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Abstract
A variety of deep generative models have been adopted to
perform de novo functional protein generation. Compared
to 3D protein design, sequence-based generation methods,
which aim to generate amino acid sequences with desired
functions, remain a major approach for functional protein
generation due to the abundance and quality of protein se-
quence data, as well as the relatively low modeling complex-
ity for training. Although these models are typically trained
to match protein sequences from the training data, exact
matching of every amino acid is not always essential. Certain
amino acid changes (e.g., mismatches, insertions, and dele-
tions) may not necessarily lead to functional changes. This
suggests that maximizing the training data likelihood beyond
the amino acid sequence space could yield better generative
models. Pre-trained protein large language models (PLMs)
like ESM2 can encode protein sequences into a latent space,
potentially serving as functional validators. We propose train-
ing functional protein sequence generative models by simul-
taneously optimizing the likelihood of training data in both
the amino acid sequence space and the latent space derived
from a PLM. This training scheme can also be viewed as a
knowledge distillation approach that dynamically re-weights
samples during training. We applied our method to train GPT-
like models (i.e., autoregressive transformers) for antimicro-
bial peptide (AMP) and malate dehydrogenase (MDH) gen-
eration tasks. Computational experiments confirmed that our
method outperformed various deep generative models (e.g.,
generative adversarial net, variational autoencoder, and GPT
model without the proposed training strategy) on these tasks,
demonstrating the effectiveness of our multi-likelihood opti-
mization strategy.

Introduction
Proteins are essential molecular machines, playing vital
roles in maintaining various cellular functions, regulating
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metabolic pathways, and influencing disease development
(Hartl, Bracher, and Hayer-Hartl 2011). Traditional protein
engineering, aimed at designing industrial and pharmaceuti-
cal proteins, has primarily relied on directed evolution. This
method involves random mutagenesis coupled with man-
ual selection to identify variants with desired properties (Li
et al. 2020). However, the vast protein sequence space and
the slow pace of experimental validation make this pro-
cess time-consuming and expensive. Computational-aided
protein design offers an alternative approach by leveraging
algorithms to automatically generate, optimize, and prior-
itize proteins with desired functions (Tran and Hy 2024).
This paradigm significantly accelerates protein design and
improves the success rate of discovering novel functional
biomolecules.

Among various computational approaches, machine
learning (ML), particularly deep learning-based protein de-
sign, has garnered significant attention due to its improved
modeling accuracy, efficiency in navigating the protein se-
quence space, and high-throughput productivity (Brandes
et al. 2022). Protein design using deep generative mod-
els can generally be divided into two categories: structure
and sequence-based design. Sequence-based approaches di-
rectly generate amino acid sequences with desired functions,
whereas structure-based approaches first generate functional
3-D protein structures and then reverse-engineer the corre-
sponding amino acid sequences (Notin et al. 2024). While
structure-based design might seem more accurate and ex-
plainable due to its direct modeling of protein structures,
it is hampered by the limited availability of experimentally
determined 3D protein structures, restricting the training of
reliable deep generative models. One could argue that pre-
dicted structures from tools like AlphaFold (McDonald et al.
2023) and ESMFold (Lin et al. 2022) could be used to aug-
ment training data for structural protein generation. How-
ever, this approach may introduce noise into the training
data, potentially compromising the quality of the resulting
models, as not all proteins are well-represented by these
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structural predictors. Additionally, some proteins and pep-
tides—particularly short, flexible, and dynamic ones—are
challenging to capture with a single predicted structural con-
formation, making the structure–function relationships diffi-
cult to model (McDonald et al. 2023). Due to these chal-
lenges, sequence-based design remains a major method for
efficiently generating functional proteins.

Almost all mainstream deep generative model frame-
works (i.e., variational autoencoder, generative adversarial
net, flow-based, diffusion-based and neural language mod-
els) have been adopted for functional protein sequence gen-
eration (Harshvardhan et al. 2020). These methods typically
involve maximizing the likelihood or its lower bound of
training protein sequences within the amino acid sequence
space. In other words, the generated protein sequences
should closely resemble those in the training data in terms
of their ordered amino acid composition. However, optimiz-
ing solely within the amino acid space may not be ideal.
Here we provide two justifications for this. First, amino acid
changes (i.e., mismatches, insertions and deletions) in pro-
tein sequences (i.e., “genotypes”) don’t necessarily cause
their function changes (i.e., “phenotypes”). For instance,
consider a generative model trained on an antibiotic pro-
tein A (sequence: KTLKV ) that generates two variants,
A1 (sequence: KTLKR) and A2 (sequence: KTLKM ).
Although both A1 and A2 differ from A by one amino acid,
and thus have the same training loss, A1 might be identified
as an antibiotic while A2 might not. Penalizing both vari-
ants equally during training fails to capture the functional
similarity between A and A1. In addition to this “genotype-
phenotype” issue, the amino acid sequence space is discrete,
and functional protein distributions within this space can be
highly multimodal, hindering distribution learning (Fig.1a-
b). These challenges suggest that we should optimize the
likelihood of training data beyond the amino acid sequence
space. Recent advances in foundational models, such as
GPT- and BERT-style models trained for protein sequences
(e.g., ProtGPT, ProGen, ESM series ESM1 and ESM2, Prot-
BERT), have revolutionized computational protein model-
ing (Ferruz and Höcker 2022; Lin et al. 2022). Specifically,
the BERT-style ESM model embeds protein sequences into
a latent space where proteins with similar functions tend to
have similar latent embeddings, effectively serving as an in-
direct protein function checker (Lin et al. 2022). We hypoth-
esize that the distribution of functional proteins in this latent
space is more organized than in the amino acid sequence
space, making it more suitable for deep generative modeling
(Fig.1a-b). Inspired by this, we propose a multi-likelihood
space optimization strategy for functional protein genera-
tion. Specifically, we trained GPT models by simultaneously
optimizing the training data likelihoods in both the origi-
nal amino acid sequence space and the ESM-derived latent
space. As the loss from the latter space is not differentiable,
we used policy gradient during training. Our training strat-
egy can also be viewed as a form of knowledge distillation
from ESM to GPT, where knowledge transfer is achieved
through dynamically reweighting the gradients of generated
samples during training. We applied our method to generate
antimicrobial peptides (AMPs) and malate dehydrogenases

(MDHs), demonstrating that our approach outperformed the
original GPT model fine-tuned on functional proteins sets
as well as several baseline deep generative models in these
tasks. Our training strategy is flexible and can be adopted
by other generative models that explicitly model the likeli-
hood of training data. We envision that our approach could
serve as a plug-in during deep generative model training to
improve the functional protein generation quality.

Related Work
Knowledge distillation. Knowledge distillation is a process
where a student model (typically smaller and more efficient)
is trained to replicate the behavior of a teacher model (typ-
ically larger and more complex). By converting the out-
puts of the teacher model into “soft labels” for the student
model to learn, the student can effectively learn and internal-
ize the knowledge from the teacher. This technique is often
employed for model pruning, transfer learning, and ensem-
ble learning. For a more comprehensive review of knowl-
edge distillation, please refer to this review paper (Gou et al.
2021).
Deep generative models for functional protein design.
To advance protein design, various deep learning meth-
ods have been developed based on deep generative model
frameworks such as Generative Adversarial Nets (GANs),
Variational Autoencoders (VAEs), neural language models,
flow-based models, and diffusion models. Representative
structure-based protein design approaches include condi-
tional VAEs (Schmitt et al. 2022), guided diffusion (Gru-
ver et al. 2024), Regression Transformer, and ProteinNPT
(Notin et al. 2023). Conversely, sequence-based protein de-
sign often benefits from lower modeling complexity and bet-
ter availability of labeled data for training. For antimicrobial
peptide (AMP) generation, methods have been developed
using GANs (e.g., AMPGAN, Feedback-GAN), VAEs (e.g.,
PepCVAE, HydrAMP) (Szymczak et al. 2023), GPT-based
models, and hybrid approaches (e.g., GAN + diffusion). Ad-
ditionally, GAN (ProteinGAN) (Repecka et al. 2021) and
GPT architectures have been applied to malate dehydroge-
nase (MDH) design and the discovery of novel MDH vari-
ants.
Foundation models for protein sequence modeling. Pre-
trained large language models, such as ProtGPT (Ferruz,
Schmidt, and Höcker 2022), ProGen (Ferruz and Höcker
2022), ESM (ESM1 and ESM2) (Lin et al. 2022), and Pro-
teinBERT (Brandes et al. 2022), have been trained on mas-
sive protein sequence datasets in a self-supervised manner to
perform general protein sequence generation and protein se-
quence representation learning. Although these models are
trained for general purposes, they can be easily fine-tuned
on smaller functional protein sets to perform specific down-
stream tasks, such as generation and property prediction.

Methodology
We first provide an overview of the general workflow of
our method, which comprises a deep learning-based gener-
ator for protein sequence generation and a pretrained foun-
dation model for protein sequence representation learning
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Figure 1: (a) A sequence similarity matrix was constructed using 5,000 antimicrobial peptides (AMPs) and 5,000 non-AMPs
through local sequence alignment. T-SNE was then applied to convert the similarity matrix into a 2D space. (b) For the same
set of AMPs and non-AMPs, ESM2 was used to generate their latent representations, which were subsequently reduced to two
dimensions using T-SNE. Compared to the 2D space derived from sequence similarity, the 2D latent space induced by the ESM
model showed improved separation and clustering of AMPs and non-AMPs. (c) Our proposed framework for functional protein
sequence generation incorporates an additional protein BERT model into its training process. This allows for the training of an
enhanced deep generative model (e.g., a GPT model) by simultaneously optimizing the training data likelihoods from both the
original protein sequence space (i.e., the amino acid sequence space) and the BERT-derived latent space.

(Fig.1c). The generator can be any deep generative model
framework capable of explicitly modeling the training data
likelihood or its lower bound (e.g., variational autoencoder,
flow-based models, diffusion-based models, or neural lan-
guage models). While the typical approach to training a gen-
erator for protein sequence generation involves maximizing
the likelihood of training amino acid sequences, the inclu-
sion of a pre-trained protein foundation model allows us to
derive an alternative training data distribution—specifically,
the distribution of latent representations of the training pro-
teins—thereby providing an additional optimization target
for the generator. For simplicity and without loss of gen-
erality, we assume our generator is a GPT model (i.e., au-
toregressive transformer decoder) and the pre-trained pro-
tein foundation model is a BERT model (i.e., transformer
encoder) (Vaswani 2017). Below, we introduce some basic
concepts and notations related to GPT and BERT models
before detailing our generative model training strategy.

GPT for functional protein sequence generation. Given
a functional protein set D = {X1, X2, ..., Xn} con-
taining n sequences for a GPT model to train, the
model takes each sequence Xi as its input and uti-
lizes a transformer decoder (with causal mask) to autore-
gressively perform the next-token probability prediction
p(Xi,j |Xi,j−1, Xi,j−2, ..., Xi,2, Xi,1). Here, Xi,j stands for
the jth token in sequence Xi, and the probability of generat-

ing token Xi,j in jth position is conditioned on the previous
tokens Xi,j−1, Xi,j−2,. . . , Xi,2, and Xi,1. The standard loss
function to be minimized for training such a model is the
negative log likelihood (NLL) of the training data in the to-
ken (i.e., amino acid) space, which can be written as:

laa(D) = − 1
n

∑n
i=1

∑li
j=1 log p(Xi,j |Xi,j−1, ..., Xi,1),

where li is the amino acid sequence length for protein Xi.
As NLL is equivalent to the cross-entropy loss, laa(D) prac-
tically is calculated by the cross entropy between the input
sequences and the generated sequences by the GPT model.
Suppose we input the training protein sequences to the GPT
model and obtaining the generated sequences Dgenerated =

{X ′

1, X
′

2, ..., X
′

n}. laa(D) can be also written as:

laa(D) = 1
n

∑n
i=1 CE(Xi, X

′

i),

where CE(Xi, X
′

i) is the cross-entropy loss between two
sequences Xi and X

′

i .
BERT for protein representation learning. The BERT
model learns latent embeddings for protein sequences by
processing masked protein sequences using a transformer
encoder and predicting the correct amino acids at the masked
positions. Given a pre-trained protein BERT model F and a
protein sequence Xi, Xi’s first token representation in the
last transformer layer of F is defined as the protein repre-
sentation of Xi. It should be noted that there are other ways
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(e.g., mean of the latent representations of all tokens in the
last transformer layer) to derive a protein representation, we
only used the first token representation here for simplicity.
For clarity, we use F (Xi) ∈ Rm to denote this protein rep-
resentation, where m stands for the dimension of this latent
vectorized representation. By generating representations for
all functional proteins from D, we derive an alternative em-
pirical distribution Dlatent = {F (X1), F (X2), ..., F (Xn)}
for the GPT model to learn from.
Proposed training scheme. Given the functional protein se-
quence set D as well as its corresponding latent representa-
tion set Dlatent, our training strategy for the GPT model in-
volves the maximum likelihood estimation from the empiri-
cal distributions of D (in the amino acid sequence space) and
Dlatent (in a BERT model-derived latent space). Maximum
likelihood estimation for the amino acid sequence space can
be achieved via minimizing laa(D) described above. As
laa(D) is differentiable with respect to the learnable param-
eters in the GPT model, this minimization can be achieved
by using (mini-batch) gradient descent to update the GPT
model.

We now move to describe the way to perform maxi-
mum likelihood estimation for Dlatent. The process starts
from inputting the training protein sequences to the GPT
model and obtaining the generated sequences Dgenerated =

{X ′

1, X
′

2, ..., X
′

n}. We then pass Dgenerated to the pre-
trained protein BERT F to get the latent representations
D

′

latent = {F (X
′

1), F (X
′

2), ..., F (X
′

n)} for these gener-
ated sequences. Note that the BERT model is pretrained and
won’t be updated during our optimization process. As F (·)
induces a continuous vector space, maximizing the likeli-
hood given Dlatent corresponds to minimizing the mean
squared error between Dlatent and D

′

latent:

lmse(D
′

latent, Dlatent)

= 1
nm

∑n
i=1

∑m
j=1[F (Xi)j − F (X

′

i)j ]
2

where F (Xi)j stands for the jth element of F (Xi).
Putting the two minimization losses together, we have the

final optimization loss for the GPT mode:

ltotal = laa(D) + λ ∗ lmse(D
′

latent, Dlatent),

where λ is a hyperparameter to balance two losses. Ideally,
given the learnable parameters w of the GPT model, we want
to calculate the gradient of ltotal with respect to w to per-
form gradient descent. However, lmse(D

′

latent, Dlatent) is
not differentiable with respect to w. To address this, we use
policy gradient (Sutton and Barto 2018) to replace the “in-
valid” gradient of lmse to w. Specifically, in the context of
reinforcement learning, we formulate the GPT as a policy
network and the BERT model as the environment the pol-
icy network interacts with. We define the reward as the neg-
ative lmse(D

′

latent, Dlatent) (i.e., we want to minimize the
reward here). Then, sample-wisely, the policy gradient of the
reward from the generated sample X

′

i with respect to w is
the multiplication between the reward and the log likelihood
of X

′

i from the GPT model (i.e., the negative cross-entropy
between X

′

i and Xi):

policy gradient(X
′

i)

=
∂−lmse({X

′
i},{Xi})∗−CE(Xi,X

′
i )

∂w

=
∂lmse({X

′
i},{Xi})∗CE(Xi,X

′
i )

∂w ,

where ∂ is the partial derivative symbol. Now the gradient
of ltotal with respect to w for the generated sample X

′

i can
be written as:

∂CE(Xi,X
′
i )

∂w + λ ∗ policy gradient(X
′

i)

= (1 + λ ∗ lmse({X
′

i}, {Xi}))∂CE(Xi,X
′
i )

∂w .

We then can use this gradient to update the parameters w
of the GPT model. By looking at the gradient form, we can

see that ∂CE(Xi,X
′
i )

∂w is just the original gradient for training
the GPT model. Our proposed training scheme extends it by
adding a dynamic reweighting strategy (i.e., by the weight-
ing term 1+λ ∗ lmse({X

′

i}, {Xi})) during each iteration of
the GPT model training. This can be considered as a form
of knowledge distillation from the BERT model to the GPT
model. Generated sequence X

′

i having a larger distance to
its training template Xi in the BERT-derived latent space is
considered to be a more severe error and will receive a big-
ger attention (i.e., larger gradient) during the training. We
believe that by penalizing functionally different (determined
by the BERT model) sequence generations more during the
GPT model training, our generator can achieve an improved
functional protein generation quality.
Training details. We utilized the ProGen2-large model, a
2.7 billion-parameter GPT model pre-trained on protein se-
quences from UniProt, as the initialization for our functional
protein generator. For deriving the latent space distribution
of proteins that the GPT model aims to capture, we selected
the ESM2 with 33 layers as the BERT model. For both the
AMP and MDH generation tasks, we trained the GPT model
using the AdamW optimizer with betas of 0.9 and 0.999,
and an epsilon value of 1e-8. The AMP generation task was
trained for 50 epochs with a batch size of 16 and a learning
rate of 1e-5, while the MDH generation task was trained for
30 epochs with a batch size of 4 and a learning rate of 1e-
5. During training, a warm-up schedule was implemented,
the learning rate is warmed up over 5% of the total train-
ing steps to a peak value of 1e-5, followed by a gradual de-
crease. Before inputting the protein sequences into the GPT
and ESM2 models, we added a start token and an end to-
ken to the beginning and end of each sequence, respectively.
To augment the number of training samples for the GPT,
we also used the reversed protein sequences, training the
GPT model to generate both the standard sequences (from
N-terminus to C-terminus) and their flipped versions (from
C-terminus to N-terminus). For the policy gradient, we set
λ ∈ {1, 10, 100}. In addition to the original reward defined
in the subsection Proposed training scheme, we also intro-
duced a reward variant, defined as the original reward sub-
tracted by a baseline. The baseline was calculated as the ex-
ponential moving average (EMA,with its hyperparmeter set
to 0.9) of the historical original reward during GPT training.
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We randomly split the training data, setting aside a percent-
age as a test set. During the GPT model training, we eval-
uated the perplexity of the test set, and the model with the
best test data perplexity was saved for further evaluation.

Experiments
To evaluate our method, we selected two distinct types of
proteins for benchmarking: antimicrobial peptides (AMPs)
and malate dehydrogenases (MDHs). AMPs are short chains
of 1-100 amino acids that can exhibit antibiotic activity, of-
fering a potential strategy to kill bacteria and treat infections
(Wan et al. 2024b; Wong, de la Fuente-Nunez, and Collins
2023). MDHs are key enzymes in the central oxidative path-
way and the tricarboxylic acid cycle, catalyzing the conver-
sion of malate to oxaloacetate using NAD+ as a cofactor.
These two protein types were chosen due to their significant
relevance to human health: AMPs present a promising ap-
proach to combat antibiotic resistance, while MDHs play a
crucial role in cellular metabolism.

Experimental setups
Datasets. For the AMP generation case, we collected exper-
imentally verified AMP sequences from five AMP databases
(i.e., ADP3 (Wang, Li, and Wang 2016), DRAMP (Shi et al.
2022), LAMP2 (Ye et al. 2020), DBAASP (Pirtskhalava
et al. 2021) and dbAMP (Jhong et al. 2022)), resulting in
a total of 42,210 AMP sequences for training. To draw
Fig.1, we randomly sampled 5,000 sequences from the cu-
rated AMPs and 5,000 non-AMPs from Ma et al. (Ma et al.
2022). For the MDH generation case, we obtained the MDH
data from Zeng et al. (Zeng et al. 2023) study, which com-
prises 16,706 MDH training sequences and 214 MDH test
sequences. Additionally, to construct the MDH predictor to
evaluate the performance of the generative model, we ob-
tained another dataset from the same study, consisting of
a balanced set of MDH and non-MDH sequences (n =
16, 706+16, 706). From this dataset, we randomly sampled
4,500 sequences (13.47%) for training the MDH predictor,
500 sequences (1.50%) for validation, and used the remain-
ing 28,412 sequences (85.03%) for testing.
Metrics. We used three metrics to evaluate the generation
quality of various deep generative models: (1) Prediction
performance from external protein function predictors.
The primary goal of functional protein design is to generate
biomolecules with desired properties. Therefore, better gen-
eration models should yield superior results when evaluated
using relevant protein function predictors. For AMP predic-
tion, we employed two models: Macrel (Santos-Júnior et al.
2024), an AMP classification model, and APEX (Wan et al.
2024a), an antimicrobial activity regressor model. In Macrel,
a higher predicted probability indicates that the correspond-
ing input sequence is more likely to be antimicrobial. APEX,
on the other hand, outputs multiple minimum inhibitory con-
centrations (MICs, unit: µmol/L) against several bacteria
for a given sequence, with the median MIC representing the
overall antimicrobial activity. Unlike the AMP classifier, a
lower MIC value indicates higher antimicrobial activity. We
selected Macrel and APEX because they have been vali-

dated for practical AMP virtual screening, and their relia-
bility has been confirmed through experimental verification.
Using Macrel, we calculated two metrics: Avg macrel and
P marcel. Avg macrel represents the mean predicted prob-
ability for a set of protein sequences, while P macrel de-
notes the percentage of proteins with a predicted probability
greater than 0.5 within the set. Similarly, we derived two
metrics from APEX: Avg apex, which calculates the mean
of median MICs for the sequences, and P apex, which indi-
cates the percentage of proteins with a median MIC of less
than 80 µmol/L in the set. For MDH prediction, we built
a predictor using a BERT model fine-tuned on the 33-layer
ESM2 model. This model was trained for 10 epochs using
a learning rate of 1e-6, a batch size of 16, and the AdamW
optimizer. The best-performing model on the test set was
saved for MDH prediction. We used the same definitions
for Avg macrel and P macrel to derive Avg mdh and P mdh
for evaluating MDH generation quality. (2) Sequence simi-
larity analysis. To assess the sequence similarity between
generated and training protein sequences, we compared a
generated protein set B with a training protein set A. The
sequence similarity of a protein sequence i in B with re-
spect to A is defined as the maximum normalized Smith-
Waterman alignment score between sequence i and any pro-
tein sequence j in A. The Smith-Waterman algorithm is
a local sequence alignment approach used to compare the
similarity of two DNA or protein sequences. Detailed infor-
mation on the normalized Smith-Waterman alignment score
can be found in the APEX paper. For the generated pro-
tein set B, we calculated the sequence similarity for all se-
quences from B and reported the mean and standard de-
viation of these similarities. Defining an appropriate range
of sequence similarity is not trivial. A high similarity score
(e.g., mean score > 0.9) indicates that the generator cap-
tures the training distribution well, but it may also suggest
that the generator is not exploring a sufficiently large pro-
tein space, limiting the potential for discovering novel se-
quences. Conversely, a low similarity score (e.g., mean score
< 0.3) suggests that the generator fails to learn the em-
pirical distribution of the training data. In previous stud-
ies, a sequence similarity of less than 75% was used to de-
fine novel protein sequences (Wan et al. 2024a). We fol-
lowed this empirical cutoff to establish a sequence simi-
larity range of 60% to 80%, balancing sequence space ex-
ploration and exploitation. An effective sequence generation
should fall within this defined range. (3) MSA Entropy.
To assess the diversity within the generated protein sets,
we performed multiple sequence alignments using MAFFT
version 7 (https://mafft.cbrc.jp/alignment/server/). We then
calculated the column-wise entropies of the MSA results
using ProDy (http://www.bahargroup.org/prody/). MSA en-
tropy was defined as the summation of these column-wise
entropies. Higher MSA entropy indicates greater diversity
within the generated protein set.
Baseline methods. For the AMP generation task, we
selected five models for comparison: AMPGAN (GAN-
based), VAE-basic (VAE-based), PepCVAE and HydrAMP
(conditional VAEs), and Diff-AMP (GAN+diffusion). For
the MDH task, ProtGPT was fine-tuned on MDH data for
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comparation. The MDH dataset (n=16,706) was clustered
by using CD-HIT and four clusters as cluster765, clus-
ter2029, cluster5987, and cluster7477, with the number in-
side the name indicating the number of sequences in that
cluster (e.g., cluster765 contain 765 sequences) were ob-
tained. These four clusters were separately used to fine-tune
ProtGPT to obtain four MDH generation models. We sim-
ply named them GTP-cluster765, GTP-cluster2029, GTP-
cluster5987 and GTP-cluster7477. ProGPT without fine-
tuning was also used as a baseline for comparison. In ad-
dition, we also incorporated a Random generator that used
the amino acid composition (AAC) information of training
MDH sequences and randomly generated sequences by sam-
pling amino acids from the training AAC distribution.
Our method. For our GPT model, we employed three
different sequence generation strategies: (1) generating
from N-terminus to C-terminus, (2) generating from C-
terminus to N-terminus (i.e., reverse generation), and
(3) an even mixture of both (1) and (2). For AMP
generation, we named our model AMPGPT C terminal,
AMPGPT N terminal and AMPGPT Mixture, respectively.
Note that in the method section, we also derived a reward
by subtracting a baseline. We named GPT models trained
by this variant reward by AMPGPT C terminal EMA,
AMPGPT N terminal EMA and AMPGPT Mixture EMA.
As an ablation study, we compared our GPT models to
those trained without the policy gradient. These models were
named as BaseGPT C terminal, BaseGPT N terminal and
BaseGPT Mixture. Similarly, for the MDH generation, we
used the same naming strategy and replaced the “AMP”
by “MDH”. For the AMP task, we counted the frequencies
of dipeptides formed by the first two amino acids starting
from the N-terminus and C-terminus of the training set se-
quences, respectively. We then sampled dipeptides accord-
ing to these frequencies and used them as input to gen-
erate AMP sequences. Specifically, when generating from
the N-terminus, we sampled dipeptides based on the N-
terminal dipeptide frequency, and when generating from the
C-terminus, we sampled dipeptides based on the C-terminal
dipeptide frequency. For the MDH task, the same strategy
was used except the decapeptide frequency was used in-
stead of dipeptides. For all generation methods, we gener-
ated 10,000 AMPs and 4,000 MDHs for comparison.

AMP generation evaluation
To demonstrate the effectiveness of using the policy gradi-
ent to minimize the latent space distance between training
and generated sequences, we visualized the training process.
That is, with the increase of the training epochs, the gener-
ated AMP sequences became closer to their training tem-
plates in the ESM2 space (Fig. S1). After confirming the
effectiveness of the policy gradient optimization, we eval-
uated the AMP generation quality for different deep gen-
erative methods. As our model involves the hyperparam-
eter λ for weighting the policy gradient during training.
We used the AMP classification model Macrel to evalu-
ate our GPT models under different λs and selected the
best GPT models according to Avg macrel. After determin-
ing the λ, we first studied the AMP generation quality by

evaluating the AMP prediction results of the generated se-
quences by Macrel and APEX. As an ablation study, we
first compared the AMP predictions for the generations from
AMPGPTs (proposed method), AMPGPT EMAs (proposed
method with a baseline subtraction from the reward), and
BaseGPTs (no using policy gradient). For the prediction un-
der Macrel, we observed that the predictions for the gen-
erations from BaseGPTs, AMPGPTs and AMPGPT EMAs
are relatively comparable (Table1, Figs. 2 and S2). Even
if on some cases the BaseGPTs outperformed AMPGPTs
and AMPGPT EMAs, statistical tests showed that the dif-
ferences were not significant. However, when evaluating the
AMP prediction by APEX, we observed that AMPGPTs and
AMPGPT EMAs significantly outperformed the BaseGPTs
(Table1, Figs. 2 and S2), demonstrating the effectiveness
of our proposed training strategy. Between AMPGPTs and
AMPGPT EMAs we did not observe a consistent winner.
When comparing AMPGPTs and AMPGPT EMAs to other
baseline deep generative models, we found that our methods
consistently achieved significantly better predictions from
APEX and Macrel. This suggest that our method has a better
capability of generating antibiotic-like sequences.

Furthermore, a deeper analysis of the generated AMP se-
quences from AMPGPT and AMPGPT EMA variants re-
vealed that they exhibited a sequence similarity ranging
from 0.5 to 0.67 (Table1). Since we defined that a sequence
similarity ranging from 60% to 80% reflects a good se-
quence space exploration and exploitation. We can see that
compared to the sequence similarities resulted by other deep
generative models, the sequence similarities derived from
our methods overlapped better to this range. This suggests
that our method is more capable of capturing the underly-
ing distribution of the training data, while also generating
novel yet functional sequences. In addition, we observed that
the sequence similarities of AMPGPT EMA and AMPGPT
variants tend to be lower than those of BaseGPT variants.
This aligns with our anticipation as AMPGPT EMAs and
AMPGPTs were trained to maximize the likelihood of train-
ing data not only from the amin acid sequence space but
also from the ESM2 space, and hence AMPGPT EMA and
AMPGPT generations were supposed to be sequentially
more different from training ones than those generated from
BaseGPTs. When using MSA entropy to quantify the se-
quence diversity within a generation sequence set, we also
observed that AMPGPTs and AMPGPT EMAs generally
outperformed others. To further visualize the distribution
of generated AMP sequences and training AMPs, we em-
ployed t-SNE analysis to visualize them in the ESM2 latent
space. The results, presented in Fig. S3 demonstrated that
the generated AMPs effectively covered the training data
well. Taken together, we showed that our multi-likelihood
optimization strategy for the GPT model led to improved
and diverse generation of AMP sequences.

MDH generation evaluation
After demonstrating the success of our method applied on
short AMP sequence generation, we applied our method to
design long MDH protein sequences. By using a BERT-
based MDH function predictor, we saw that our MDHGPT
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MSA Entropy ↑ Sequence Similarity ± SD Avg macrel ↑ P macrel ↑ Avg apex ↓ P apex ↑

AMPGPT-EMA (ours)
N terminal 2305.88 0.5373 ± 0.0968 0.4414 42.49% 95.92 35.68%
C terminal 1472.22 0.6560 ± 0.2032 0.4789 47.04% 99.56 30.78%
Mixture 1840.75 0.5967 ± 0.1989 0.4620 45.03% 98.06 32.93%

AMPGPT (ours)
N terminal 2011.12 0.5491 ± 0.1707 0.4552 44.56% 96.16 34.40%
C terminal 1594.68 0.6635 ± 0.2105 0.4837 48.53% 98.73 30.99%
Mixture 1857.64 0.6039 ± 0.1983 0.4735 46.77% 96.88 33.11%

BaseGPT
N terminal 1039.64 0.6500 ± 0.1810 0.4544 43.86% 104.85 23.95%
C terminal 1416.36 0.6441 ± 0.1810 0.4881 49.32% 102.67 26.09%
Mixture 1034.62 0.6572 ± 0.1818 0.4839 48.53% 102.79 25.96%

AMPGAN N terminal 871.38 0.4654 ± 0.1150 0.4144 38.36% 104.21 24.00%
VAE-Basic N terminal 1135.78 0.4890 ± 0.0738 0.3273 22.33% 115.61 12.94%
HydrAMP N terminal 1592.71 0.5373 ± 0.0968 0.3974 33.67% 111.10 15.07%
PepCVAE N terminal 1292.59 0.4754 ± 0.0681 0.3689 26.79% 116.58 10.16%
Diff-AMP N terminal 1628.55 0.3012 ± 0.0289 0.090 0.25% 129.77 0.01%

Table 1: A summarization of metrics for evaluating generated AMPs from different methods. SD stands for standard deviation.
Arrow directions indicate the improvement directions for the corresponding metrics.
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Figure 2: Violin plots for comparing AMP probability prediction distribution and MIC prediction distribution for different
AMP generation methods. AMPs should have high AMP probability prediction and low MIC prediction. Statistical tests were
used to compare the distribution between our the AMPGPT N terminal EMA model and the corresponding baseline models.
The statistical significance of the results was evaluated using the Mann-Whitney U test. ns: Not significant (5.00e-02 < p ≤
1.00e+00); *: Significant (1.00e-02 < p ≤ 5.00e-02); **: Highly significant (1.00e-03 < p ≤ 1.00e-02); ***: Very highly
significant (1.00e-04 < p ≤ 1.00e-03); ****: Extremely significant (p ≤ 1.00e-04). The red line for the upper figure is y = 0.4
and the red line for the lower figure is y = 115. We drew them to facilitate the comparison among different methods.

and MDHGPT-EMA variants achieved better MDH predic-
tions (i.e., better overall Avg mdh and P mdh) than those
from the GPT model without our proposed training scheme
and the other GPT models developed in (Nijkamp et al.
2023) (Table2 and Figs. S4 and S5). MDHGPT and MD-
HGPT EMA generations also enjoyed a decent sequence
similarity (overall ranging from 0.6 to 0.8). While the base-
line generation models tended to have better MSA entropies,
we argued that these results were more likely to be resulted
by generating sequences that were less likely to be MDHs
(as reflected by their Avg mdh and P mdh metrics). Taken
together, we can see that our proposed method achieved the
best MDH generation quality.

Conclusion and future work
In this work, we demonstrated that our multi-likelihood opti-
mization strategy for training deep generative models effec-
tively improves the quality of functional protein sequence
generation. Our future direction involves the collaboration

with biology researchers to conduct wet-lab validation of our
generated sequences.
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