the 5 antagonism
cases, the endophyte and the phytopathogen maintained a mutual
separation in the center of the Petri dish, thus indicating
that although these endophyte strains have an effect, the
phytopathogen nevertheless resists them. However, in two cases,
the superior growth of the endophytes indicates their greater
potential as antagonists, perhaps due to the greater production
of inhibitory substances.

When opposing other fungi, endophytic fungi tend to generate
various effects against the antagonist (Latz et al., 2018), among
these, mycoparasitism (Cao et al., 2009; Latz et al., 2018; Rajani
et al., 2020), in which they directly affect the pathogen by
hyphal coiling or penetration; and indirect, with only physical
contact. They may also exhibit antibiosis (Wei et al., 2019),
where the pathogen is inhibited by metabolites produced by the

endophyte (Mousa and Raizada, 2013), and competition, where
fungi compete for food, with the endophyte using the resource
better (Serrano et al., 2017). Although these specific phenomena
were not microscopically evaluated in the present work, the effect
of endophytic fungi was evidenced in vitro against Colletotrichum
acutatum as a phytopathogen (Figure 2).

The in vitro inhibitory effect of endophytic fungi against
phytopathogenic species of anthracnose-causing Colletotrichum
has been reported in various studies of Colletotrichum sp. For
example, various endophytic fungi have been trialed against
C. gloeosporioides in Amazonian plants such as guarana and
açai palm, with results exhibiting inhibition by mycoparasitism
and antibiosis against the pathogen (Bonatelli et al., 2016; Peters
et al., 2020). Another study evaluated the effect of metabolites
of the endophytic fungi Phoma herbarum, by isolating an
alcoholic compound which demonstrated effective antagonism
against C. gloeosporioides that cause anthracnose in Curcuma
longa (Gupta et al., 2016). We were unable to find other
works concerning the antagonism of endophytic fungi against
Colletotrichum acutatum in citrus. However, in other species such
as Olea europaea, endophytic fungi were isolated with inhibitory
action against the growth of C. acutatum when cultivated
together (Landum et al., 2016), thus confirming that this fungus
can be controlled by mechanisms and active compounds of
endophytic fungi.

In vivo Tests: Inhibition of Severity in
C. acutatum C-100
Colletotrichum sp. infection in citrus tissues and organs usually
occurs by mechanisms that depend on the tendencies of the
phytopathogen (De Silva et al., 2017; Ben Hadj Daoud et al.,
2019). This can occur biotrophically, where the pathogen remains
within plant tissues and absorbs plant metabolites (Vargas et al.,
2012) or necrotrophically, where it actively infects and colonizes
plant cells, leading to cell death and being observable as dark
spots or necrosis (Peres et al., 2008; Aiello et al., 2015). The
tests carried out in this work demonstrated the considerable
necrotrophic effect of C. acutatum (C-100) on Tahiti lime
flower petals at 72 h after inoculation with spore solution. The
percentage of lesion coverage decreased when the petals were
previously inoculated with a spore solution of the 2 selected
endophytic morphospecies (EFTL-10 and EFTL-13); that is, the
C. acutatum C-100 strain exhibited sensitivity to the presence
of endophytic fungal spores, reducing its infection capacity and
severity to produce necrosis in leaves.

The inhibitory properties of the two endophytic species tested
(EFTL-10 and EFTL-13) may be related to one of the mechanisms
described above: antibiosis, competition, or mycoparasitism.
Further studies to evaluate virulence and metabolite products
of fermented liquids are key in order to put forth these
endophytic fungal strains as promising candidates for the control
of anthracnose. This is especially so, given that the traditional
manner of control for these phytopathogens involves fungicides
for agriculture in general (Chen et al., 2016; Ishii et al., 2016),
and in particular for citrus crops (Peres et al., 2004), a situation
which is leading to resistance in Colletotrichum species, as
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reported by Forcelini and Peres (2018) for C. acutatum species
in strawberry crops. The alterative to this conventional practice
is to bring sustainable agriculture technology to citrus cultivation
using biological controls, including fungal microorganisms with
bioactive potential against diseases. Regarding this, it is important
to consider that the application of these products derived from
endophytic fungi with inhibitory capacity in phytopathogenic
fungi should be applied in field trials (in the same Tahiti lime
or greenhouse crops), as has been done in some studies with
cucumber pathogenic fungi, where 3 isolates of endophytic fungi
successfully suppressed the severity of wilt when co-inoculated
with the pathogen Fusarium oxysporum, in greenhouse studies
(Abro et al., 2019).

Molecular Identification of the
Endophytic Strains EFTL-10 and EFTL-13
The fungi EFTL-10 and EFTL-13 identified in this work,
according to the GenBank search and support for phylogenetic
relationships, show similarity with the species Xylaria adscendens
and Trichoderma atroviride. These species of the Phylum
ascomycota exhibit both free and endophyte lifestyles (Soto
Medina and Bolaños Rojas, 2013; Naranjo-Ortiz and Gabaldón,
2019). Some xylaria species have been recorded as endophytes
with potential for biological control of phytopathogens
(Villavicencio-Vásquez et al., 2018), including in citrus plants;
for example, Xylaria cubensis was isolated from healthy leaves,
bark, and xylem of Citrus sinensis in different seasons and
age classes in Iran (Juybari et al., 2019), and Xylaria sp. in
Citrus limon (Douanla-Meli et al., 2013). Few studies were
found for citrus fruits regarding the evaluation of antagonism
of Xylaria species against Colletotrichum sp., except works
where diversity is reported in several species (Nicoletti, 2019).
However, a study similar to our current paper evaluated the
inhibitory action of isolated endophytic species of Olea europaea
L. on the growth of Colletotrichum acutatum, among which a
morphotype of the Xylariaceae family was found, but could not
be positively identified for species, that caused inhibition against
the phytopathogen (Landum et al., 2016). This indicates the
potential that Xylaria adscendens may have as a controller of
C. acutatum in Tahiti lime.

With respect to Trichoderma sp., this is a very diverse genus,
frequently associated with the roots of plants, which can promote
biological control of phytopathogenic fungal species (Mukherjee
et al., 2013; Rajani et al., 2020). Regarding biological control, a

publication was found that reports results for the same species
of T. atroviride considered in our study, in which the fungi
was also evaluated as an antagonist against the phytopathogen
Fusarium solani, finding that it is an efficient controller of the
phytopathogen and significantly reducing the severity of the
disease, due to the production of active compounds (Toghueo
et al., 2016). Therefore, it is noteworthy that the ability to
produce various metabolites and adapt to various experimental
conditions, affords the fungi Xylaria adscendens and Trichoderma
atroviride the possibility of being used in the biotechnology
industry. As always, additional support through complementary
field and laboratory research will be required to further expand
the available science, and make possible their use as biological
control agents against Colletotrichum acutatum in Tahiti lime.
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