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Background/Aims:This study aimed to explore the effect of gut microbiota-regulated Kupffer 
cells (KCs) on colorectal cancer (CRC) liver metastasis.
Methods: A series of in vivo and in vitro researches were showed to demonstrate the gut micro-
biota and its possible mechanism in CRC liver metastasis.
Results: Fewer liver metastases were identified in the ampicillin-streptomycin-colistin and colis-
tin groups. Increased proportions of Parabacteroides goldsteinii, Bacteroides vulgatus, Bacteroi-
des thetaiotaomicron, and Bacteroides uniformis were observed in the colistin group. The signifi-
cant expansion of KCs was identified in the ampicillin-streptomycin-colistin and colistin groups. B. 
vulgatus levels were positively correlated with KC levels. More liver metastases were observed 
in the vancomycin group. An increased abundance of Parabacteroides distasonis and Proteus 
mirabilis and an obvious reduction of KCs were noted in the vancomycin group. P. mirabilis levels 
were negatively related to KC levels. The number of liver metastatic nodules was increased in the 
P. mirabilis group and decreased in the B. vulgatus group. The number of KCs decreased in the 
P. mirabilis group and increased in the B. vulgatus group. In vitro, as P. mirabilis or B. vulgatus 
doses increased, there was an opposite effect on KC proliferation in dose- and time-dependent 
manners. P. mirabilis induced CT26 cell migration by controlling KC proliferation, whereas B. 
vulgatus prevented this migration.
Conclusions: An increased abundance of P. mirabilis and decreased amount of B. vulgatus play 
key roles in CRC liver metastasis, which might be related to KC reductions in the liver. (Gut Liver 
2022;16:575-588)
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INTRODUCTION

Globally, the most prevalent type of malignant tumor is 
colorectal cancer (CRC),1 and many of the CRC patients 
(15% to 25%) are diagnosed with metastasis of cancer.2 
Despite advancements in the therapeutic strategies of CRC 
liver metastasis, there is a huge population of patients 
(>50%) who experience recurrence and metastasis of can-
cer within 2 years.3 Therefore, exploring the mechanism 
involved in the CRC liver metastasis is critical in improv-

ing the treatment options.
The cancer metastasis is associated with the cancer mi-

croenvironment in situ as well as in target organs, which 
can result in remarkable differences in the prognosis even 
for a similar stage of tumor.4 There is an amazing connec-
tion between the gut and the liver homeostasis is influ-
enced by the alterations in the CRC microenvironment 
through the gut-liver axis.5 The CRC microenvironment 
is immensely complicated and consisted of the intestinal 
microbiota along with its products/metabolites.6 Particu-
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larly, any alterations in the gut microflora have a significant 
role in the CRC microenvironment affecting the develop-
ment and recurrence of CRC. It has been observed that 
decreased Bacteroides and increased Clostridial popula-
tions promote CRC liver metastasis.7 Additionally, several 
types of bacteria from the intestinal microflora can be in-
troduced into the portal circulation of the liver by the mi-
crobe-associated molecular patterns, in this way improving 
the liver microenvironment.8

Although intestinal microbiota conciliate the hepatic 
natural killer T cell accumulation with both primary he-
patic cancer and metastatic hepatic cancers, the possible 
alterations in the Kupffer cells (KCs), the most copious 
residential macrophages in the sinusoids of liver, have not 
been evaluated.9 Among all hepatic non-parenchymal 
cells in the liver, KCs makeup up 20% of these and have 
a significant role in tumor phagocytosis.10 KCs regulate 
the function and activity of the T-cells and natural killer 
(NK) cells. KCs stimulate the NK cells to produce and se-
crete the cytokines, for example, granulocyte-macrophage 
colony-stimulating factor and interferon-γ, that increases 
the pathogenicity of the KCs.11 It has also been observed 
that the KCs influence the multiplication of the stimulated 
CD8+ T-cells during the initial stages of cancer and en-
hance the apoptosis in the later stages of cancer.12 Several 
animals studies have proposed that the KCs increase the 
apoptosis of T-cell via Fas/Fas-L pathway and express the 
upper levels of programmed death-ligand 1 to obstruct 
multiplication and functionality of the T-cells by direct 
contact.13,14 Therefore, the KCs have a complicated role in 
tumor progression.

KCs are involved in the killing of microbes by phago-
cytosis that invades from the bloodstream; so killing the 
Borrelia burgdorferi that expresses the green fluorescent 
protein and then presents the antigens to NK cells.15 Lactic 
acid produced by the bacteria controls the KCs by lower-
ing the lipopolysaccharide levels in the serum, alleviat-
ing the formation of non-alcoholic steatohepatitis.16 The 
lipopolysaccharide is an inflammatory signal activating 
the Toll-like receptors on KCs thus ultimately causing the 
inflammation in the alcoholic liver disease.17 A few studies 
are present regarding the influence of intestinal microflora 
on the KCs in CRC liver metastasis. The present study was 
designed to evaluate the role of intestinal microbiome and 
KCs in CRC liver metastasis, and to provide bass for devis-
ing the treatment and prevention strategies.

MATERIALS AND METHODS

1. Bacteria and cell culture
The mice colon tumor cell line colon 26 (CT26; Cell 

Bank of the Chinese Academy of Sciences, Shanghai, 
China) and hepatic KC cell line (Guangzhou Jennio Bio-
tech Co., Ltd., Guangzhou, China) were cultured in Ro-
swell Park Memorial Institute 1640 (Gibco, Santa Cruz, 
CA, USA) complete 10% fetal bovine serum (FBS; Gibco) 
supplemented medium and having 1% streptomycin along 
with 1% penicillin (Gibco) at 37℃ in a CO2 (5%) incuba-
tor.18 Proteus mirabilis (BNCC® 107943) and Bacteroides 
vulgatus (BNCC® 337471) were obtained from the Bena 
Culture Collection, Xinyang, China. P. mirabilis was grown 
on Columbia blood agar plates, and B. vulgatus was culti-
vated in Gifu Anaerobic Medium Broth (KisanBio, Seoul, 
Korea) in a 2.5 L Round Bottom Vertical Anaerobic Cul-
ture Bag (Qingdao Hope Bio-Technology Co., Ltd., Qin-
gdao, China) and AnaeroPack®-Anaero (Mitsubishi Gas 
Chemical, Inc., Tokyo, Japan) at 37℃. All anaerobic culture 
media were deoxygenated for at least 24 hours prior to use.

2. Animal experiments
In this study, 6 weeks old, 60 male BALB/c specific-

pathogen-free mice (Animal Experiment Center of Hebei 
Medical University, Shijiazhuang, Hebei, China) were used 
and differentiated into four random groups, each group 
having 15 mice. Antibiotics were administered in sterile 
drinking water to each group as per the following tab: 
administrated in sterile drinking water to control group 
(without antibiotics); vancomycin (Vanc) group (0.25 
mg/mL vancomycin); colistin (Coli) group (2 mg/mL 
colistin); ampicillin-streptomycin-colistin (ASC) group  
(1 mg/mL ampicillin, 5 mg/mL streptomycin and 1 mg/mL 
colistin) (Table 1).19 

Fecal sample collection was done 2 weeks after the anti-
biotic treatment and later 16S rDNA sequencing was done. 
The antimicrobial effects of antibiotics, used in this study, 
were observed and a model of CRC liver metastasis was 
made via splenic inoculation of CT26 cells (1×105) as men-
tioned earlier (Fig. 1A).20

Table 1.Table 1. Groups of Mice with Antibiotic Protocols19

Group Treatment

Control group No antibiotics
Vanc group Vancomycin (0.25 mg/mL)
Coli group Colistin (2 mg/mL)
ASC group Ampicillin (1 mg/mL)

Streptomycin (5 mg/mL)
Colistin (1 mg/mL)
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Fifty-six specific-pathogen-free male BALB/c mice 
(aged 6 weeks) were bred in the specific-pathogen-free 
Laboratory Animal Center of Hebei General Hospital. Be-
fore the experiment, antibiotics were administered to mice 
of all groups through sterile drinking water containing 0.2 
g/L ampicillin, neomycin, and metronidazole and 0.1 g/L 
vancomycin daily for 2 weeks.21 Then, mice were divided 
into seven groups (n=8) based on intragastric gavage twice 
weekly with 2×108 colony-forming units (CFU)/0.2 mL 
P. mirabilis or heat-killed P. mirabilis, 2×108 CFU/0.2 mL 
B. vulgatus or heat-killed B. vulgatus, 1×108 CFU/0.1 mL 
P. mirabilis and 1×108 CFU/0.1 mL B. vulgatus or 1×108 
CFU/0.1 mL heat-killed P. mirabilis and 1×108 CFU/0.1 
mL heat-killed B. vulgatus, and 0.2 mL stroke-physio-

logical saline solution (control group).22 After 1 week of 
P. mirabilis and B. vulgatus administration, a CRC liver 
metastasis model was established and we continued to ad-
minister P. mirabilis or B. vulgatus via gavage until the end 
of experiment. This study was approved by the Adminis-
tration Committee of Experimental Animals, Hebei Gen-
eral Hospital, Hebei Province, China (approval number: 
SYXK(Ji)-2020-005). 

3. Bacterial 16S rDNA sequencing 
Mice fecal pellets were collected and gene sequencing 

of 16S rDNA was done before making the CT26 tumor-
bearing model. The 16S rDNA was done following the 
evaluation of antibacterial effect in groups.

Fig. 1.Fig. 1. Changes in gut microbiota and colorectal cancer (CRC) liver metastasis induced by different antibiotics. (A) Schematic diagram of the mouse 
experimental process of CRC liver metastasis with different antibiotics (upper arrow: CRC liver metastasis model, as established by colon 26 [CT26] 
splenic injection; lower arrow: antibiotic treatment). (B) Image of CRC liver metastases in animals treated with different antibiotics at the end of 
the experiment. (C) Number of CRC liver metastases and liver volume in different groups (n=15 per group; a mouse in the Vanc group and a mouse 
in the ASC group were lost during the experiment due to emaciation and intestinal obstruction). (D) Venn diagram of the total number of species 
among the control, Vanc, and Coli groups (n=6 per group). (E) Principal coordinates analysis (PCA) of operational taxonomic units in the control, 
Vanc, and Coli groups. (F) Alpha diversity analysis of the gut microbiomes among the control, Vanc, and Coli groups. Alpha diversity includes the 
Shannon, Chao1, and Simpson indices. (G) Beta diversity, reflected by the weighted Unifrac distance. 
Control group, untreated; Vanc group, vancomycin; Coli group, colistin; ASC group, a mix of ampicillin, colistin and streptomycin. *p<0.05, †p<0.01. 
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The extraction of DNA was done from fecal samples by 
the cetyltrimethylammonium bromide (Sigma-Aldrich, St. 
Louis, Mo, USA) method. Agarose gel electrophoresis was 
utilized to detect the concentration and purity of DNA ex-
tracted from the fecal samples of mice. A suitable quantity 
of DNA was taken in a centrifuge tube and dilution was 
made up to 1 ng/μL in sterile water, then primer sequence 
806R (5’-GGA CTA CNN GGG TAT CTA AT-3’) and 
515F (5’-GTG CCA GCM GCC GCG GTA A-3’) were 
used to amplify the V3-V4 regions by polymerase chain 
reaction.

The DNA library was developed with the Ion Plus Frag-
ment Library Kit (48 reactions; Thermo Fisher Scientific, 
Waltham, MA, USA). This developed DNA library was 
quantified by a Qubit (Thermo Fisher Scientific) as well 
as sequenced with an Ion S5TMXL (Thermo Fisher Scien-
tific). Then the comparison of the reading sequence was 
done with the species annotation database Aby (https://
github.com/torognes/vsearch/) along with the examina-
tion of chimera sequences. Clean reads were left only after 
the removal of the chimera sequence. Clustering was done 
with Uparse software (Uparse v7.0.1001, https://drive5.
com/uparse/) with 97% similarity, and the operational tax-
onomic units regarding the species categorization were ac-
quired following chimera filtering the clustered sequence. 

The filter value was defined by the linear discriminant 
analysis effect size software and it was 4. Following the 
assurance of the operational taxonomic unit annotation 
data from the SILVA database (SILVA SSU 138.1, https://
www.arb-silva.de), the entire information of the functional 
genomic for the prokaryotes in the Kyoto Encyclopedia 
of Genes and Genomes database was interpreted through 
UProC, and then by using the DNA aligner, the proteins 
were aligned in association with the SILVA database, in this 
way the functional prediction of Tax4Fun was perceived. 

4. Immunohistochemistry (IHC)
The liver samples from mice were collected, fixed, im-

pregnated, and embedded in paraffin wax, and sections 
were made (4 μm). A monoclonal rabbit anti-mouse F4/80 
primary antibody (1:500; Servicebio, Wuhan, China) was 
added to the sections following the dewaxing & hydrat-
ing the sample, antigen repair, and 15 minutes incubating 
in H2O2 solution (3%). A 3,3’-diaminobenzidine staining 
solution IHC kit (Zsbio, Beijing, China) was used for color 
development. Three high-power microscopic fields were 
selected randomly and micrographs were taken with the 
microscope (Nikon, Tokyo, Japan). Image J (Ver-1.8.0, Na-
tional Institutes of Health, Bethesda, MD, USA) was used 
to calculate the optical densities of proteins. 

5. KC proliferation 
KCs were cultured in tissue plates with 96 wells and 

these were used as at 5×103 cells in each well, then allowed 
to settle and adhere. Grown to late-log phase in 1640 com-
plete medium supplemented with 10% FBS, P. mirabilis 
or B. vulgatus was separately added at concentrations of 
1×103, 1×104, 1×105, 1×106, and 1×107 CFU/mL, and six 
wells were used for each group. After 12, 24, 48, and 72 
hours incubation at 37℃, and Cell Counting Kit-8 (CCK8; 
Dojindo, Kumamoto, Japan) was used to count the cell 
numbers that were viable. 

6. CT 26 cell migration
KCs (1×105) were inoculated on 24-well plates (lower 

chamber) with 500 μL 1640 medium and cultured for 24 
hours; 50 μL of phosphate-buffered saline, 1×103, 1×104, 
1×105, 1×106, or 1×107 CFU/mL P. mirabilis or B. vulga-
tus were added into the lower chamber and cultured for 
24 hours (37℃, 5% CO2). Then, culture medium was re-
moved and 500 μL 1640 medium containing 20% FBS was 
added to the lower chamber. CT26 cells (5×104) in 100 μL 
1640 medium with no FBS were added to the upper cham-
ber, which was gently moved into the lower chamber and 
cocultured for 24 hours. The upper chamber was removed 
and rinsed with phosphate-buffered saline, fixed for 15 
minutes with paraformaldehyde (4%) at room temperature, 
and then staining was done at 37℃ by using 0.1% crystal 
violet for 30 minutes. After that three fields were randomly 
selected under an inverted microscope to assess the cel-
lular migration ability in each group (n=3). The number 
of CT26 cells passing via the Transwell supraventricular 
membrane was calculated with ImageJ software.

7. Statistical analysis
The data, from this study, were analyzed with SPSS 

software SPSS version 19.0 (IBM Corp., Armonk, NY, 
USA) and the data are expressed as the mean±standard 
deviation. Limited slip differential and one-way analysis of 
variance were utilized for multiple comparisons after test-
ing the variance homogeneity and normal distribution of 
data. The correlation between differential bacteria and KCs 
were analyzed by using the Pearson correlation analysis 
between the Vanc group, Coli group, and control group. 
The differences of intestinal microbiome between differ-
ent groups were statistically investigated by R software (R 
Foundation for Statistical Computing, Vienna, Austria). 
The comparisons of more than two groups were done with 
the Wilcoxon tests and the Tukey post hoc test by using 
the Agricola package and comparisons of two groups were 
done with the Wilcoxon rank-sum tests and the Student t-
tests. The level of significance was kept at 5% (p<0.05).

https://github.com/torognes/vsearch/
https://github.com/torognes/vsearch/
https://drive5.com/uparse/
https://drive5.com/uparse/
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RESULTS

1. Effect of alterations in the gut microbiota on CRC 
liver metastasis 
The splenic tumor injection resulted in sudden CRC 

liver metastasis in BALB/c mice as mentioned earlier (Fig. 
1A).9 In the ASC group, antibiotics mixed in drinking 
water affected the intestinal commensal population nega-
tively (Fig. 1B).23 Fewer liver metastases were observed 
in the ASC group (p=0.003). Vancomycin promoted the 
CRC liver metastases (p=0.028) while colistin inhibited the 
CRC liver metastases (p=0.041). Vancomycin-treated mice 
group targeting the Gram-positive bacteria showed greater 
(p<0.001) liver metastases than the colistin-treated group 
of mice targeting the Gram-negative bacteria; comparing 

with this, a vigorous decrease (p<0.001) was identified in 
the liver metastasis in ASC group as compared to Vanc 
group. In this experiment, the liver volume showed identi-
cal results; liver volume was larger (p=0.028) in the Vanc 
group but it was in the ASC group, the liver volume was 
smaller (p=0.009). Furthermore, liver volume was greater 
(p=0.037) in the Vanc group as compared to the ASC 
group and Coli group (Fig. 1B and C).

To better understand the part of intestinal microbiome 
in response to the CRC liver metastasis, six fecal samples 
were collected from each group including the Coli, Vanc, 
ASC, and control groups, and 16S rDNA sequencing was 
done to assess the microbiota landscape in the fecal sam-
ples. Among all treatment groups, ASC treatment showed 
significant effects on intestinal commensal bacteria by 
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Fig. 2.Fig. 2. Comparison of gut microbiota composition among three groups. (A) Linear discriminant analysis effect size (LEfSe) for differentially abun-
dant taxa from the three groups. p=0.05 using the Wilcoxon rank-sum test, with linear discriminant analysis (LDA) score >4. (B) Taxonomic clado-
gram from the LEfSe showing differences in fecal taxa. Dot sizes are proportional to the abundance of the taxon (n=6 per group). (C) Compositional 
differences at the species level in the gut microbiome between the control and Coli groups. (D) Compositional differences at the species level in the 
gut microbiome between the control and Vanc groups. 
Control group, untreated; Vanc group, vancomycin; Coli group, colistin; ASC group, a mix of ampicillin, colistin, and streptomycin.
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eliminating them from the intestines. A Venn diagram 
graph showed that 220 species of bacteria were com-
mon among all species identified from the control group 
(n=395), Vanc group (n=258), and Coli group (n=373) in 
this study (Fig. 1D). According to the principal coordinate 
analysis, the microbial population structure was visibly 
different between the Coli group and Vanc groups, while 
there was no clear separation between control group and 
Coli group (Fig. 1E). Additionally, the alpha diversity of 
the intestinal microbiome was significantly different be-

tween Vanc group and Coli group which was observed by 
certain methods including Shannon, Chao1, and Simpson; 
moreover, a remarkable elevation in the microbial diversity 
of the Coli group was observed by Simpson and Shannon 
diversity (Fig. 1F). According to the beta diversity analysis, 
the different coefficients of intestinal microbiota diver-
sity in the Vanc group and the Coli group were 0.509 and 
0.145, respectively. Moreover, the correlation coefficient of 
commensal bacteria between the Vanc group and the Coli 
group was 0.466 (Fig. 1G). These results of this study sug-

Fig. 3.Fig. 3. Tax4Fun functional prediction analysis of differential bacteria associated with hepatic Kupffer cell (KC) accumulation; tumor inhibition was 
noted in the three groups. (A) Tax4Fun functional prediction in the control, Vanc, and Coli groups, as shown as a heatmap. (B) Enrichment of im-
mune system, environmental information, and cellular process pathways were compared in the control and Coli groups (dot size symbolizes the 
p-value). (C) Enrichment of immune system, environmental information, and cellular process pathways were compared in the control and Vanc 
groups. (D) Hematoxylin and eosin staining images and quantification of hepatic KCs from different gut flora backgrounds (n=5 per group, ×200). (E) 
Analysis of the correlation between KCs and Proteus mirabilis or Bacteroides vulgatus.
Control group, untreated; Vanc group, vancomycin; Coli group, colistin; ASC group, a mix of ampicillin, colistin, and streptomycin. *p<0.05, †p<0.01.
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gested the fact that modulating the intestinal commensal 
bacteria influenced the CRC liver metastasis in a way that 
the increased diversity and community richness might 
suppress the CRC liver metastasis.

2. Specificity of intestinal microbiota in CRC liver 
metastasis
In this study, the disagreement between the intesti-

nal microbiome of all three groups were evaluated and 
high-dimensional class comparisons regarding the com-
mon taxa of intestinal bacteria were determined via lin-
ear discriminant analysis effect size bar and cladogram 
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Fig. 4.Fig. 4. Colorectal cancer (CRC) liver metastasis and hepatic Kupffer cell (KC) induced by Proteus mirabilis or Bacteroides vulgatus. (A) Images 
of liver metastatic nodules in each group. (B) Numbers of liver metastases in each group. Hematoxylin and eosin staining images (×200) (C) and 
quantification of hepatic KCs from different bacteria treatment (D). 
Control group, untreated; Vanc group, vancomycin; Coli group, colistin; ASC group, a mix of ampicillin, colistin, and streptomycin. *p<0.05, †p<0.01.
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analysis. The Coli group had abundant Bacteroidetes and 
Firmicutes; while the Vanc group had abundant Proteo-
bacteria, considering the phylum level. Additionally for 
the species levels, the Coli group was found to be rich with 
Helicobacter mastomyrinus, Bacteroides uniformis, and 
B. vulgatus while the Vanc group was rich with P. mirabilis 
(Fig. 2A and B). Having similarity with the control group, 
according to the Wilcoxon rank-sum test, the Coli group 

had increased communities of Bacteroides thetaiotaomi-
cron, Parabacteroides goldsteinii, B. uniformis, and B. vul-
gatus, while Vanc group was enriched with P. mirabilis and 
Parabacteroides distasonis (p<0.05) (Fig. 2C and D). These 
results of the current study suggested that the elevated 
populations of P. mirabilis and P. distasonis might favor 
the CRC liver metastasis and the elevated populations of B. 
uniformis, P. goldsteinii, B. thetaiotaomicron, and B. vulga-

A

B

C

D

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

0.3

0.2

0.1

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) (12 hr)
C

e
ll

a
c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

0.4

0.2

0.1

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) (24 hr)

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

1.5

1.0

0.5

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) (48 hr)

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

3

2

1

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) (72 hr)

0.3

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

200

150

100

50

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) (12 hr)

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) ( hr)24

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

250

200

150

100

50

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) ( hr)48

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

250

200

150

100

50

Control 10
3

10
4

10
5

10
6

10
7

P. mirabilis (CFU/mL) ( hr)72

250

200

150

100

50

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

1.5

1.0

0.5

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus (CFU/mL) (12 hr)

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 24(CFU/mL) ( hr)

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 48(CFU/mL) ( hr)

C
e

ll
a

c
ti
v
it
y

(C
C

K
8

,
O

D
)

0

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 72(CFU/mL) ( hr)

1.5

1.0

0.5

1.5

1.0

0.5

1.5

1.0

0.5

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

80

60

40

20

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus (CFU/mL) (12 hr)

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

80

60

40

20

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 24(CFU/mL) ( hr)

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

100

80

60

40

20

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 48(CFU/mL) ( hr)

C
T

2
6

c
e

lls
n

u
m

b
e

rs
/f

ie
ld

0

100

80

60

40

20

Control 10
3

10
4

10
5

10
6

10
7

B. vulgatus 72(CFU/mL) ( hr)

*

*
*

*

*
*

*

*

*

*

*

*

*

*

Fig. 5.Fig. 5. Differential influences of Proteus mirabilis or Bacteroides vulgatus on Kupffer cell (KC) proliferation and effects of KCs induced by P. mira-
bilis or B. vulgatus on CT26 cell migration. (A) The difference in KC proliferation between the 103, 104, 105, 106, and 107 CFU/mL P. mirabilis groups 
and phosphate-buffered saline (PBS) group. (B) Migration of CT26 cells induced by KCs treated with different doses of P. mirabilis (n=3 per group). 
(C) Differences in KC proliferation between 103, 104, 105, 106, and 107 CFU/mL B. vulgatus groups and the PBS group. (D) Migration of CT26 cells 
induced by KCs treated with different doses of B. vulgatus (n=3 per group). 
CFU, colony-forming unit. *p<0.05, †p<0.01. 
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tus could restrict the CRC liver metastasis.

3. Functional prediction of differential bacteria among 
groups
The functional prediction was done with Tax4Fun to as-

sess the mechanism for the role of commensal bacteria in 
causing liver metastasis. The differential gene functions in 
all three groups contained the genes, immune system, cell 
motility, transport, and various types of metabolism (Fig. 
3A). To detect the difference in immune responses, pair-
wise comparisons were done, which revealed that clear dif-
ferences were observed in the immune system between the 
control group and Vanc group and between control and 
Coli groups. These differential functions between the three 
groups consisted of bacterial secretion system, NOD-like 
receptor signaling, bacterial motility protein, interleukin 
(IL)-17 signaling, and two-component system (Fig. 3B and 
C, Supplementary Fig. 1A). This suggested that the altera-
tions in the intestinal microbiota influenced the CRC liver 
metastasis and it was associated with the IL-17 signaling.

4. Role of hepatic KCs in CRC liver metastasis and its 
co-relationship with differential microbiota
Based on the Tax4Fun prediction data, the immune sig-

nals particularly the IL-17, were clearly different between 
all the three groups. IHC was used to detect the count 
of KCs count in CT26 cancer-bearing mice, to evaluate 
the mechanism involved in the tumor suppression. The 
KCs were significantly high in the Coli and ASC groups 
(p=0.038, p=0.001, respectively), whereas the KCs were 
significantly less (p=0.027) in the Vanc group. There was a 
similarity in the KCs number with liver volume and liver 
metastasis results that the KCs were more in the mice of 
Coli group and ASC group as compared to that in the Vanc 
group (p<0.001, p<0.001, respectively) (Fig. 3D). 

The results here highlighted the KC landscape of CRC 
liver metastasis and the huge remodeling after gut micro-
biota alterations.

The relation of KCs and differential count of bacteria 
were evaluated to detect the definitive role of the intestinal 
microbiome in regulating hepatic KC accumulation. A 
positive was found between KC contents and B. vulga-
tus (p=0.011, r=0.705), while a negative correlation was 
found between the KC contents and P. mirabilis (p=0.028, 
r=0.632) (Fig. 3E, Supplementary Fig. 1B and C). Hepatic 
KC count might be affected by increased B. vulgatus and 
decreased of P. mirabilis populations together, yielding in 
altered CRC liver metastasis tendencies.

5. P. mirabilis or B. vulgatus affects liver metastases 
in tumor-bearing mice
To validate the effect of P. mirabilis or B. vulgatus on 

liver metastasis, we counted liver metastatic nodules in 
tumor-bearing mice after P. mirabilis or B. vulgatus admin-
istration. In vivo, the numbers of liver metastases in the 
control, P. mirabilis, and heat-killed P. mirabilis groups were 
130.8±44.6, 190.3±29.8, and 141.6±71.8, respectively, with 
a significant difference between P. mirabilis and control 
groups (p=0.046). In contrast, the numbers of liver metas-
tases in the control, B. vulgatus, and heat-killed B. vulgatus 
groups were 130.8±44.6, 27.8±25.9, and 95.8±56.2, respec-
tively, with a significant different between B. vulgatus and 
control groups (p=0.001). Heat-killed P. mirabilis or B. vul-
gatus treatment, as well as a combination of P. mirabilis and 
B. vulgatus with or without sterilization, did not affect the 
growth of liver metastatic tumors in syngeneic BALB/c mice 
(Fig. 4A and B). These findings suggested that P. mirabilis 
or B. vulgatus could have a key role in CRC liver metastasis.

6. P. mirabilis or B. vulgatus treatment influences KC 
recruitment to liver metastatic microenvironment 
Given the changes in hepatic KCs in CRC liver metas-

tasis after antibiotic administration, we utilized IHC to es-
timate the KC content in the liver tissues of tumor-bearing 
mice pre-transplanted with P. mirabilis or B. vulgatus. It 
was shown that KCs were distributed in the surface of 
hepatic sinusoids. In accordance with our liver metastasis 
nodules data, the proportion of KCs was significantly low-
er in liver tissues of P. mirabilis group, while, the propor-
tion of hepatic KCs obviously higher in B. vulgatus group 
as compared with the control group (p=0.037, p=0.047, 
respectively). The distribution of KCs was not different be-
tween the other groups and control group (Fig. 4C and D). 
Those data further confirmed that P. mirabilis or B. vul-
gatus could exert potential influence on KCs, which were 
proven to be effective against liver metastasis.

7. P. mirabilis or B. vulgatus affects CT26 cell 
migration by regulating KC proliferation 
To pinpoint the relationship between P. mirabilis and 

KC changes, we analyzed the effects of P. mirabilis on KCs. 
P. mirabilis markedly inhibited KC proliferation relative 
to that in the control group at 12, 24, 48, and 72 hours 
(p<0.001, p<0.001, p=0.021, p=0.039, respectively) (Fig. 
5A). The half maximal inhibitory doses (LogIC50) of P. mi-
rabilis at 12, 24, 48, and 72 hours were 4.013, 4.085, 2.988, 
and 2.481 CFU/mL, respectively. Next, we measured num-
bers of CT26 cells passing through Transwell membranes 
in each group. An increased number of CT26 cells was 
detected for P. mirabilis pretreated with KCs compared to 
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that in the group pretreated with phosphate-buffered sa-
line (p<0.001, p<0.001, p<0.001, p<0.001, respectively) (Fig. 
5C, Supplementary Fig. 2A). The LogIC50 of P. mirabilis-
induced KC-promoted CT26 cell migration at 12, 24, 48, 
and 72 hours was 4.700, 3.886, 3.986, and 4.105 CFU/mL, 
respectively. P. mirabilis affected KCs in dose- and time-
dependent manners and further regulated CT26 cell mi-
gration. 

Considering that B. vulgatus affected CRC liver me-
tastasis in vivo, we determined whether the proliferation 
of KCs was induced by B. vulgatus. As shown in Fig. 5B, 
compared with that in the control group, KC proliferation 
increased remarkably with increasing doses of B. vulgatus 
(p<0.001, p<0.001, p<0.033, p<0.039, respectively). Inter-
group comparisons showed that KC proliferation in the 107 
and 106 B. vulgatus groups was higher as compared to the 
control group at 12 hours (p=0.020, p<0.001, respectively); 
similarly, KC proliferation in the 107, 106, and 105 B. vul-
gatus groups was increased at 24 hours (p=0.046, p=0.037, 
p<0.001, respectively), and KC proliferation in the 107, 106, 
105, and 104 B. vulgatus groups was increased relative to 
that in the control group at 48 hours (p=0.031, p=0.014, 
p=0.005, p=0.003, respectively) and 72 hours (p=0.048, 
p=0.041, p=0.007, p=0.003, respectively). B. vulgatus treat-
ment exerted pro-proliferative effects on KCs in dose- 
and time-dependent manners. The LogIC50 of B. vulgatus 
at 12, 24, 48, and 72 hours was 6.384, 6.708, 2.863, and 
3.113 CFU/mL, respectively. Moreover, B. vulgatus treat-
ment ameliorated CT26 cell migration in dose- and time-
dependent manners at 12, 24, 48, and 72 hours, with KC 
proliferation (p<0.001, p<0.001, p<0.001, p<0.001, respec-
tively) (Fig. 5D, Supplementary Fig. 2B). The LogIC50 of 
B. vulgatus-induced KC effects on CT26 cell migration at 
12, 24, 48, and 72 hours was 3.990, 3.978, 3.378, and 3.055 
CFU/mL, respectively. 

To summarize, P. mirabilis  appeared to exhaust the 
phagocytotic capacity of KCs and promoted CT26 cell 
migration; B. vulgatus potentially has an essential role in 
preventing CT26 cell migration in response to KC prolif-
eration. 

DISCUSSION

The mechanisms involved in CRC liver metastasis are 
unexplained yet. A recent theory of the gut-liver axis put 
forward the foundation for exploring the correlation be-
tween intestinal diseases and the liver. The hepatic portal 
venous system carries the microbiota into the liver that 
can bring changes in the liver microenvironment and may 
influence the CRC liver metastasis.17 In the present study, 

different models of CRC liver metastasis were created by 
using different mouse-administered antibiotics. Com-
paratively, more liver metastasis was detected in the Vanc 
group comparing with those in the Coli group and mixed 
treatment group. It was also observed that the population 
of P. mirabilis was increased in the Vanc group and of B. 
vulgatus was found to be increased in the Coli group be-
fore metastasis. KCs can be related to the effect of intestinal 
microflora on CRC liver metastasis. Following this, we fur-
ther proved that P. mirabilis favored CT26 cell migration 
and CRC liver metastasis by diminishing KC recruitment, 
whereas B. vulgatus controlled CT26 cell migration and 
CRC liver metastasis by increasing KC accumulation in 
vitro and in vivo. 

The CRC hepatic metastasis modules were created in 
mice by various intestinal microflora. In the current study, 
the liver metastases were higher in the Vanc group as com-
pared to the control group. Another study stated a remark-
able decrease in the liver metastases in the Vanc group of 
mice.9 This variation in the results can be due to different 
doses of antibiotic, treatment duration of antibiotic, feed-
ing conditions of animals, selected strains of animals, or 
the number of cancerous cells inoculated through the 
spleen. Moreover, ASC group showed lesser liver metasta-
ses as compared to control group, which can be correlated 
with the depleted symbiotic bacteria in the intestine due 
to antibiotics. These results are in coordination with an 
earlier study by Sethi et al.24 where they developed liver 
metastasis modules of melanoma, pancreatic cancer, and 
colon cancer in mice and used antibiotics to control the in-
testinal microflora. A cocktail of broad-spectrum antibiot-
ics (metronidazole, amphotericin B, vancomycin, ampicil-
lin, and neomycin) reduced the liver metastasis occurrence 
significantly. Liver metastases were increased in the control 
group as compared to that in the Coli group. Oral colistin 
administration causes a significant reduction in the fecal 
Gram-negative bacteria in a hepatic-induced mice model 
for colitis and lessened the systemic endo-toxemic damage 
in colitis.25 Additionally, colistin can be used to treat the 
stubborn populations of Escherichia coli O157:H7 because 
the inoculation of E. coli via gastric route results in greater 
CRC tumors as well as increased metastases in CRC liver 
models.26,27

A definite separation in bacterial populations was no-
ticed in three groups of mice as per the principal coordi-
nate analysis, alpha diversity analysis, and beta diversity 
analysis of intestinal microflora. Many differences between 
the control group and the Vanc group and between the 
control group and the Coli group were analyzed for better 
identification of commensal bacterial populations respon-
sible for CRC liver metastasis. Raised count of P. mirabilis 
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and P. distasonis might exaggerate the CRC liver metas-
tasis, whereas raised counts of B. uniformis, B. vulgaus, B. 
thetaiotaomicron, and P. goldsteinii could restrict the CRC 
liver metastasis. Likewise, bacteria from genus Bacteroides, 
like B. vulgatus, have anti-cancerous effects that can be 
correlated with the immune response intervened by the ac-
tivation of TLR2 signaling pathway and myeloid differen-
tiation protein-2/TLR4.28,29 T-cell responses specified for B. 
fragilis or B. thetaiotaomicron are connected with CTLA-4 
blockade efficacy in cancer patients.30

The functional difference between the three mice 
groups was found to be correlated with immune signaling 
based on the prediction. Specifically, IL-17 promotes tumor 
progression that modulates the inflammatory responses in 
KCs according to an alcohol-induced hepatocellular carci-
noma model.31 The premetastatic niche development in the 
CRC liver metastasis comprises various cells, for example, 
cells of bone marrow origin and other resident cells like 
KCs, liver sinusoidal cells, and hepatic stellate cells. Among 
all these types of cells, KCs have an important role in CRC 
liver metastasis.32 In the present study, having a similarity 
with the liver metastasis results, there was an increased 
population of KCs in the ASC group comparing with that 
in the control group which indicates that KCs aggregation 
was improved due to decreased commensal bacteria in the 
intestine. Significantly, it was observed that the KC popu-
lation was reduced in the mouse of the Vanc group and 
increased in the mice of the Coli group.

Previous studies reported that vancomycin causes in-
crease in IL-25 levels, in vivo and in vitro, and this elevated 
levels of IL-25 cause the stimulation of macrophages (M1 
and M2 subtype alterations) which promotes the hepato-
cellular carcinoma growth.33 A previous study stated that 
the colistin treatment might have positive influence on 
phagocytic capability of macrophages through p38/mito-
gen-activated protein kinase pathway.34 Moreover, intrahe-
patic recurrence is more prevalent in patients with partial 
hepatectomy, it can be due to a decrease in the count of 
KCs residing in the liver which causes the activation of cas-
pase 1, tumor necrosis factor α, and receptor-interacting 
protein kinase 3 to cause the recruitment of certain other 
monocyte-derived cells which are favorable for cancer 
growth.35 

In the present study, in the Coli group KCs were abun-
dant and these were significantly low in the Vanc group 
than in the control group indicating that CRC liver metas-
tasis could be inhibited by the KC accumulation. Moreover, 
decreased P. mirbilis and increased B. vulgatus populations 
are positively associated with hepatic KCs encouraging 
that the B. vulgatus could be an important bacterium for 
KC aggregation. The neutrophil necrosis and macrophage 

accumulation were observed by light and electron micro-
scopes following the inoculation of B. vulgatus and T. hyo-
dysenteriae in mice.36

Changes in the liver microenvironment induced by 
commensal microbes could be beneficial for patients suf-
fering from CRC liver metastasis. Here, more liver meta-
static nodules were identified in the P. mirabilis group, but 
metastatic nodules were not increased in the heat-killed P. 
mirabilis group, suggesting that high relative abundances 
of P. mirabilis could increase metastasis, different from 
the results of a previous study.37 These might be associated 
with the dose and method of P. mirabilis administration, 
the number of tumor cells injected, selection of animal 
strains, or animal feeding conditions. The characteristic ag-
gregation of P. mirabilis within the cancerous can be used 
to transfer genes, immunomodulatory proteins, cytotoxic 
proteins, and prodrugs, showing similarity with F. clostrid-
ium.38 In our study, B. vulgatus remarkedly inhibited CRC 
liver metastasis. This observation might indicate its protec-
tive effect on tumorigenesis, which has been suggested in 
several studies.28,29 However, combined P. mirabilis and B. 
vulgatus had no effect on liver metastasis compared with 
the control group, showing that the efficacy of B. vulgatus 
might be counteracted by P. mirabilis. 

Evidence has shown that several members of the intes-
tinal microbiota, especially P. mirabilis, can be responsive 
to colitis in inflammatory macrophages, favoring IL-1β-
dependent inflammation and intestinal damage.39 In vivo 
and in vitro, our studies showed that P. mirabilis reduced 
KC recruitment and further promoted tumor metastasis 
and CT26 cell migration. It is well known that the 39 kDa 
protein of P. mirabilis can inhibit the LPS-induced oxida-
tive response of macrophages in a dose-dependent man-
ner.40 Importantly, our recent studies also showed that the 
suppressive effect of P. mirabilis on KCs was dose- and 
time-dependent; when the dose of P. mirabilis  was log 
2.481 CFU/mL, the inhibitory effect was detected with co-
cultivation until 72 hours. In contrast, with an increasing 
dose to log 3.886 CFU/mL, P. mirabilis promoted CT26 
cell migration through KCs at 24 hours, suggesting that an 
increase in the dose of P. mirabilis could accelerate CT26 
cell migration after KC treatment at the early stage. Analo-
gous to our Tax4Fun functional prediction based on 16S 
rDNA, P. mirabilis can translocate through the intestinal 
barrier and increase the proportion of T helper 17 cells, 
producing IL-17, to develop biliary disease and liver fibro-
sis.41 Furthermore, P. mirabilis could reach the recruited 
inflammatory macrophages across the damaged epithelial 
layer, and the engulfed P. mirabilis strongly activate the 
NLRP3 inflammasome to induce robust IL-1β produc-
tion, leading to the expansion of intestinal inflammation 
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and the formation of CRC.42 Liver metastasis infiltrated by 
MRC1+CCL18+ M2-like macrophages shows higher phe-
nylalanine metabolism, generating tyrosine, which could 
be linked to their unique functions at metastatic sites.43

Moreover, we found that B. vulgatus promoted KC ac-
cumulation in vivo and KC proliferation in vitro in dose- 
and time-dependent manners, preventing tumor metas-
tasis and CT26 cell migration. B. vulgatus mpk, which 
provides only weak agonistic activity and leading to the 
improvement in the immune responses in a mouse colitis 
model.44 Moreover B. vulgatus-induced IL-6 recruits den-
dritic cells towards an immature state where these cells 
do not respond to any pro-inflammatory activation by E. 
coli.45 In our study, the proliferation of KCs was apparent 
until the dose of B. vulgatus was log 2.863 CFU/mL at 48 
hours. When the concentration of B. vulgatus continued 
to log 3.055 CFU/mL, the proliferation of KCs inhibited 
CT26 cell migration at 72 hours, indicating that even if the 
dose of B. vulgatus increases, it takes certain amount of 
time to promote KC growth, which exerts anti-migration 
effects on CT26 cells. The ability of B. vulgatus to modu-
late NF-κB in HT-29 or Caco-2 cells is strain- and growth 
phase-dependent, suggesting that this capability might be 
regulated in response to environmental stressors affecting 
bacterial growth.46

However, the current study had certain limitations. In 
this study, one cell line (CT26) was utilized, the KC sub-
type was not recognized, and certain other cells of hepatic 
immune response were also not exposed. Moreover, the 
precise mechanism involved in the observed effects needs 
additional studies. 

In conclusion, alterations to the gut microflora diversity 
influence CRC liver metastasis. An increased abundance 
of B. vulgatus and a decreased abundance of P. mirabilis 
can play key roles in CRC liver metastasis, which could be 
related to KC accumulation in the liver. 
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